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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
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SELECTION METHOD OF MULTIPLE WEB DONORS 

By 

MOHD IZHAM BIN MOHD JAYA 

December 2018 

Chair : Assoc. Prof. Fatimah binti Sidi, PhD  
Faculty : Computer Science and Information Technology 

Missing value is a common problem in any dataset and its occurrence decreases 
data completeness as data values are missing. Moreover, the problem reduces 
data quality and negatively impacted the result of data analysis. Existing cold deck 
imputation coped with this problem by selecting a replacement value from a pool 
of donors identified in other data sources during the imputation process. In 
comparison to other imputation methods, existing cold deck imputation has less 
risk on model misspecification and preserves data distribution in the dataset. 

Nevertheless, the limitation of the existing cold deck imputation is the chances in 
finding trusted plausible donor is narrow due to a usage of single data source in 
each imputation process. The availability of various web data sources today 
alleviates this limitation. However, as values from multiple web data sources are 
commonly conflicted to each other, adopting existing cold deck imputation with 
multiple web donors is not a practical solution as trust score on each of the 
conflicted values is not measured. Thus, it is difficult to select the most plausible 
value during imputation process. This research concentrates on improving data 
completeness by imputing missing values using a trust based cold deck 
imputation. 

Trust Based Cold Deck Missing Values Imputation with Multiple Web Donor is 
presented in this research. The proposed method takes advantage of multiple web 
donors from web data sources in order to provide higher chances in finding the 
most plausible values to impute missing values. The plausible values are selected 
based on the trust score computation’s novelty which is measured by accuracy 
score and reliability score of the web donor.  
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The performance of the proposed method is evaluated by running a prediction 
model on the imputed dataset. A number of experiments are carried out to quantify 
the accuracy of the prediction model, Root Mean Squared Error (RMSE), and the 
F-Measure. The results demonstrate that the proposed method improves the 
performance of existing cold deck imputation. Additionally, the results are then 
compared with other imputation methods which are K-Nearest Neighbor (KNN), 
Mean Imputation (AVG), Case Deletion (IGN), Predictive Mean Matching (PMM) 
and MissForest. The results showed that the RMSE, prediction accuracy and F-
Measure is improved when the prediction model is trained with datasets imputed 
using the proposed method. This research contributed to the improvement of data 
quality especially to the information system (IS) and database field where good 
data quality benefited the data analysis performance. 
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MOHD IZHAM BIN MOHD JAYA 

Disember 2018 

Pengerusi  : Professor Madya Fatimah binti Sidi, PhD 
Fakulti  : Sains Komputer dan Teknologi Maklumat 

Nilai hilang adalah masalah yang biasa ditemui pada kebanyakan set data dan 
kehadirannya akan menyebabkan ketidaksempurnaan data di dalam set data 
meningkat. Tambahan pula, masalah nilai hilang juga menyebabkan kemerosotan 
kualiti data dan memberi impak negatif kepada hasil analisis data. Imputasi dek 
sejuk yang sedia ada berupaya untuk mengatasi masalah ini dengan memilih nilai 
pengganti dari kolam penyumbang yang dikenalpasti daripada sumber data yang 
lain. Berbanding dengan kaedah imputasi yang lain, imputasi dek sejuk yang sedia 
ada mempunyai risiko yang lebih rendah terhadap kesalahan spesifikasi model 
dan memelihara distribusi data di dalam set data.  

Walaupun begitu, peluang untuk menjumpai penyumbang munasabah yang boleh 
dipercayai adalah kecil dalam kaedah imputasi dek sejuk yang sedia ada kerana 
hanya sumber data tunggal yang digunakan di dalam setiap proses imputasi. Hari 
ini, dengan kebolehsediaan pelbagai sumber data web, halangan ini dapat diatasi. 
Walau bagaimanapun, nilai yang diperoleh dari berbilang sumber data web 
biasanya bercanggah di antara satu sama lain. Penggunaan kaedah imputasi dek 
sejuk yang sedia ada adalah penyelesaian yang tidak praktikal kerana skor 
kepercayaan untuk setiap nilai yang bercanggah tidak dinilai. Oleh itu, adalah 
sukar untuk memilih nilai yang paling munasabah dan paling boleh dipercayai 
semasa proses imputasi. Kajian ini menumpukan kepada pembaikan 
kesempurnaan data dengan imputasi terhadap nilai hilang menggunakan imputasi 
dek sejuk berasaskan kepercayaan. 

