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Sentiment Analysis has become one of the important researches in natural lan-
guage processing due to the exponential increase of user reviews and comments
online. The goal of sentiment analysis is to determine the polarity orientation
of a review text to either positive or negative. Many techniques rely on generic
opinion lexicons such as the SentiWordNet to construct features for the sentiment
classification task. The lexicons consist of words with positive or negative po-
larity, and sometimes with assigned scores reflecting the degree of the sentiment
polarity. The presence of the opinion lexicons in a text indicates the overall senti-
ment of the text. The lexical based sentiment analysis works by the summation of
all polarity scores given by the opinion lexicons in the text to indicate its polarity,
while feature vectors are constructed from the opinion lexicons and their scores
to be used by the machine learning classifiers in the supervised learning task.

Firstly, in this context, the features to be used for classification are limited to only
that opinion words presence in the text, while other non-opinion words in the text
will be neglected (will be assigned zero values in the vector). It has become the
limiting factor to the effectiveness of sentiment analysis. It is assumed that the
collection of features should be enriched by including other non-opinion words in
the text as features. In this thesis, the Dic2vec model is proposed to learn the
polarity of non-opinion words based on the Word2vec. As such, the features for
sentiment analysis are enriched by the combination of opinion words and non-
opinion words.

Secondly, many feature extraction techniques have been proposed to alleviate the



data density and sparsity issue by mean of feature clustering. Such methods often
result in the reduction of vector dimension and assign a more effective weighting
scheme to improve the efficiency and effectiveness of sentiment analysis. One of
the feature clustering methods used for sentiment analysis is based on computing
semantic orientation of words in the labeled corpus and groups those words based
on predefined ranges of semantic orientation scores. The score is measured based
on the Pointwise Mutual Information (PMI) of words in the positive and negative
reviews dataset. As a result, clusters of words are derived and used as features.
The main disadvantage of this feature clustering method is that the strength in
the polarity of words will be under represented in the vector. Two or more words
with similar but high scores will only be represented by a binary value of 1, which
is equals to any two or more words with similar but lower scores. As such, the
effect of the significant words in the classification is diminished. In this thesis, the
Senti2vec model is proposed to discover polarity clusters from the corpus to be
used as features. The aim is to group non-opinion words around opinion words to
produce more effective weighting scheme for the features in the sentiment analysis
task.

Finally, the thesis focuses on the problem generating domain-dependent opinion
lexicons through semi-supervised learning. It is based on the assumption that
generic opinion lexicons such as the SentiWordNet is unable to capture the specific
characteristics of the domain in order to discriminate among classes. The problem
can be defined as assigning the polarity of target words based on a given set
of opinion lexicons as the seed. The recent method proposed for this problem
constructs a graph where nodes corresponds to subjective words and the edges
reflect the similarity between those words. The similarity is measured by the
co-occurrence of words pair within the same linguistic unit, such as an n-gram,
phrase or sentence. Given that the polarity of a seed word is known, the polarity
of target words is derived based on the strength of the edges between the seed
word and the target word. It is argued that the Word2vec is much superior in
representing the distributional semantics among words in a language. As such, in
this thesis a semi-supervised learning method is proposed to learn the polarity of
words from seeds opinion words by using the Word2vec.

All proposed methods and models in this thesis are evaluated by using a collection
of movie reviews labeled dataset with 50,000 reviews. Based on the experiment,
the performance of the Dic2vec model is about 2.5% to 6% better than the base-
line. In addition, the Senti2vec model shows an improvement of up to 6.5% as
compared to the baseline. Finally, the proposed semi-supervised method for learn-
ing opinion lexicons is better than the recent co-occurence graph method by more
than 12%.
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EISSA MOHAMMED MOHSEN ALSHARI

