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Carboxymethyl cellulose (CMC)-based hydrogels show great capability in 
delivering and occupying small particles like drugs and dyes. CMC-based 
hydrogel could enhance the capability of a hydrogel and benefit the mankind 
since it has excellent biocompatibility and biodegradable properties to be use in 
biomedical application. In this study, a series of CMC and carboxymethyl sago 
pulp (CMSP) blended with poly(ethylene oxide) (PEO) hydrogel in the form of 
films and nanofibers were fabricated by using citric acid as a cross-linker. The 
CMSP used was isolated from sago waste, while CMC was purchased from 
Fluka Company. CMSP derived from sago waste was studied in the place of 
CMC because it has similar structure and can help to preserve the 
environment. For the production of hydrogel nanofibers, the nanofibers were 
prepared by using electrospinning technique prior cross-linking with citric 
acid. The electrospinning parameters used were concentration of the polymers 
blend solution, weight ratio of CMC or CMSP to PEO, applied voltage, tip-to-
collector distance and the solution flow rate. The average fiber diameter of the 
CMSP/PEO nanofibers are from 201 to 300 nm and CMC/PEO from 101 to 200 
nm. However, the formation of CMC/PEO nanofibers on the collector was 
very thin even after several hours of electrospinning, and not able to peel off. 
Thus, it cannot be further study for fabrication of hydrogel and controlled 
release. The swelling behaviour of the hydrogels film and nanofibers were 
optimised based on four parameters; ratio of CMC or CMSP to PEO, 
percentage of citric acid, temperature and curing time. The results show 
percentage of swelling and thermal property of CMC/PEO and CMSP/PEO 
hydrogel was improved compared to CMC and CMSP alone.  In controlled 
release study, methylene blue (MB) was chosen as the model drug due to its 
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hydrophilic nature. The controlled release results show CMSP/PEO hydrogel 
nanofibers had the highest percentage of MB loading (89.20 ± 0.42%) than 
CMC/PEO and CMSP/PEO hydrogels film. This can be relates with swelling 
results that show CMSP/PEO hydrogel nanofibers has the highest percentage 
of swelling (4366 ± 975%). The MB release study showed that the MB released 
from CMSP/PEO hydrogel nanofibers was slowly released with pH 
dependency. The total cumulative percentage release of MB in pH 4.0 (17.04%) 
and pH 7.34 (19.44%) for CMSP/PEO hydrogel nanofibers are not much 
different from the CMSP/PEO hydrogel film (pH 4.0 = 14.11% and pH 7.34 = 
17.92%), but showed a lower total cumulative percentage release of MB at pH 
1.20 (8.91%) and 8.0 (21.21%). The results indicate CMSP/PEO hydrogel 
nanofibers have a good potential to be used, for example for drug delivery in 
intestinal area and wound healing. 
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Hidrogel berasaskan CMC menunjukkan keupayaan yang hebat dalam 
penghantaran dan dipenuhi zarah-zarah kecil seperti dadah dan pewarna. 
Hidrogel berasaskan CMC boleh meningkatkan keupayaan hidrogel dan 
memberi faedah kepada manusia memandangkan ia mempunyai ciri-ciri 
bioserasi dan biodegradasi yang bagus untuk digunakan dalam aplikasi 
bioperubatan. Dalam kajian ini, satu siri CMC dan karboksimetil pulpa sagu 
(CMSP) yang dicampurkan dengan poli(etilena oksida) (PEO) dalam bentuk 
filem-filem hidrogel dan nanofiber direka dengan menggunakan asid sitrik 
sebagai sambung-silang. CMSP yang digunakan telah diasingkan daripada 
pulpa sagu, manakala CMC dibeli daripada syarikat Fulka. CMSP yang berasal 
daripada sisa buangan sagu semulajadi telah dikaji bagi menggantikan tempat 
CMC kerana ia mempunyai struktur yang sama dan boleh membantu 
memelihara alam sekitar. Untuk penghasilan nanofiber hidrogel, nanofiber 
disediakan menggunakan teknik elektrospinning sebelum disambung-silang 
menggunakan asid sitrik. Parameter-parameter elektrospinning yang 
digunakan adalah kepekatan cecair campuran polimer, nisbah berat CMC atau 
CMSP kepada PEO, voltan yang digunakan, jarak dari hujung jarum ke 
pengumpul dan kadar alir cecair. Purata diameter  fiber untuk nanofiber 
CMSP/PEO adalah daripada 201 hingga 300 nm dan nanofiber CMC/PEO 
pula adalah daripada 101 hingga 200 nm. Walau bagaimanapun, pembentukan 
nanofibers CMC/PEO pada pemungutnya sangat nipis walaupun selepas 
beberapa jam elektrospinning dan sukar untuk dikupas. Jadi, ia tidak boleh 
diteruskan  untuk kajian pelepasan dadah dan pencirian. Tingkah laku 
bengkak hidrogel filem dan nanofibers dioptimumkan berdasarkan empat 
parameter, nisbah CMC atau CMSP kepada PEO, peratusan asid sitrik, suhu 
dan masa pemadatan. Keputusan menunjukkan peratusan pembengkakan dan 

