DISTRIBUTION AND MORPHOMETRICS OF
Kalophrynus palmatissimus (KIEW, 1984) FROM AYER HITAM FOREST
RESERVE, SELANGOR AND PASOH FOREST RESERVE,
NEGERI SEMBILAN, MALAYSIA

MUHAMMAD FARIS BIN ABDUL AZIZ

FS 2019 57
DISTRIBUTION AND MORPHOMETRICS OF
Kalophrynus palmatissimus (KIEW, 1984) FROM AYER HITAM FOREST
RESERVE, SELANGOR AND PASOH FOREST RESERVE,
NEGERI SEMBILAN, MALAYSIA

By

MUHAMMAD FARIS BIN ABDUL AZIZ

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirements for the Degree of
Master of Science

August 2019
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DISTRIBUTION AND MORPHOMETRICS OF
Kalophrynus palmatissimus (Kiew, 1984) FROM AYER HITAM FOREST RESERVE, SELANGOR AND PASOH FOREST RESERVE, NEGERI SEMBILAN, MALAYSIA

By

MUHAMMAD FARIS BIN ABDUL AZIZ

August 2019

Chairman : Dr. Marina binti Mohd. Top @ Mohd. Tah, PhD
Faculty : Science

A research study on an endemic frog species of Peninsular Malaysia, Kalophrynus palmatissimus (Kiew, 1984) (commonly known as Lowland Grainy Frog) at Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan was carried out from November 2016 until September 2017. This leaf-litter frog species can be found in the lowland forests of Peninsular Malaysia including Pasoh Forest Reserve, Gombak Forest Reserve, Forest Research Institute Malaysia (FRIM), and Ayer Hitam Forest Reserve. The distribution of this species has severely declined and the quality of its habitat in Peninsular Malaysia also continues to decrease as suitable areas are being converted to non-timber plantations and undergo rapid development of infrastructure. This study was conducted to determine the distribution, population density, and morphometric and microhabitat structures of K. palmatissimus at AHFR and PFR. Fifteen and eighteen nocturnal 400 m transect lines with an interval distance of 20 m were used for frog surveys at AHFR and PFR, respectively. In addition, temperature, humidity, soil pH, wind, and light of different microhabitats were also recorded. A total of 34 and 31 individuals of K. palmatissimus were recorded at AHFR and PFR, respectively. The population density of K. palmatissimus recorded at AHFR was 5.31 individuals/km², whereas 6.02 individuals/km² was recorded at PFR. Fifteen morphometric traits of K. palmatissimus were measured. Most of the 15 morphometric traits of K. palmatissimus at AHFR and PFR positively correlated with each other. The AHFR’s mean snout-vent length (SVL) (37.00 mm) was larger than PFR’s mean SVL (30.29 mm). The AHFR’s mean SVL for male and female K. palmatissimus were 35.30 mm and 39.40 mm, respectively, whereas the PFR’s mean SVL for male and female K. palmatissimus were 28.60 mm and 33.50 mm, respectively. This species was abundantly found on the surface of forest litter (96.9 %), compared to sandy surface (1.5 %) and on the dead log (1.5 %). It was found that K. palmatissimus at AHFR and PFR highly preferred leaf litter with non-hairy/smooth type morphology as their habitats. The data collections from AHFR and PFR have significantly contributed to a better understanding of ecological distributions, morphometrics, and habitats of this species. This information could help future conservation programmes and management to protect this endemic species from extinction.

© COPYRIGHT UPM
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

TABURAN DAN MORFOMETRIK
Kalophrynus palmatissimus (Kiew, 1984) DARI HUTAN SIMPAN
AYER HITAM, SELANGOR DAN HUTAN SIMPAN PASOH, NEGERI
SEMBILAN, MALAYSIA