Kaedah imputasi nilai hilang dek sejuk berasaskan kepercayaan untuk berbilang 
penyumbang web dipersembahkan di dalam kajian ini. Kaedah yang dicadangkan 
ini memanfaatkan berbilang penyumbang web dari sumber data web untuk 
memberikan peluang yang lebih tinggi dalam mencari nilai yang paling 
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munasabah dan paling boleh dipercayai untuk imputasi nilai hilang. Nilai yang 
paling munasabah dan paling boleh dipercayai adalah dipilih berdasarkan kepada 
skor kepercayaan yang diukur melalui skor ketepatan data dan skor keutuhan 
penyumbang web.  

Prestasi kaedah yang dicadangkan adalah dinilai melalui model ramalan yang 
dilarikan dengan set data yang diimputasi. Beberapa eksperimen telah dijalankan 
untuk menyatakan peratusan ketepatan model ramalan, Ralat Punca Min Kuasa 
Dua (RPMKD), dan nilai-F. Keputusan eksperimen menunjukkan kaedah yang 
dicadangkan dapat memperbaiki prestasi kaedah imputasi dek sejuk sedia ada. 
Keputusan eksperimen untuk pendekatan yang dicadangkan juga dibandingkan 
dengan kaedah imputasi yang lain seperti Jiran-K yang Terdekat (KNN), imputasi 
purata (AVG), penghapusan kes (IGN), penyesuaian purata yang dijangka (PMM), 
dan MissForest. Secara umumnya, prestasi model ramalan telah ditingkatkan 
apabila dilatih menggunakan set data yang telah diimputasi menggunakan kaedah 
yang dicadangkan. Penyelidikan ini menyumbang kepada penambahbaikan kualiti 
data terutamanya dalam bidang Sistem Informasi (SI) dan pangkalan data di mana 
kualiti data yang baik memberi manfaat kepada prestasi analisis data. 
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1 

INTRODUCTION

1.1 Background 

Missing values is a common problem found in dataset from any field of research. 
Liu et al. (2016a) defined missing values as the absence of data values in a 
dataset in which the data records have the undesirable null values. A data value 
in a dataset can be missing due to several reasons such as non-response items 
in the interview and survey, equipment malfunction, human error, and faulty data 
transmission. The occurrence of missing values in a dataset need to be managed 
using appropriate methods to estimate the approximate values to replace the 
missing values. The inability to manage missing values in a dataset could reduce 
the analysis performance. For example, in predictive modelling, Rahman & Islam 
(2016), Rubright et al. (2014) and Roth & Switzer (1995) stressed that the 
occurrence of missing values in a dataset can caused biased result in the 
prediction model and threaten its prediction accuracy. The same problem occurs 
in classification algorithms such as neural networks. Liu et al. (2016b) and Zhu 
et al. (2011) discussed that bias caused by missing values occurring in the 
training dataset could impact the quality of learned pattern and decrease the 
classification performance.  

Missing values are also associated with data quality and measured by its 
dimension of data completeness. Data quality is defined as a state in which data 
are free from defect and ‘fit for use’ (Lee & Strong, 2003; Levitin & Redman, 
1998; Strong et al., 1997; Wang & Strong, 1996; Wang, 1998). As missing values 
occur in the dataset, the dataset is no longer free from defects. Even worst, it 
may cause severe problems to the organization that own the data (Haug et al. 
Strong et al., 1997). For example, the organization required to put more effort to 
rectify missing values in the customer address as wrong address in product 
delivery can caused severe impact to the business. Such example showed the 
increment in the organization’s operational cost due to poor data quality i.e. 
missing values. Furthermore, poor data quality within the organization gave 
negative influence towards user perception, experience, trust and believability of 
the specific application usage such as Enterprise Resource Planning (ERP) and 
Business Intelligent System (BIS). ERP and BIS applications are important for 
the organization as they strengthen the organization operations and support the 
decision making process. Hartl & Jacob (2016) and Popovič et al. (2012) 
discussed the barriers created between specific application usage and user 
acceptance as data quality decreases in the organization. 