Disember 2018

Pengerusi: Azreen Azman, PhD
Fakulti: Sains Komputer dan Teknolologi Maklumat

Analisis Sentimen telah menjadi salah satu penyelidikan penting dalam bidang
pemprosesan bahasa tabii kerana peningkatan mendadak ulasan dan komen peng-
guna secara atas talian. Matlamat analisis sentimen adalah untuk menentukan
orientasi kekutuban teks ulasan sama ada positif atau negatif. Kebanyakan teknik
bergantung kepada leksikon pendapat yang generik seperti SentiWordNet un-
tuk membina ciri dalam klasifikasi sentimen. Leksikon tersebut terdiri daripada
kata-kata yang mempunyai kekutuban positif atau negatif, dan kadang-kadang
berserta dengan skor yang diberikan untuk mencerminkan tahap kekutuban sen-
timen. Kehadiran leksikon pendapat dalam teks boleh menunjukkan sentimen
untuk keseluruhan teks. Analisis sentimen berasaskan leksikal berfungsi den-
gan penjumlahan semua skor kekutuban yang diberikan oleh leksikon pendapat
dalam teks untuk menunjukkan kekutubannya, sementara vektor ciri dibina dari
leksikon pendapat dan markah mereka akan digunakan oleh kelas pembelajaran
mesin dalam pembelajaran terselia.

Pertama, dalam konteks ini, ciri-ciri yang digunakan untuk klasifikasi adalah
terhad kepada hanya kata-kata pendapat yang ada di dalam teks, sementara
kata-kata bukan pendapat yang lain dalam teks akan diabaikan (akan diberi nilai
kosong dalam vektor). Ia telah menjadi faktor yang membataskan keberkesanan
analisis sentimen. Ia diandaikan bahawa koleksi ciri tersebut harus diperkaya
dengan memasukkan kata-kata lain yang bukan pendapat dalam teks sebagai ciri-
ciri. Dalam tesis ini, model Dic2vec dicadangkan untuk mempelajari kekutuban
perkataan yang bukan pendapat berdasarkan kepada Word2vec. Oleh itu, ciri-
ciri untuk analisis sentimen diperkaya dengan gabungan perkataan pendapat dan
kata-kata bukan pendapat.
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Kedua, banyak teknik pengekstrakan ciri telah dicadangkan untuk mengu-
rangkan ketumpatan data dan masalah kejarangan melalui pengelompokan ciri-
ciri. Kaedah sedemikian sering mengakibatkan pengurangan dimensi vektor dan
memberikan skema pemberat yang lebih berkesan untuk meningkatkan keceka-
pan dan keberkesanan analisis sentimen. Salah satu kaedah pengelompokan
ciri-ciri yang digunakan untuk analisis sentimen adalah berdasarkan pengiraan
orientasi semantik kata-kata dalam korpus berlabel dan mengelompokkan kata-
kata itu berdasarkan julat yang telah ditentukan sebelumnya daripada skor ori-
entasi semantik. Skor diukur berdasarkan pada Pointwise Mutual Information
(PMI) perkataan dalam dataset ulasan positif dan negatif. Akibatnya, kelompok
perkataan diperoleh dan digunakan sebagai ciri-ciri. Kekurangan utama kaedah
pengelompokkan ini ialah kekuatan dalam kekutuban kata-kata akan kurang di-
wakili dalam vektor. Dua atau lebih perkataan dengan markah yang serupa dan
tinggi hanya akan diwakili oleh nilai binari 1, yang sama dengan mana-mana dua
atau lebih perkataan dengan markah yang serupa tetapi rendah. Oleh itu, ke-
san kepada perkataan penting dalam klasifikasi itu akan berkurangan. Dalam
tesis ini, model Senti2vec dicadangkan untuk mencari kluster kutub dari korpus
untuk digunakan sebagai ciri-ciri. Matlamatnya adalah untuk mengelompokkan
kata-kata yang bukan kata pendapat di sekitar kata-kata pendapat untuk meng-
hasilkan skema pemberat yang lebih berkesan untuk ciri-ciri dalam analisis sen-
timen.