Oleh

MUHAMMAD FARIS BIN ABDUL AZIZ

Ogos 2019

Pengerusi : Dr. Marina binti Mohd. Top @ Mohd. Tah, PhD
Fakulti : Sains

Satu kajian penyelidikan mengenai satu spesies katak endemik di Semenanjung Malaysia, Kalophrynus palmatissimus (Kiew, 1984) (dikenali sebagai Katak Berbintik Tanah Pamah) telah dijalankan di Hutan Simpan Ayer Hitam (AHFR), Selangor dan Hutan Simpan Pasoh (PFR), Negeri Sembilan bermula November 2016 hingga September 2017. Spesies katak sesampah hutan ini boleh ditemui di hutan tanah pamah Semenanjung Malaysia termasuk Hutan Simpan Pasoh, Hutan Simpan Gombak, Institut Penyelidikan Perhutanan Malaysia (FRIM), dan Hutan Simpan Ayer Hitam. Taburan spesies ini telah berkurangan dan kualiti habitatnya di Semenanjung Malaysia juga terus merosot disebabkan habitat yang sesuai telah ditukar menjadi kawasan penanaman bukan kayu dan infrastruktur yang pesat. Kajian ini dijalankan untuk menentukan taburan dan kepadatan populasi, dan morfometrik dan struktur mikrohabitat K. palmatissimus di AHFR dan PFR. Lima belas dan lapan belas garisan transek sepanjang 400 m berselang dengan jarak 20 m digunakan untuk tinjauan katak, masing-masing di AHFR dan PFR. Selain itu, suhu, kelembapan, pH tanah, angin dan cahaya dari setiap habitat yang berbeza juga telah direkodkan. Sebanyak 34 dan 31 individu K. palmatissimus telah direkodkan, masing-masing di AHFR dan PFR. Kepadatan populasi K. palmatissimus yang direkodkan di AHFR adalah 5.31 individu/km², manakala 6.02 individu/km² di PFR. Lima belas ukuran morfometrik K. palmatissimus telah diambil. Kebanyakan daripada 15 ciri-ciri morfometrik K. palmatissimus di AHFR dan PFR berkorelasi positif antara satu sama lain. Nilai purata ‘snout-vent length’ (SVL) K. palmatissimus di AHFR (37.00 mm) lebih besar berbanding PFR (30.29 mm). Nilai purata SVL bagi individu jantan dan betina K. palmatissimus di AHFR masing-masing, adalah 35.30 mm dan 39.40 mm, manakala nilai purata SVL bagi individu jantan dan betina K. palmatissimus di PFR adalah 28.60 mm dan 33.50 mm. Spesies ini banyak ditemui di atas permukaan sesampah hutan (96.9 %), berbanding di atas permukaan pasir (1.5 %) dan di atas kayu mati (1.5 %). Didapati K. palmatissimus di AHFR dan PFR lebih suka mendiami sesampah hutan dengan struktur morfologi yang tidak berbulu/licin sebagai habitatnya. Data yang dikumpulkan di AHFR dan PFR telah menyumbang kepada pemahaman yang lebih baik mengenai ekologi taburan, morfometrik dan habitat spesies ini. Maklumat ini dapat membantu program pemuliharaan dan pengurusan masa depan untuk melindungi spesies endemik ini daripada kepupusan.
ACKNOWLEDGEMENTS

In the name of Allah s.w.t, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah for giving me the strength, guidance and His blessing in completing this research project. First of all, I would like to express my deepest sense of gratitude to my supervisor, Dr. Marina Mohd. Top @ Mohd. Tah for her continuous advices and encouragement throughout the field works and thesis writing which have contributed to the success of this thesis. I thank her for the great guidance and suggestions to make this thesis possible. Many thanks for my helpful and outstanding co-supervisors, Associate Professor Dr. Shamarina Shohaimi, Dr. Nurul Izza Ab Ghani and Dr. Christine Fletcher. Without their passionate participation and information, this research project could not have been successfully completed.

Furthermore, I would also like to acknowledge with much appreciation to Faculty of Forestry, Universiti Putra Malaysia, Sultan Idris Shah Forestry Education Centre (SISFEC), Forest Research Institute Malaysia (FRIM), Kepong and Pasoh Forest Reserve (PFR) for the permission to conduct this study. Special thank also go to all the staffs of SISFEC and PFR especially to Mr. Kamarulizwan bin Kamaruddin, Mr. Mohd Naeem Abdul Hafiz bin Mohd Hafiz, Mr. Ahmad bin Awang and Mr. Mohd Fairuznizam bin Ibrahim for their friendship, assistance and spiritual support during my sampling periods. I consider it an honor to work with them.

Last but not least, I am indebted to my research team and friends, Mohamad Nur Firdaus bin Mohamed, Siti Aisah binti Dahlan, Nadia Simon, Thiruvinothini Thiruvenggadam, Nadirah binti Rosli and Siti Fara Najua binti Mohd Nasir for their unlimited contribution, useful information and cooperation throughout this project.