As mentioned earlier, the occurrence of missing values in a dataset is measured 
by the dimension of data completeness. Data completeness is measured as the 
number of data values that exists against the total number of data values (Liu et 
al., 2016a; Wechsler & Even, 2012; Batini & Scannapieca, 2006). Data is 
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considered as complete when all necessary values pertaining to the data exist 
and contain no undesirable null values (Jayawardene et al., 2013; Bovee et al., 
2003; Kahn et al., 2002; Wand & Wang, 1996). Previous research in data 
completeness proposed various methods to solve the missing values problem. 
These methods can be categorized into two main categories which are case 
deletion and imputation. The imputation methods comprise two main categories 
named multiple imputation and single imputation. Single imputation methods can 
be further classified into three main categories which are model-based methods, 
machine leaning-based methods and data driven methods.  

Cold deck imputation method belongs to data driven methods and is able to 
produce almost the same imputation accuracy as multiple imputation but with 
lower computational cost (Garciarena & Santana, 2017). Unlike multiple 
imputation methods, cold deck imputation method do not require multiple times 
of imputation process, which can be computationally expensive. Furthermore, 
model misspecification problem is less likely to occur in cold deck imputation 
compared to model based imputation. The only problem with cold deck 
imputation is the chance to find the most suitable value to replace the missing 
value is small due to the limited number of possible donor. The number of 
possible donor can be increased by gathering web donor from web data sources. 

Cold deck imputation using possible web donors from web data source is 
proposed in Du & Zhou (2012). The proposed imputation method has been 
compared to existing missing values imputation methods which are mean 
imputation, deletion and K-Nearest Neighbor (KNN). The result proved that using 
web donor to replace missing value produced higher accuracy in the prediction 
model compared to the existing imputation methods. In the evaluation process, 
missing values were imputed using the proposed imputation method and the 
completed dataset is then used to build a prediction model. The prediction 
accuracy, root mean squared error (RMSE) and F-Measure are then compared 
to evaluate the performance of each imputation methods.  

Even though the proposed method in Du & Zhou (2012) produced the highest 
accuracy in the prediction model, the implementation of the proposed method is 
only restricted to a single web data source at one time imputation. In the web 
data source, there is no assurance that the provided data value is correct as in 
most cases, the data values from multiple web data sources are conflicting even 
though they referred to the same data item (Dong et al., 2015). Thus, multiple 
web data sources should be allowed in cold deck imputation to give more chance 
in getting the most suitable web donor. Another problem rise when multiple web 
data sources are used, a method to measure and determine the most suitable 
web donor is absent in the method proposed by Du & Zhou (2012).  

 
Looking further, the method used to select the most suitable web donor should 
be able to determine the amount of trust for each available web donor from 
multiple web data sources and rank the web donors according to their trust score. 
The web donor with the highest trust score then can be used to impute the 
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missing values in the dataset. The trust score also enables users to evaluate the 
accuracy and the reliability of each web donor before the imputation taking place. 
This is important in order to provide believability to users and to give more trust 
towards the imputed dataset. The limitations mentioned above motivate us to 
conduct this research. The main goal of this research is to improve data 
completeness where the number of trusted web donor used to replace the 
missing values in the dataset is increase compared to the existing cold deck 
imputation method. 

1.2 Problem Statement 

The data completeness problem happens due to several factors such as human 
errors, equipment malfunction, manual data entry process, and incorrect 
measurement (Deb & Liew, 2016; Tsai & Chang, 2016). In previous research, 
various missing values imputation methods have been proposed and these 
imputation methods can be arranged according to their complexity and 
performance. Methods such as case deletion and mean imputation are less 
complex and easy to use but perform poorly in terms of bias and imputation 
accuracy (Cox et al., 2014). However, complex imputation methods such as 
multiple imputation and machine learning based methods give more imputation 
accuracy and reduce bias but required high computational resources due to 
multiple imputation and iteration during the imputation (Nakai & Ke, 2011). Same 
problems happened in model based imputation which required suitable model 
specification to allow it imputes accurately (Andridge & Little, 2010). A more 
promising imputation method is the hot deck imputation which gives the same 
prediction accuracy as the multiple imputation method but with less 
computational cost (Garciarena & Santana, 2017). However, as the donor comes 
from the same dataset, the chance to have a more suitable donor to replace the 
missing values is limited especially in a small size dataset.  