Akhirnya, tesis ini memberi tumpuan kepada masalah leksikon yang bergantung
kepada domain melalui pembelajaran separuh diselia. Ia berasaskan kepada
anggapan bahawa leksikon pendapat yang generik seperti SentiWordNet tidak
dapat menangkap ciri-ciri khusus domain dalam mendiskriminasi antara kelas.
Masalahnya boleh ditakrifkan sebagai mengenalpasti kutub sentimen bagi kata
sasaran berdasarkan satu set pendapat leksikon sebagai benih. Kaedah terbaru
yang dicadangkan untuk masalah ini ialah membina graf di mana nod bersesuaian
dengan kata-kata subjektif dan keseluruhan mencerminkan kesamaan antara kata-
kata itu. Kesamaan diukur oleh terjadinya pasangan perkataan dalam unit lin-
guistik yang sama, seperti textit n -gram, frasa atau ayat. Memandangkan keku-
tuban perkataan asas diketahui, kekutuban kata sasaran diperolehi berdasarkan
kekuatan keseluruhan di antara perkataan benih dan kata sasaran. Dikatakan
bahawa Word2vec lebih unggul dalam perwakilan taburan semantik di antara
kata-kata dalam sesuatu bahasa. Oleh itu, dalam tesis ini, kaedah pembelajaran
yang separuh diselia dicadangkan untuk mempelajari kutub kata-kata dari kata-
kata pendapat benih dengan menggunakan Word2vec.

Semua kaedah dan model yang dicadangkan dalam tesis ini dinilai dengan meng-
gunakan koleksi ulasan filem dilabelkan dengan 50,000 ulasan. Berdasarkan
eksperimen, prestasi model Dic2vec adalah lebih kurang 2.5 % hingga 6 % lebih
baik daripada piawai. Di samping itu, model Senti2vec menunjukkan peningkatan
sehingga 6.5% berbanding dengan piawai. Akhir sekali, cadangan kaedah separuh
diselia untuk pembelajaran leksikon pendapat adalah lebih baik daripada kaedah
geraf kewujudan terbaharu dengan lebih daripada 12%.
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CHAPTER 1

INTRODUCTION

1.1 Background

The number of users of on-line shopping websites and the social media, (e.g.,
reviewers, tweeters, commenter) is continuously increasing. Such website usually
provides facility for the users to give comments and ratings to the products being
sold on the websites. The textual information can be useful as a recommendation
for other users in making their purchase decision. These textual information are
divided into two types: opinions and facts. Opinion statements are subjective
in nature and mostly describe the people’s sentiments around events or entities.
Most of the current research have been emphasized on the factual data in various
natural language processing tasks (NLP), e.g., information retrieval, text classifi-
cation, etc. Research on sentiment analysis from sentences is still limited due to
a huge number of challenges involved in the field (Turney, 2002; Cambria et al.,
2010; Liu, 2012; Cambria et al., 2013). Several websites often provide facilities
for the users to give comments and ratings to the products being sold on these
websites. Therefore, understanding polarity orientation of text (positive or neg-
ative) through opinion mining techniques gives new chances for organizations to
determine their wise development strategy (Berners-Lee et al., 2001).

Sentiment Analysis (SA) is a collection of opinion mining methods for analyzing
people’s opinion and sentiment (usually a sequence of words in a text) towards
entities such as products. Sentiment analysis has three categories; document-level
(Turney, 2002; Maas et al., 2011a; Lau and Baldwin, 2016), sentence-level (Meena
and Prabhakar, 2007; Socher et al., 2011), and aspect-level (Mudinas et al., 2012;
Agarwal et al., 2015¢). The document-level SA considers a document as a single
unit (such as review, document, or comment) and classifies it based on whether
it has positive or negative sentiment polarity.

The sentence-level in SA processes a sentence to extract the opinion expressed
in that sentence. Both the document and the sentence levels do not exactly
detect what people liked and did not like in the entities. The aspect-level or
feature-level identifies the people’s opinion of entities described in the text (Hu
and Liu, 2004a; Liu, 2012). The development of techniques for the document-level
sentiment analysis is one of the significant components of this area and there is
several research available in literature for detecting sentiment from the document
text (Abbasi et al., 2008; Liu, 2012; Kaji and Kitsuregawa, 2007).