Finally, I want to take this opportunity to express my very profound gratitude to my parents, Haji Abdul Aziz bin Mohamed and Hajah Hasmah binti Kamardin for their love and unfailing support throughout my years of study, my brother, Muhammad Fairuz bin Abdul Aziz and my sister, Nur Fadhilah binti Abdul Aziz for their guidance and advices. Your kindness means a lot to me and thank you very much.
I certify that a Thesis Examination Committee has met on 20 August 2019 to conduct the final examination of Muhammad Faris bin Abdul Aziz on his thesis entitled "Distribution and Morphometrics of Kalophrynum palmatissimus (Kiew, 1984) from Ayer Hitam Forest Reserve, Selangor and Pasoh Forest Reserve, Negeri Sembilan, Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Christina Yong Seok Yien, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Syaizwan Zainal bin Zulkifli, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Norhayati binti Ahmad, PhD
Professor
Faculty of Science and Technology
National University of Malaysia
Malaysia
(External Examiner)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 October 2019
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Marina Mohd. Top @ Mohd. Tah, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Shamarina Shohaimi, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Nurul Izza Ab Ghani, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Christine Fletcher, PhD
Research Officer
Forest Ecology Unit
Forestry Division
Forest Research Institute Malaysia (FRIM)
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice- Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature __ Date _________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature

Name of Chairman of Supervisory Committee: Dr. Marina Mohd. Top @ Mohd. Tah

Signature

Name of Member of Supervisory Committee: Dr. Nurul Izza Ab Ghani

Signature

Name of Member of Supervisory Committee: Associate Prof. Dr. Shamarina Shohaimi

Signature

Name of Member of Supervisory Committee: Dr. Christine Fletcher
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 General Background 1
1.2 Problem Statement 2
1.3 Objectives 3

2 LITERATURE REVIEW

2.1 Introduction to Anurans 4
2.2 Life Cycle and Reproduction 4
2.3 Habitat Selection 6
2.4 Family Microhylidae 6
2.4.1 Genus *Kalophrynus* in Peninsular Malaysia 8
2.5 *Kalophrynus palmatissimus* 9
2.5.1 Morphological Characteristics of *Kalophrynus palmatissimus* in Peninsular Malaysia 10
2.5.2 Habitat Selection and Reproduction Sites of *Kalophrynus palmatissimus* 11

2.6 Important Roles of Anurans in an Ecosystem 12
2.7 Threats to Anurans 14

3 METHODOLOGY

3.1 Ethics Statement 16
3.2 Study Site 16
3.2.1 Ayer Hitam Forest Reserve, Puchong (AHFR) 16
3.2.2 Pasoh Forest Reserve, Negeri Sembilan (PFR) 18
3.3 Study Area 19
3.4 Duration of Study 22
3.5 Sampling Methods 23
3.5.1 Survey of *Kalophrynus palmatissimus* 23
3.5.2 Species Identification 25
3.5.3 Morphometric Measurement
3.5.4 Marking of *Kalophrynus palmatissimus*
3.6 Environmental Parameters and Microhabitat Structures
3.7 Leaves Identification
3.8 Data Analysis
3.8.1 Distribution and Population Density
3.8.2 Descriptive Statistics
3.8.3 Mann – Whitney U Test
3.8.4 Correlation and Chi-Square Test
3.8.5 Independent Samples T-Test
3.8.6 Generalized Linear Model and Principle Component Analysis

4 RESULTS
4.1 Population Density and Distribution of *Kalophrynus palmatissimus* in the Two Forest Reserves
4.1.1 Distribution Pattern of *Kalophrynus palmatissimus*
4.1.2 Macrohabitat Parameters
4.1.3 Descriptive Statistics of Macrohabitat and Microhabitat Parameters
4.1.4 Comparison between Macrohabitat and Microhabitat Parameters
4.1.5 Relationship between Macrohabitat and Microhabitat Parameters
4.1.6 Relationship between Environmental Parameters and Number of Individuals of *Kalophrynus palmatissimus*
4.1.7 Relationship between Microhabitat Structures and Sex
4.2 Morphometric Traits of *Kalophrynus palmatissimus* in the Two Forest Reserves
4.2.1 Comparison between Morphometric Traits
4.2.2 Comparison of Morphometric Traits between Sex
4.2.3 Relationship between the Morphometric Traits and Sex
4.2.4 Relationship among Morphometric Traits
4.2.5 Relationship between the Morphometric Traits
4.2.6 Relationship between Environmental Parameters and Morphometric Traits
4.2.7 Effects of Studied Factors on the Morphometric Traits of *Kalophrynus palmatissimus*
4.3 Habitat Preferences of *Kalophrynus palmatissimus* in the Two Forest Reserves.
4.3.1 Types of Leaves Species Recorded
5 DISCUSSION