© C
OPYRIG

HT U
PM



iv 

sifat terma bagi hidrogel CMC/PEO dan hidrogel CMSP/PEO menunjukkan 
peningkatan yang baik berbanding CMC dan CMSP sahaja. Dalam kajian 
pelepasan kawalan, metilena biru (MB) dipilih sebagai model dadah kerana 
sifat hidrofiliknya. Keputusan pelepasan kawalan menunjukkan nanofiber 
hidrogel CMSP/PEO mempunyai peratusan tertinggi memuat MB (89.20 ± 
0.42%) berbanding hidrogel CMC/PEO dan hidrogel CMSP/PEO. Ini boleh 
dikaitkan dengan keputusan pembengkakan yang menunjukkan nanofiber 
hidrogel CMSP/PEO mempunyai peratusan pembengkakan yang tertinggi 
(4366 ± 975%). Kajian pelepasan MB menunjukkan MB yang terlepas daripada 
nanofiber hidrogel CMSP/PEO adalah merupakan pelepasan yang perlahan 
dengan kebergantungan kepada pH. Jumlah peratusan kumulatif MB dalam 
pH 4.0 (17.04%) dan pH 7.34 (19.44%) untuk nanofiber hidrogel CMSP/PEO 
agak sama dengan hidrogel CMSP/PEO (pH 4.0 = 14.11% and pH 7.34 = 
17.92%) tetapi menunjukkan  jumlah peratusan kumulatif pelepasan MB yang 
lebih rendah pada pH 1.20 (8.91%) dan 8.0 (21.21%). Hasil keutusan ini 
menunjukkan bahawa nanofiber hidrogel CMSP/PEO mempunyai potensi 
yang baik untuk digunakan dalam penghantaran dadah di kawasan usus dan 
penyembuhan luka.  
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CHAPTER 1 

INTRODUCTION 

1.1     Background of study 

In Sarawak, Malaysia, the largest sago-growing areas, sago palms (Metroxylon 
sago) are found in tropical lowland forest and swampy areas in which 
estimated 54,000 hectares in 2013 by Sarawak agriculture statistics (Bujang & 
Hassan, 2013; V Pushpamalar et al., 2006). The main product of sago palm, 
sago starch was exported mainly to Peninsular Malaysia, Japan, Singapore and 
other countries with total about 48,000 tons in 2013 (Sarawak agriculture 
statistics, 2013). To isolate sago starch, several mechanical processes involving 
debarking, rasping, sieving, settling, washing and drying need to go through 
and at the end of the process, starchy fibrous by-product, sago waste was 
produced at approximately 7 tons daily from a single processing mill.  

Sago waste is light brown in color and still maintains the woody structure as 
shown in Figure 1.1. It is a lignocellulosic biomass that consist of cellulose, 
hemicellulose and lignin (Bujang & Hassan, 2013; Veeramachineni et al., 2016). 
Cellulose is a long and linear polysaccharide polymer which consist of many 
glucose units that linked to each other by beta 1,4-glycosidic bonds. It has 
received tremendous attention from researchers nowadays and had been 
focuses on cellulose derivatives, such as carboxymethylcellulose (Pushpamalar 
et al., 2006), hydroxypropyl methylcellulose (HPMC) and methylcellulose 
(Frenot et al., 2006). Since isolation of sago starch requires large amount of 
water, thus, the residues are mixed with wastewater and easily washed off into 
nearby streams without proper treatment or deposited in the factory’s 
compound (Bujang & Hassan, 2013). These actions will lead to serious 
environmental problems in future. To prevent this circumstance, sago waste 
can become a very economical source of cellulose to the industries due to 
cheapest, biodegradable and availability of all renewable natural polymers 
existing in Malaysia. Sago fiber is used to provide bulk for rumen fermentation, 
sago pith used as animal feed stuff and in livestock industry and sago frond 
used in pulp and paper industry (Chew et al., 1999). However, the utilization 
of sago waste should be further explored. Investigating the potential 
application CMC nanofibers from sago waste drug delivery in this research 
will not open a new potential application sago waste but also will help to 
recycle and solve disposal problem of sago waste. © C
OPYRIG

HT U
PM
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Figure 1.1: Sago waste 

Sago pulp is the result of purification of sago waste that is white in color as 
shown in Figure 1.2. It was reported that 57% w/w sago pulp was successfully 
isolated from sago waste (V Pushpamalar et al., 2006). The pre-product, sago 
pulp that consist of cellulose is then been transformed into functionalised 
cellulose which can be used in various applications such as pharmaceutical 
excipient and industrial products (V Pushpamalar et al., 2006; Veeramachineni 
et al., 2016).  The purpose of purification of sago waste into sago pulp is to 
remove the lignin (Veeramachineni et al., 2016).  