In this research, new methods are proposed to extract features from the unstruc-



tured text that can include semantic, and common sense knowledge from the
embeddings of words. Techniques employed by sentiment analysis models can be
broadly categorized into lexicon (Kaji and Kitsuregawa, 2007), semantic orienta-
tion (Dai et al., 2011; Turney and Littman, 2003), machine learning (Pang and
Lee, 2008) approaches.

Semantic orientation and lexicon approaches detect the polarity of the words on
the basis of the corpus or opinion dictionary, whereas Machine learning (ML)
model requires large training dataset. There are three steps to construct the se-
mantic orientation-based approach. At first, the features that contain rich opinion
of the users are extracted from the untrusted text; for instance, ’'good movie’ ex-
presses a positive orientation.

Further, semantic polarity orientation of (non-opinion) from rich opinion features
are determined as a dictionary based, corpus based or word embeddings. At long
last, the overall polarity of the document or comment is computed by summation
the polarity of the feature. The polarity computed in two types in the semantic
orientation based approach; (i) opinion lexicon or knowledge based (Dai et al.,
2011) and (ii) corpus based.

In the dictionary-based (lexicon-based) or Knowledge-based approaches, polarity
value is determined based on utilizing the pre-developed polarity lexicons, such
as Bing lie (Hu and Liu, 2004a), SentiWordNet Baccianella et al. (2010), Word-
Net (Miller, 1995), Sentiment 140 (Go et al., 2016), (Das and Chen, 2007) and
etc. Whereas, corpus-based approaches compute the polarity based on the co-
occurrences of the term with other negative or positive seed words in the corpus.

The main inspiration behind this approach is that the semantic orientation of any
feature is said to be negative if it has association with negative seed words (e.g.,
bad). Also, it is said to be positive semantic orientation in the event that it has
relationship with positive seed words (e.g., good and excellent).

On the other hand, machine learning model is as follows; Initially, the keywords
may not carry precise sentiment of the user and thus the intelligent features
are extracted from the document that can incorporate the syntactic, semantic,
knowledge and sentiment. Next, fitting weighting schemes are required to offer
weight to features according to their importance. Further, an effective feature
selection technique is required to extract only the important features (feature
extraction) by removing the irrelevant features for better classification results.
Finally, a significant machine learning method is required for the classification.

Feature extraction (FE) in SA is an emergent research field. This research is
concentrated on related work performed in this area to investigate and address



some issues of feature extraction on sentiment analysis. FE is facing several issues
such as redundancy, large feature space problems, domain dependency, limited
work on Lexicon-structural features, difficulty in implicit feature identification
and word embeddings. The general challenges in FE, identified by (Beijing 2010,
Zhang 2011, Abbasi 2011, liu 2015), are discussed as follows:

e Redundancy, such as N-grams, that are highly redundant causing redun-
dancy problems in both multivariate methods and univariate. Therefore,
ability of hybrid methods to overcome problems arising from redundancy
needs further experiments (Joshi and Penstein-Rosé, 2009).

o Large feature sets (High dimensionality) causes performance retrogression
due to computational problems, therefore selection the essential features are
required.

e Domain dependency, performance of clustering based FE techniques is do-
main dependent, generalization problems and creating cross domain.

o Unlike semantic and syntactic features, limited work is carried out on lexicon
structural features in feature extraction algorithms.

Consequently, there are several directions to overcome the feature extraction issues
such as refine the lexicon and extend the sentiment feature-extraction procedure.
Further, there are several techniques to represent the features for SA, as such the
BoW , N-gram models and etc.. Mikolov et al. (2014a); Villegas et al. (2016a).

BoW is an approach that models text numerically in many text mining and in-
formation retrieval tasks. Several weighting schemes have been successfully used
in the BoW such as the n-gram, Boolean, term co-occurrence and tf-idf. The SA
is often based on deep learning and machine learning technologies that have been
significantly developed and acquired widespread attention since 2010.