5.1 Population Density and Distribution of *Kalophrynus palmatissimus* in the Two Forest Reserves

5.1.1 Population Density

5.1.2 Distribution Pattern

5.1.2.1 Ayer Hitam Forest Reserve (AHFR)

5.1.2.2 Pasoh Forest Reserve (PFR)

5.1.3 Environmental Parameters in the Two Forest Reserves

5.1.3.1 Relationship between Macrohabitat and Microhabitat Parameters

5.1.4 Relationship between Environmental Parameters and Number of Individuals of *Kalophrynus palmatissimus*

5.1.5 Relationship between Microhabitat Structures and Sex

5.2 Morphological Characteristics and Morphometric Traits of *Kalophrynus palmatissimus* in the Two Forest Reserves

5.2.1 Morphological Characteristics

5.2.2 Comparison between Morphometric Traits

5.2.3 Comparison of Morphometric Traits between Sex

5.2.4 Relationship among Morphometric Traits

5.2.5 Relationship between Morphometric Traits

5.2.6 Relationship between Environmental Parameters and Morphometric Traits

5.2.7 Effects of Studied Factors on the Morphometric Traits of *Kalophrynus palmatissimus*

5.3 Habitat Preferences of *Kalophrynus palmatissimus* in the Two Forest Reserves

5.3.1 Microhabitat Structures

5.3.2 Types of Leaves Species Recorded

6 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

6.2 Limitations and Recommendations

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nomenclature hierarchy of subfamily Kalophryninae</td>
</tr>
<tr>
<td>3.1</td>
<td>The list of three types of correlation</td>
</tr>
<tr>
<td>4.1</td>
<td>The population density of Kalophrynus palmatissimus in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
</tr>
<tr>
<td>4.2</td>
<td>The statistical determination of distribution patterns of Kalophrynus palmatissimus in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
</tr>
<tr>
<td>4.3</td>
<td>Descriptive statistics of macrohabitat and microhabitat parameters in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
</tr>
<tr>
<td>4.4</td>
<td>Mann-Whitney U test for comparison between macrohabitat and microhabitat parameters in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
</tr>
<tr>
<td>4.5</td>
<td>The Pearson’s Correlation between macrohabitat parameters in two forest reserves (above diagonal: Pasoh Forest Reserve (PFR), Negeri Sembilan, below diagonal: Ayer Hitam Forest Reserve (AHFR), Selangor)</td>
</tr>
<tr>
<td>4.6</td>
<td>The Pearson’s Correlation between microhabitat parameters in two forest reserves (above diagonal: Pasoh Forest Reserve (PFR), Negeri Sembilan, below diagonal: Ayer Hitam Forest Reserve (AHFR), Selangor)</td>
</tr>
<tr>
<td>4.7</td>
<td>Chi-square analyses on the association between microhabitat structure with sex in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
</tr>
<tr>
<td>4.8</td>
<td>Descriptive statistics of 15 morphometric traits in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
</tr>
<tr>
<td>4.9</td>
<td>Mann-Whitney U test for comparison between morphometric traits in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
</tr>
<tr>
<td>4.10</td>
<td>The independent samples t-test related to morphometric measurements and sex of Kalophrynus palmatissimus in Ayer Hitam Forest Reserve (AHFR), Selangor. (n of males = 20), (n of females = 14)</td>
</tr>
<tr>
<td>4.11</td>
<td>The independent samples t-test related to morphometric measurements and sex of Kalophrynus palmatissimus in Pasoh Forest Reserve (PFR), Negeri Sembilan. (n of males = 20), (n of females = 11)</td>
</tr>
</tbody>
</table>
| 4.12 | The independent samples *t*-test related to morphometric measurements and sex of *Kalophrynus palmatissimus* in Ayer Hitam Forest Reserve (AHFR), Selangor (n of males = 20), (n
of females = 14) and Pasoh Forest Reserve (PFR), Negeri Sembilan. (n of males = 20), (n of females = 11)

4.13. The Pearson’s Correlation between morphometric traits and sex in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan

4.14. The Pearson’s Correlation between 15 morphometric traits in two forest reserves (above diagonal: Pasoh Forest Reserve (PFR), Negeri Sembilan, below diagonal: Ayer Hitam Forest Reserve (AHFR), Selangor)

4.15. Rotated Component matrix of morphometric parameters in Ayer Hitam Forest Reserve (AHFR), Selangor

4.16. Rotated Component matrix of morphometric parameters in Pasoh Forest Reserve (PFR), Negeri Sembilan

4.17. The Spearman’s Correlation between macrohabitat parameters and morphometric traits at Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan

4.18. The Spearman’s Correlation between microhabitat parameters and morphometric traits at Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan

4.19. The Spearman’s Correlation between macrohabitat parameters and morphometric traits at Ayer Hitam Forest Reserve (AHFR), Selangor

4.20. The Spearman’s Correlation between microhabitat parameters and morphometric traits at Ayer Hitam Forest Reserve (AHFR), Selangor

4.21. The Spearman’s Correlation between macrohabitat parameters and morphometric traits at Pasoh Forest Reserve (PFR), Negeri Sembilan