The chances to have a more suitable donor can be increased by looking for the 
possible donor to replace the missing values from other data sources, 
particularly, the web data sources. However, the success of this approach is 
dependent on the level of trust that a user has towards the web donor’s value 
and the web data sources itself (Wang et al., 2017). Replacing missing values 
with untrusted data will not just increase the risk of wrong decision and false 
analysis, but also ruin the organizational operation in the long run. 

Web data sources contain large amount of data that can be used to replace 
missing value. For example, Yahoo!Financial, and Google Finance stored a 
huge collection of financial data to replace missing values in financial datasets. 
However, as each web data source adopted a different data schema, problems 
such as conceptual inaccuracy and terminological ambiguity limit the ability to 
make used of these data in missing value imputation. Du & Zhou (2012), adopted 
an ontology mapping approach to resolve conceptual inaccuracy and 
terminological ambiguity problems from web data sources and make the 
matching between identified web donor and missing values during the imputation 
become possible. However, the approach is only limited to a value from a single 
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web donor for each missing value replacement and ignored the variation of web 
donor values especially when more than one value are available to replace the 
missing value. Thus, limits the chances in finding the most suitable value to 
replace the missing value.  

There are various sources of web donor on the web with unknown accuracy and 
reliability and thus, the web donor values cannot be fully trusted. Therefore, 
replacing missing values with web donor values may lead to inaccurate 
imputation (Wang et al., 2017). In fact, web donor from multiple web data sources 
can have different data values even though it referring to the same data item. 
Importantly, the approach failed to answer critical questions such as “How much 
I can trust the imputed data?” and “Which data from which data source is more 
trusted?” It is known that data from web data sources are usually conflicting with 
each other (Dong et al., 2015). Thus, answer to the questions raised before is 
important to increase believability to the analysis derived from the imputed 
dataset.  

Trusted imputed dataset is highly depending on the selection of trusted data to 
replace missing value. Chu et al. (2015) and Batini & Scannapieca (2006) 
discussed that trusted data can only be derived from a trusted data source. As 
example, if data derived from ‘Source A’ is more trusted than data derived from 
‘Source B’, then replacing missing values with values from ‘Source A’ will make 
the imputed dataset more trustworthy compared to replacing the missing values 
with data from ‘Source B’. As the selection of trusted data is important, ranking 
of trust score between possible web donors from multiple web data sources will 
further help users to determine the most trusted data. Thus, the selection of 
trusted web donor can be done before the imputation process. 

Trust level for each possible web donor needed to be assessed before 
imputation process and required metrics to measure the expected characteristics 
of trust, namely: accuracy and reliability (Dong et al., 2015; Li et al., 2014a; 
Kitchens et al., 2014; Asmare & McCann, 2014; Li et al., 2012; Batini et al., 2009; 
Batini & Scannapieca, 2006). Accuracy measures the correctness of web 
donor’s value when compared to their value of reference in the dataset. On the 
other hand, reliability is a measure that assess the extent of claimed values in 
web donor’s data source that is correct and trusted. As it is impossible to know 
the accurate value of that missing data, a metric to assess accuracy and 
reliability based on the available observed data in the dataset is needed (Li et 
al., 2016; Dong et al., 2015; Asmare & McCann, 2014; Li et al., 2014a; Li et al., 
2014b). Web donor which is provided by a web data source with the highest 
accuracy and reliability score is given the highest trust score and regarded as 
more trusted to replace the missing value.  

 
Therefore, this research is essential to investigate and propose a new method 
that answers the following questions: 

1. How to measure trust for each possible web donor if more than one web 
data sources is used in cold deck imputation? 
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2. How to measure reliability and accuracy for each possible web donor based 
on the observed data values in the dataset? 

3. How to determine the most trusted web donor in cold deck imputation if 
more than one web data sources is used in order to improve data 
completeness? 