The high-performance computing and cloud computing expedite the development
of word embedding technologies which are more easily be adopted in practical
applications. The features that are used in the classification of text play an
important role in polarity classification success. On the other hand, feature ex-
traction methods can be divided to either discrete distribution (applicable to the
scenarios where the set of possible outcomes is discrete, such as a roll of dice
or a coin toss) like Document Occurrence Representation (DOR) (Lavelli et al.,
2004) , Latent Semantic Analysis (LSA) (Landauer and Dumais, 1997), Latent
Dirichlet Analysis (LDA) (Hoffman et al., 2010), Second Order Attributes (SOA)
(Lépez-Monroy et al., 2013) and BoW (Le and Mikolov, 2014; Villegas et al.)
or continuous distribution (applicable to the scenarios where the set of possible
outcomes can take on values in a continuous range (real numbers), such as the
temperature on a given day) like Word2vec (Mikolov et al. 2013d), Doc2Vec (Le



and Mikolov, 2014), Glove (Pennington et al., 2014) and other neural network
techniques.

In this research, a novel approach by incorporating semantic and word embeddings
is proposed for sentiment analysis. The proposed concept extraction approach
exploits the relationship between words; it obtains the semantic relationship be-
tween words based on word embeddings such as word2vec. The importance of
word embeddings from domain distribution for the sentiment analysis model is
investigated. Hence, various feature extraction techniques were employed to mine
the prominent features for machine learning model.

1.2 Problems Statement

The problem of SA is to determine the polarity orientation of a text to either
positive, negative or neutral (Hu and Liu, 2004a; Li et al., 2014; Chen et al.,
2013). Over the years, researchers have developed different techniques for SA to
classify the reviews or comments into their polarity classes (Graves et al., 2005;
Lui and Croft, 2003; Shojaee et al., 2013; Mikolov et al., 2014a; Yazdani et al.,
2017). Classification methods have been effective in text classification, where a
corpus contains a lot of documents which are converted into document matrix
as a numerical or binary vector related to the occurrence of its documents (Liu
and Croft, 2005). The document matrix achieves good classification performances
by assigning larger weights to discriminative feature and smaller weights to non-
discriminative ones during training. However, it still has a weakness to classify
the SA polarity orientation because the common unsupervised term weighting
used in the document matrix is based on the co-occurrence models such as Term
Frequency (tf), Term Frequency-inverse Document Frequency (tf_idf) and n-gram
which is unable to draw a significant semantic weighting scheme of non-opinion
words in the corpus (Sebastiani, 2002; Agarwal et al., 2015d; Yazdani et al., 2017).

Many SA techniques rely on generic opinion lexicons such as the SentiWordNet
to construct features for SA task. Opinion lexicons consist of words with positive
or negative polarity, and sometimes with assigned scores reflecting the degree of
the sentiment polarity. In general, it is assumed that the presence of the opinion
lexicons in a text indicates the overall sentiment of the text. Therefore, in the
lexical based SA, the polarity scores given by the opinion lexicons in the text
is added to indicate the overall polarity of the text. On the other hand, in the
classification based SA, feature vectors are constructed from the opinion lexicons
and in some cases the vectors are weighted based on the polarity scores. In general,
there are several issues are investigated in this work as the following:

The first problem can be summarized as depicted in Figure 1.1. The features to be
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Figure 1.1 : The problem of combining vocabulary size and lexical size

used for classification are limited to only those words in the intersection between
the corpus vocabulary set and SentiWordNet set. In addition, the SentiWordNet
and other opinion lexicon does not include all terms in the corpus vocabulary.
The terms that will be included as the features for sentiment classification reside
within the intersection of the two sets. As such, this can be the limitation to the
performance of any SA method.