4.22. The Spearman’s Correlation between microhabitat parameters and morphometric traits at Pasoh Forest Reserve (PFR), Negeri Sembilan

4.23. Morphometric traits with seven studied factors at Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan

4.24. Mann-Whitney U test for microhabitat structures of Kalophrynus palmatissimus in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan

4.25. Leaves species recorded in Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan

xii
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Life cycle of frogs</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Locations of Kalophrynus in Peninsular Malaysia</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Kalophrynus palmatissimus from Ayer Hitam Forest Reserve (AHFR), Selangor</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Ventral views of (A) hand and (B) foot of Kalophrynus palmatissimus</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of Compartment 12 (03° 00' 792'' N, 100° 38' 821'' E), Compartment 13 (03° 00' 941'' N, 100° 38' 874''E) and Compartment 15 (03° 00' 351'' N, 101° 38' 424'' E), Ayer Hitam Forest Reserve (AHFR), Selangor</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Location of Compartment 21 (02° 58’ 137” N, 102° 17’ 567’ E), Compartment 22 (02° 58’ 084” N, 102° 17’ 489” E) and Compartment 32 (03° 00’ 052” N, 101° 42’ 163” E), Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Sampling trails in Compartment 12, 13 and 15</td>
<td>20</td>
</tr>
<tr>
<td>3.4</td>
<td>Sampling trails in Compartment 21, 22 and 32</td>
<td>21</td>
</tr>
<tr>
<td>3.5</td>
<td>Types of study area (A) Walking trail and (B) River bank at Ayer Hitam Forest Reserve (AHFR), Selangor</td>
<td>22</td>
</tr>
<tr>
<td>3.6</td>
<td>Types of study area (A) Walking trail and (B) River bank at Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
<td>22</td>
</tr>
<tr>
<td>3.7</td>
<td>Survey of Kalophrynus palmatissimus using Visual Encounter Survey (VES) and call survey</td>
<td>23</td>
</tr>
<tr>
<td>3.8</td>
<td>The frog were captured by using plastic container</td>
<td>24</td>
</tr>
<tr>
<td>3.9</td>
<td>Recording environmental parameters in macrohabitat and microhabitat</td>
<td>25</td>
</tr>
<tr>
<td>3.10</td>
<td>Snout-vent length of (A) male (38 mm) and (B) female (44 mm) of Kalophrynus palmatissimus</td>
<td>26</td>
</tr>
<tr>
<td>3.11</td>
<td>Tympanum diameter and eye diameter of (A) male (TD = 3.2 mm, ED = 3.0 mm) and (B) female (TD = 2.5 mm, ED = 4.0 mm) of Kalophrynus palmatissimus</td>
<td>26</td>
</tr>
<tr>
<td>3.12</td>
<td>Throat colour of (A) male (dark colour) and (B) female (light colour) of Kalophrynus palmatissimus</td>
<td>27</td>
</tr>
<tr>
<td>3.13</td>
<td>Fifteen morphometric traits of Kalophrynus palmatissimus were measured in the study: SVL, snout-vent length; HL, head length; SL, snout length; EN, eye-nostril distance; ED, eye diameter; TD, tympanum diameter; HW, head width; IND, internarial distance; IOD, interorbital distance; UEW, upper eyelid width; HAL, hand length; FLL, forearm length; TL, tibia length; FL, foot length; THL, thigh length.</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>The distribution of Kalophrynus palmatissimus in Ayer Hitam Forest Reserve (AHFR), Selangor</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>The distribution of Kalophrynus palmatissimus in Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
<td>37</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Environmental parameters in macrohabitat from November 2016 until September 2017 in Ayer Hitam Forest Reserve (AHFR), Selangor</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Environmental parameters in macrohabitat from February 2017 until September 2017 in Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>The number of individuals of Kalophrynus palmatissimus from November 2016 until September 2017 against microhabitat parameters in Ayer Hitam Forest Reserve (AHFR), Selangor</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>The number of individuals of Kalophrynus palmatissimus from February until September 2017 against microhabitat parameters in Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Component matrix of morphometric parameters in Ayer Hitam Forest Reserve (AHFR), Selangor</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Component matrix of morphometric parameters in Pasoh Forest Reserve (PFR), Negeri Sembilan</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Kalophrynus palmatissimus recorded on the surface of forest litter</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Kalophrynus palmatissimus recorded on the sandy surface</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Kalophrynus palmatissimus recorded on the dead log</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Descriptive Statistics of Macrohabitat Parameters in AHFR</td>
<td>97</td>
</tr>
<tr>
<td>A2</td>
<td>Descriptive Statistics of Microhabitat Parameters in AHFR</td>
<td>97</td>
</tr>
<tr>
<td>A3</td>