1.3 Research Objectives 

The main objective of this research is to improve data completeness in a dataset 
by imputing the missing values with trusted data values from multiple web data 
sources. The objective is further described as follows: 

1. To propose a new method to measure trust for each web donor in cold 
deck missing value imputation based on the accuracy and the reliability of 
the web donor from multiple web data sources with the aim to resolve 
conflicted web donor values and to determine a trusted web donor. 

2. To propose a new cold deck imputation method on improving data 
completeness by imputing missing values using a trusted web donor from 
multiple web data sources. 

1.4 Scope of the Research 

The scope of this research work is defined in the following points: 

 The type of data that is considered in this research is structured data, in 
this case it is limited to numerical data type.  The structured dataset used 
in this research comprises of tables with rows and columns. 
 

 This research focuses on column completeness which measures the 
availability of each attribute value in the dataset and more related to 
missing values occurrence. Due to this, schema completeness and 
population completeness are out of the scope of this research. 

 
 This research works on finding the most trusted values to impute missing 

value in data completeness dimension. Various expected characteristics 
influenced trust such as accuracy, reliability, believability, and reputation. 
Unlike accuracy and reliability, reputation is not inferred directly from the 
data and depended on user’s personal preferences and judgement. In this 
research, reputation is regarded as the ranking of possible web donors 
based on their reliability and accuracy scores. Additionally, believability 
can also be achieved when user expectation is met. For example, if the 
information of data source reliability and data source accuracy is provided, 
user can compare his expectation and decide to believe the data source 
if his expectation is met.   

 In the literature study, other expected characteristics that influence trust 
such as credibility, verifiability, relevancy, objectivity, licensing and 
provenance have also been found and elaborated in Table 2.6 of Section 
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2.5. But, only a few literature that associated these characteristics with 
trust. Furthermore, these characteristics are large topic by itself and in 
some cases, characteristics such as licensing and provenance are not 
described in some web data sources. As for that, this research focuses 
only on accuracy and reliability as important characteristics to describe 
trust.  

 
 Despite the various categories of imputation methods as discusses in 

Chapter 2, this research focuses only on cold deck imputation in data 
driven imputation method category. The proposed trust score 
measurement method requires a comparison of the claimed values from 
web data source and the corresponding values in the dataset in order to 
determine a trusted web donor. This approach helps to reduce the 
dependencies of the imputation method performance to multiple 
imputation process and model specification problem as occurred in 
multiple imputation and model-based imputation methods.   

 
 The nature of dataset that is considered by this research is limited to a 

dataset where variables with non-missing values that are related to the 
variable with missing value are available. In which, data values for the 
variables with non-missing values and the corresponding claimed values 
from the web data source are compared and used to measure accuracy 
score, reliability score, and trust score.  

1.5 Organization of the Thesis 

The first chapter of this thesis is an introductory chapter which discusses the 
problem statement, objectives and the scope of research. The rest of this thesis 
is organized as follows: 

Chapter 2 reviews the fundamental concepts of data quality, data completeness, 
data accuracy, data reliability and missing values. It also reviews relevant works 
proposed by previous researchers in missing values imputation. The missing 
values imputation methods are classified based on their imputation mechanism, 
namely: case deletion, multiple imputation and single imputation. The features 
of these imputation methods are presented in term of their strengths and 
weaknesses towards new research opportunity. The chapter also illuminates on 
the notion of trust and its related expected characteristic that are relevant to this 
research. 

Chapter 3 describes the research methodology used in this research which 
includes discussions on different phases of this research. The performance 
metrics, experiments setup and the dataset that is used in this research are 
presented as well.  

Chapter 4 presents in detail the proposed trust measurement method based on 
the accuracy and the reliability of multiple web donor as defined in the first 
objective of this research. This chapter also presents and discusses the 
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measurement method used to measure reliability and accuracy of each web 
donor. 

Chapter 5 elucidates the new cold deck imputation method with multiple web 
donor and incorporated the trust measurement method in order to achieve the 
second objective of this research.  

Chapter 6 presents the results of the experiments to evaluate the performance 
of the proposed cold deck imputation methods and its comparison with existing 
imputation methods. This chapter also discusses the results with respect to the 
number of web donors and percentage of missing values in the dataset.  

Chapter 7 concludes the research by providing a summary of the contributions 
and recommendation for future research. 
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