The second problem investigates the effectiveness of feature extraction technique
for SA. Many feature extraction techniques have been proposed to alleviate the
data density and sparsity issue by mean of feature clustering. Here, supervised
machine learning technique is capable of extracting semantic information among
data to form clusters, which later used as feature vector. There are several cluster-
ing methods investigated to group the closest semantic features together (Agarwal
and Mittal, 2014; Lin et al., 2014; Andrews and Fox, 2007). Such methods often
result in the reduction of vector dimension and assign a more effective weighting
scheme to improve the efficiency and effectiveness of SA method. One of the
method for clustering features for SA is proposed by Agarwal and Mittal (2014).
The method calculates semantic orientation of words in the labeled corpus and
groups those words based on predefined ranges of semantic orientation scores.
The semantic orientation score is measured based on the Pointwise Mutual Infor-
mation (PMI) of words in the positive and negative reviews dataset. As a result,
clusters of words are derived and used as features. Thus, the dimension of the
feature vector is based to the number of clusters produced. The method used
binary weighting scheme for the vector. The main disadvantage of this feature
clustering method is that the strength in the polarity of words will be under rep-
resented in the vector. Two or more words with similar but high scores will only
be represented by a binary value of 1, which is equals to any two or more words
with similar but low scores. As such, the effect of the significant words in the
classification is diminished.



The use of sentiment lexicons as features for sentiment analysis is based on the
notion that the presence of those words in a text will give an indication of over-
all sentiment of the text. If there are many positive words appear in the text,
it will indicate the positive sentiment of the text and vice versa. In machine
learning approaches of sentiment analysis, the lexicons can be effective in dis-
criminating text between positive and negative classes. However, many research
have discovered that the performance of sentiment analysis model is better when
all words are used as features as compared to only using the sentiment lexicons.
Such discovery may be due to the fact that generic sentiment lexicon is unable to
capture domain-dependent characteristics of the collection, such as movie reviews
or tweets.

The third problem focuses on the problem of semi-supervised learning of opinion
lexicons. It can be defined as the problem of assigning the polarity of target
words based on a given set of opinion lexicons as the seed. In (Hatzivassiloglou
and McKeown, 1997), the authors suggested that two adjectives conjoined by the
word and should have the same sentiment polarity while conjoined by the word but
should have different polarity. Based on that assumption, the polarity of target
words can be derived by measuring the co-occurrence of two words conjoined by
and or but within a corpus. In Turney algorithm (Turney, 2002), the polarity of
a phrase is learnt by measuring its co-occurrence with a given opinion lexicon as
the seed by using the Pointwise Mutual Information (PIM) score. In addition, the
synonyms and antonyms relationship between a seed opinion lexicon and target
words derived from the Wordnet have been used to infer the polarity of the words
(Hu and Liu, 2004b; Kim and Lee, 2014). In Khan et al. (2016) proposed a semi-
supervised method to learn the weight of features for sentiment analysis based on
SentiWordNet.

More recently, Kim (Kim, 2018) constructed a graph where nodes corresponds
to subjective words and the edges reflect the similarity between those words.
The similarity is measured by the co-occurrence of words pair within the same
linguistic unit, such as an n-gram, phrase or sentence. Given that the polarity of
a seed word is known, the polarity of target words is derived based on the strength
of the edges between the seed word and the target word. As such, the existing
work on the semi-supervised learning of opinion lexicons are based on the co-
occurrences of seed sentiment word with target words.In (Mikolov et al., 2013c),
the authors have discovered that the Word2Vec is more effective representation of
words in a continuous space to capture distributional semantics among words in a
language. As such, a semi-supervised learning of opinion lexicons should take into
consideration a more robust word embeddings techniques such as the Word2vec.



1.3 Research Objectives

The goal of this work is to build a lexical word embeddings model that allows
flexible context analysis and generates the features from the text polarity. The
specific objectives of this study were:

e To enrich features for sentiment analysis by learning the polarity of non-
opinion words based on modeling distributional semantic of Word2vec.

e To propose an effective feature extraction method based on discovering po-
larity clusters by using the Word2vec.

o To develop effective semi-supervised learning of opinion lexicons from corpus
based on Word2vec.