<td>Descriptive Statistics of Macrohabitat Parameters in PFR</td>
<td>98</td>
</tr>
<tr>
<td>A4</td>
<td>Descriptive Statistics of Microhabitat Parameters in PFR</td>
<td>98</td>
</tr>
<tr>
<td>A5</td>
<td>Descriptive Statistics of 15 Morphometric Traits in AHFR</td>
<td>99</td>
</tr>
<tr>
<td>A6</td>
<td>Descriptive Statistics of 15 Morphometric Traits in PFR</td>
<td>100</td>
</tr>
<tr>
<td>B1</td>
<td>Mann-Whitney U Test for Comparison between Macrohabitat and Microhabitat Parameters in AHFR and PFR</td>
<td>101</td>
</tr>
<tr>
<td>B2</td>
<td>Mann-Whitney U Test for Comparison between Morphometric Traits in AHFR and PFR</td>
<td>102</td>
</tr>
<tr>
<td>B3</td>
<td>Mann-Whitney U Test for Habitat Variables in AHFR and PFR</td>
<td>103</td>
</tr>
<tr>
<td>C1</td>
<td>The Pearson’s Correlation between Macrohabitat Parameters in AHFR</td>
<td>104</td>
</tr>
<tr>
<td>C2</td>
<td>The Pearson’s Correlation between Microhabitat Parameters in AHFR</td>
<td>104</td>
</tr>
<tr>
<td>C3</td>
<td>The Pearson’s Correlation between Macrohabitat Parameters in PFR</td>
<td>105</td>
</tr>
<tr>
<td>C4</td>
<td>The Pearson’s Correlation between Microhabitat Parameters in PFR</td>
<td>105</td>
</tr>
<tr>
<td>C5</td>
<td>The Pearson’s Correlation between 15 Morphometric Traits in AHFR</td>
<td>106</td>
</tr>
<tr>
<td>C6</td>
<td>The Pearson’s Correlation between 15 Morphometric Traits in PFR</td>
<td>109</td>
</tr>
<tr>
<td>C7</td>
<td>The Spearman’s Correlation between Macrohabitat Parameters and Morphometric Traits in AHFR and PFR</td>
<td>112</td>
</tr>
<tr>
<td>C8</td>
<td>The Spearman’s Correlation between Microhabitat Parameters and Morphometric Traits in AHFR and PFR</td>
<td>115</td>
</tr>
<tr>
<td>C9</td>
<td>The Spearman’s Correlation between Macrohabitat Parameters and Morphometric Traits at AHFR</td>
<td>118</td>
</tr>
<tr>
<td>C10</td>
<td>The Spearman’s Correlation between Microhabitat Parameters and Morphometric Traits at AHFR</td>
<td>122</td>
</tr>
<tr>
<td>C11</td>
<td>The Spearman’s Correlation between Macrohabitat Parameters and Morphometric Traits at PFR</td>
<td>125</td>
</tr>
<tr>
<td>C12</td>
<td>The Spearman’s Correlation between Microhabitat Parameters and Morphometric Traits at PFR</td>
<td>129</td>
</tr>
<tr>
<td>D1</td>
<td>The Independent Samples T-Test Related to Morphometric Measurements and Sex of Kalophrynus palmaei in AHFR</td>
<td>132</td>
</tr>
<tr>
<td>D2</td>
<td>The Independent Samples T-Test Related to Morphometric Measurements and Sex of Kalophrynus palmaei in PFR</td>
<td>135</td>
</tr>
<tr>
<td>D3</td>
<td>The Independent Samples T-Test Related to Morphometric Measurements and Sex of Kalophrynus palmaei in AHFR and PFR</td>
<td>138</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>E1</td>
<td>General Linear Model of 15 Morphometric Traits with Seven Studied Factors at AHFR and PFR</td>
<td>141</td>
</tr>
<tr>
<td>F1</td>
<td>Principal Component Analysis for Relationship between Morphometric Traits in AHFR</td>
<td>145</td>
</tr>
<tr>
<td>F2</td>
<td>Principal Component Analysis for Relationship between Morphometric Traits in PFR</td>
<td>145</td>
</tr>
<tr>
<td>G1</td>
<td>Chi-Square Analysis for Relationship between Microhabitat Structures and Sex</td>
<td>146</td>
</tr>
<tr>
<td>H1</td>
<td>Letter of Approval by Institutional Animal Care and Use Committee (IACUC)</td>
<td>147</td>
</tr>
<tr>
<td>I1</td>
<td>Permit Granted by Department of Wildlife and National Parks Peninsular Malaysia (PERHILITAN)</td>
<td>148</td>
</tr>
<tr>
<td>J1</td>
<td>Some Leaves Species Recorded at Captured Area of Kalophrynus palmatissimus in Ayer Hitam Forest Reserve, Puchong and Pasoh Forest Reserve, Negeri Sembilan</td>
<td>149</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celcius</td>
</tr>
<tr>
<td>a.s.l</td>
<td>Above sea level</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>ED</td>
<td>Eye diameter</td>
</tr>
<tr>
<td>EN</td>
<td>Eye-nostril distance</td>
</tr>
<tr>
<td>FL</td>
<td>Foot length</td>
</tr>
<tr>
<td>FLL</td>
<td>Forelimb length</td>
</tr>
<tr>
<td>ha</td>
<td>Hectares</td>
</tr>
<tr>
<td>HAL</td>
<td>Hand length</td>
</tr>
<tr>
<td>HL</td>
<td>Head length</td>
</tr>
<tr>
<td>HW</td>
<td>Head width</td>
</tr>
<tr>
<td>IND</td>
<td>Internarial distance</td>
</tr>
<tr>
<td>IOD</td>
<td>Interorbital distance</td>
</tr>
<tr>
<td>km</td>
<td>Kilometers</td>
</tr>
<tr>
<td>lx</td>
<td>Lux</td>
</tr>
<tr>
<td>m/s</td>
<td>Meter per second</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>N</td>
<td>Total abundance</td>
</tr>
<tr>
<td>p</td>
<td>Probability</td>
</tr>
<tr>
<td>Q</td>
<td>Probability</td>
</tr>
<tr>
<td>r</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>SL</td>
<td>Snout length</td>
</tr>
<tr>
<td>SVL</td>
<td>Snout-vent length</td>
</tr>
<tr>
<td>TD</td>
<td>Tympanum diameter</td>
</tr>
<tr>
<td>THL</td>
<td>Thigh length</td>
</tr>
<tr>
<td>TL</td>
<td>Tibia length</td>
</tr>
<tr>
<td>UEW</td>
<td>Upper eyelid width</td>
</tr>
<tr>
<td>X^2</td>
<td>Chi square</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Background