Figure 1.2: Sago pulp powder (delignified sago waste) 

Hydrogel is a smart three-dimensional polymeric network structure that 
capable to hold a lot of water or biological fluids beyond its dry weight without 
dissolution in water prepared by either chemical or physical cross-linking 
method (Shen et al., 2016; Tan et al., 2016). Holding capacity of hydrogel is 
depends on the degree of cross-linking. Hydrophilic groups such as, -OH, -
CONH, -CONH2, and -SO3H that present in the formulation polymers of 
hydrogel structure are the reason of the ability of hydrogel to absorb water 
(Khan & Ranjha, 2014).  
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The water uptake and release occur when the protonable groups respond to 
external stimuli such as change in pH, ionic strength, or temperature (Barbucci 
et al., 2000). The swollen state of hydrogel has a soft, flexible and tissue-like 
physical properties make it applicable in most biomedical applications. 
Moreover, hydrogel is sensitive to environment stimuli when there are changes 
such as pH, temperature, presence of enzyme and glucose (Patel & Mequanint, 
2009). To apply hydrogel in drug delivery application, non-toxic and 
biocompatible materials should be the choices in making the formulation of 
hydrogel as well as new way to improve the properties of hydrogel in drug 
delivery application. 
 
 
Nowadays, widespread of knowledge on the techniques of manufacturing 
nanomaterial had lead researchers around the world to focus on the 
preparation of nanomaterial for various applications including biomedical 
(Haider, Haider, & Kang, 2015a). The focus on nanomaterials specifically 
nanofibers is because of the special characteristics such as low density, large 
surface area, high pore volume and tight pore size (Rathinamoorthy et al., 
2012). Electrospinning, a highly versatile method is one of the techniques for 
the fabrication of nanofibers. In biomedical application, electrospun nanofibers 
have been widely studied for drug and therapeutic agent delivery, wound 
dressings and tissue engineering using natural or synthetic polymers (Abrigo 
et al., 2014; Haider, Haider, & Kang, 2015b; Teck, 2017). 
 
 

1.2     Problem statement 

 

Abundance of sago waste produced daily and cellulose is second major 
components in sago palm (V Pushpamalar et al., 2006). During isolation of sago 
starch, sago waste was easily washed off into nearby streams or deposited in 
the factory’s compound (Bujang & Hassan, 2013). These actions can lead to 
serious environmental problems in future. Sago waste consists of biopolymers 
such as lignin, cellulose and polysaccharide that can be used for many 
applications. Cellulose is second major components in sago waste (V 
Pushpamalar et al., 2006). Apart from that, in the preparation of biopolymer 
hydrogel, epichlorohydrin was commonly used as cross-linker, however, it can 
caused carcinogenic by-products and can harm to human. Mostly in 
electrospinning process, toxic organic solvents are used as the solvent that 
might leave trace in the nanofibers produced and caused toxicity. In making 
hydrogel for biomedical application, all carcinogenic by-products and toxic 
materials need to avoid to ensure only safe materials can enter the human 
body. 
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1.3     Hypothesis and significance of study 
 

Natural polymers underwent a re-evaluation as a result of natural 
biodegradable properties and availability from renewable resources compared 
to synthetic alternatives. Thus, utilizing the cellulose from sago waste (also 
known as sago pulp) into valuable product such as carboxymethyl sago pulp 
(CMSP) could help in preserving the environment as well as benefit the 
mankind. CMSP also are more cost effective since there are abundance of sago 
waste available. Moreover, CMSP is a biopolymer that safe to be used for 
human and suit the requirement in biomedical applications that demanding for 
non-toxic materials. In this study, CMSP was used to study for drug delivery 
application in hydrogel form with citric acid as the cross-linker. Citric acid was 
chosen to replace of commonly used toxic cross-linker such as epichlorohydrin 
due to its non-toxic property and no toxicity produced even after cross-linking 
reaction. Recently, the use of nanofibers loaded with drugs for biomedical 
application has awaken much interest and there were no studies on CMSP-
based hydrogel in the form of nanofibers yet. Previous study by Pushpamalar 
et. al, had shown CMSP hydrogel has good swelling property at different pH 
media (Vengidesh Pushpamalar et al., 2013). However, to the best of our 
knowledge, there is no study conducted on the CMSP nanofibers yet. 
Therefore, CMSP will be electrospun into nanofibers in order to increase the 
surface area the hydrogel and could improve the delivering and encapsulating 
of drugs. CMSP will be electrospun into nanofibers by using electrospinning 
technique.  In this study, water was used as a solvent for electrospinning 
process, which is an ideal solution in biomedical application despite all the 
toxic organic solvents. 
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1.4     Objectives 

Various studies have been done focusing on economical, safe, and 
biocompatible materials in building drug delivery system. To accomplish 
similar aims, a renewable natural polymer from waste (sago pulp) was used in 
this study in order to open a new potential application sago waste but also will 
help to recycle and solve disposal problem of sago waste. The objectives of this 
study are: 

i. To isolate sago pulp and prepare CMSP by using carboxymethylation
reaction

ii. To prepare and optimise cross-linked CMC/PEO and CMSP/PEO
films and nanofibers

iii. To investigate and evaluate the control release of MB for the hydrogel
films and nanofibers
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