1.4 Research Contributions

The main contributions of this thesis are proposed to use Word2vec and sentiment
lexical for feature extraction as following:

e The Dic2vec model is proposed by extracting the Word2vec features based
on sentiment lexical to expand the BoWs representation model by used a
significant non-opinion words as features. In Addition, Dic2vec is based on
the assumption that the polarity of any words in the vocabulary can be
learned from combining the terms vector in the SentiWordNet and word
embeddings.

e The model, that is named as Senti2vec is based on the assumption that
the dimensionality of the document matrix is decreased by selecting the
centroid (best representative) of clustering which calculated from opinion
lexicon distance and Word2vec distribution rather than all terms in the
vocabulary.

e The internally semi-supervised lexical is developed from the labeled dataset
instead of using external lexicon. As a result, the number of opinion words is
increased which achieves a good polarity classification for Sentiment Anal-
ysis.

Consequently, the achieved results of our approaches are significant better than
the other state-of-the-art Sentiment Analysis approaches.



1.5 Research Scope

There are three parts in the development of SA model (data collection and clean-
ing, the feature extracting, training model and evaluation). In this thesis, the
focus on the feature extraction part because it is the most important and has a
lot of challenges. This work aims to design the effective approaches to extract
the features that will be learned from the word embeddings with a lexicon of
sentiment words for the weighting scheme in documents matrix. The other tasks
data collection, training and evaluation are involved to measure the performance
of this research methods. For feature extraction, several scenarios of minimize
and optimize the weight of feature are discussed in details chapter 4 to 6. Also,
the different classification methods will be compared to measure the performance
and calculate the accuracy.

1.6 Organization of the Thesis

This thesis consists of seven chapters and the details description of the sentiment
analysis, related works, frameworks, and contributions experiments and analysis
are presented for each chapter as follows:

Chapter 1 presents the introductory overview of the sentiment analysis and
its approaches with brief of limits and drawbacks, problem statement, objectives,
scope and contributions of this work.

Chapter 2 highlights and investigation of the research gap and motivation by
giving overview of related work to position this work therein. The important con-
cepts in sentiment analysis, feature extraction and word embeddings that complete
the understanding of polarity extraction are reviewed in this chapter

Chapter 3 describes the composition of the sentiment analysis framework and
the overall methodology details. In addition, all stage in the SA framework is
discussed with the NLP processing and word embeddings techniques. Finally, the
software, hardware and methodology are descried in this chapter.

Chapter 4 introduces the proposed Dic2vec model that learn the polarity of
words in the vocabulary through measuring semantic relations between opinion

8



words and non-opinion words based on the Word2vec and opinion lexical dictio-
nary. The lexicons produced by the model is later combined with the existing
opinion lexicons from dictionary to construct the set of features for sentiment
analysis. In addition, the effectiveness of the proposed approach is evaluated us-
ing the IMDB Movie Review dataset (Maas et al., 2011b) with the SentiWordNet
(Baccianella et al., 2010) as an opinion lexicon.

Chapter 5 proposes a feature extraction method based on modeling polarity
clusters within the Word2vec vectors in order to improve the effectiveness of SA.
It is assumed that each word in the vocabulary has its polarity alignment and will
produce a better representation of text for SA. The method proposed in this study
consists of three main components, which are; the learning of word embeddings
based on Word2vec, the discovery of polarity clusters based on opinion lexical
dictionary, and the construction of features matrix for classification based on
cluster best representation.

Chapter 6 investigates and experiments the problem of semi-supervised learn-
ing of opinion lexicons that can be defined as the problem of assigning the polarity
of target words based on a given set of opinion lexicons as the seed. Based on
that assumption, the polarity of target words can be derived by measuring the
co-occurrence of words on the Word2vec distribution and the distance of the
seeds word in the labeled dataset. In addition, this chapter explains adaptive
semi-supervised internal lexical.

Chapter 7 presents the main conclusions of the thesis and highlights future
research work in the related areas. In this study, the interested issues of semantic
relation between terms in the dataset to extract and predict the polarity of text
for Sentiment Analysis were investigated.
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