The word ‘anuran’ originates from the Greek word: a- + oura tail. The order Anura (also called Salientia) consists of frogs and toads as all of them lack tails at the adult stage. Frogs and toads are ancient animals that have been around since 200 million years (Norhayati, 2017). The body of an adult anuran is commonly described by a stout body, bulging eyes, cloven tongue, and limbs folded beneath (Stuart et al., 2004). Frogs generally have moist and smooth skin, whereas toads have warty and dry skin (Norhayati, 2017). Anurans are members of the zoological class called Amphibia that have jumping abilities and croaking sounds. They can be found around the world and are among the most diverse wild animals in the world.

The habitat of amphibians including anurans is the tropical rainforest, where it is numerous and diverse. Most of them are dependent on water sources such as ponds, rivers, streams, rain pools, water holes, ditches, and water puddles (Norhayati, 2017). Anurans prey on a wide range of vertebrates, ranging from medium- to large-sized, and act as predators of various insects and other small vertebrates (Yong, Ahmad & Helpsi, 2013).

Malaysia is rich in amphibian diversity with about 267 species including the caecilians with eight families, namely Bufonidae, Ceratobatrachidae, Dicroglossidae, Megophryidae, Microhylidae, Ranidae, Rhacophoridae, and Ichthyophiidae (Norhayati, 2017). Anurans are among the most specious group of vertebrates and can provide valuable data to monitor biological diversity in Malaysia (Chan, Daicus & Norhayati, 2010). In Borneo, more than 180 species of frogs have now been found on the island and the number continues to grow (Inger, Stuebing, Grafe & Dehling, 2017). The majority of anurans are adapted to primary and secondary forests. Most of the species take advantage of human-influenced ecosystems and appear to tolerate disturbed habitats (Inger, Voris & Voris, 1992).

The genus *Kalophrynus* is reported to contain 25 nominal species with the greatest diversity in Borneo (Zug, 2015). Members of this genus are distributed from Northeast India, Northern Bangladesh, North Central Myanmar, Peninsular Myanmar, Southeast Asia (Laos, Thailand, Vietnam, and Cambodia), Southern China, Sumatra, Borneo, Peninsular Malaysia, and the Philippines (Zug, 2015). Six species have been reported in Peninsular Malaysia, namely *Kalophrynus limbooliati*, *K. palmatissimus*, *K. pleurostigma*, *K. robinsoni*, *K. tiomanensis*, and *K. yongi* (Zug, 2015). The known localities for these species in Peninsular Malaysia are usually at relatively low elevations, and the known highest record was 1,006 m a.s.l. for *K. robinsoni* (Dring, 1979).
This study focused on *K. palmatissimus* (Lowland Grainty Frog), which is a leaf-litter frog species that can be found in lowland forests. This species is from the family Microhylidae and can be found in forest litter on the forest floor (Sukumaran, 2004). It is usually dark brown in colour with dark blotches on the dorsal skin, and brown in colour at the throat and chest (Sukumaran, 2004).

The Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan are lowland dipterocarp forest and secondary forest. Ayer Hitam Forest Reserve (AHFR), Selangor is situated about 20 km from Universiti Putra Malaysia and 45 km from Kuala Lumpur. It is near the Federal Territory of Putrajaya, Bandar Kinrara towards the north, Bandar Puteri to the west, and Taman Desaminium at the east. Ayer Hitam Forest Reserve is made up of Compartment 1, 2, 12, 13, 14 and 15 of the forest reserve, which covers 1,248 ha. The AHFR has undergone some disturbances over the last few decades, which led to a change in the forest’s landscape undergrowth and affected the habitat and population of fauna (Paiman & Amat Ramsa, 2007; Shamsudin, Mohd Farhan & Kamarulizwan, 2015).

The Pasoh Forest Reserve (PFR), situated in Simpang Pertang, Negeri Sembilan, is an internationally recognised site for tropical forestry research. A well-equipped field research centre known as the Pasoh FRIM Research Station (PFRS) within the reserve is managed by the Forest Research Institute Malaysia (FRIM). The forest is connected to a various range of hills (the highest point is Bukit Palong at 645 m). Pasoh Forest Reserve is a dipterocarp forest that is surrounded by palm oil plantations and has been subjected to logging since the 1970s, sparing 600 ha of virgin forest. Loggings over the years have caused degradation of habitats and population of animals in this forest. The distribution of *K. palmatissimus* has severely declined, in which its available habitat is small and limited, as most suitable areas are being converted to non-timber plantations and undergoing rapid development of infrastructure (Norsham, Sukumaran & Tzi Ming, 2004). It is imperative that these areas receive strong protection and management.

1.2 Problem Statement

Kalophrynus palmatissimus is listed as an endangered species because the extent of its occurrence is less than 5,000 km² (IUCN, 2017). The distribution of this species has severely declined and the quality of its habitat in Peninsular Malaysia also continues to decrease (Norsham et al., 2004). It is threatened by the development of human settlements, commercialisation and industrial areas, annual and perennial non-timber crops, and road construction. Meanwhile, mining and quarrying for granite could be a potential future challenge faced by *K. palmatissimus* for the subpopulation occurring in the Panti Forest Reserve (IUCN, 2018).

A similar challenge is also faced by *Kalophrynus pleurostigma* as the main threat to this species is deforestation (logging and wood harvesting) (IUCN, 2018). *Kalophrynus interlineatus* is threatened by destruction and degradation of breeding
habitats caused by logging and fire suppression in China (IUCN, 2018). *Kalophrynus palmatissimus* is known to be present only at PFR, the Gombak Forest Reserve, FRIM, and Templer's Park (Templer FR) in Selangor (IUCN, 2017), and AHFR, Puchong, Selangor (Muhammad Faris, Mohammad Nur Firdaus, Shamarina & Marina, 2016). According to the Wildlife Conservation Act 2010, it is a protected species. However, there is still a lack of information about the habitat structure and distribution of this species in Malaysia, especially for AHFR and PFR. Therefore, this research was conducted in order to study the ecology and biology of *K. palmatissimus* at AHFR and PFR to assist in better management decisions.

1.3 Objectives

The objectives of this study were:

1. To determine the distribution and population density of *Kalophrynus palmatissimus* at two forest reserves; AHFR and PFR.
2. To examine the morphometrics of *Kalophrynus palmatissimus* at AHFR and PFR.
3. To determine the relationship between habitat types and distribution of *Kalophrynus palmatissimus* at AHFR and PFR.
REFERENCES

underestimating the impact?. *Environmental Health Perspectives, 114*(Suppl 1), 40-50.

Evolutionary studies of sexual size Dimorphism (pp. 50-59). Oxford, UK: Oxford University Press.

Loman, J. (2016). Breeding phenology in Rana temporaria: Local variation is due to pond temperature and population size. Ecology and Evolution, 6(17), 6202-6209.

Mabbott, N. A. (2018). The influence of parasite infections on host immunity to coinfection with other pathogens. Frontiers in Immunology, 9, 2579.

Ndriantsoa, S. H., Riemann, J. C., Raminosoa, N., Rodel, M. O., & Glos, J. S. (2016). Amphibian diversity in the matrix of a fragmented landscape around Ranomafana
in Madagascar depends on matrix quality. *Tropical Conservation Science, 10*, 1-16.

