POPULATION GENETIC STRUCTURE OF MALAYAN TAPIR
(Tapirus indicus Desmarest) IN PENINSULAR MALAYSIA

LIM QI LUAN

FS 2019 55
POPULATION GENETIC STRUCTURE OF MALAYAN TAPIR (Tapirus indicus Desmarest) IN PENINSULAR MALAYSIA

By

LIM QI LUAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2019
COPYRIGHT

All material contained within the thesis, including without limitation to text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of the material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Master of Science

POPULATION GENETIC STRUCTURE OF MALAYAN TAPIR (Tapirus indicus Desmarest) IN PENINSULAR MALAYSIA

By

LIM QI LUAN

March 2019

Chair: Geetha Annavi, PhD
Faculty: Science

The Malayan tapir (Tapirus indicus Desmarest) is an endangered fauna listed in the International Union for Conservation of Nature (IUCN) Red List with estimated population size at less than 2,000 individuals in Peninsular Malaysia. Despite the existing conservation programme and ecological information about this species, the population genetic structure of the Malayan tapir in Peninsular Malaysia is still not well-known, largely due to a lack of available genetic markers. The lack of such information may impede the on-going efforts for its conservation and management. The works presented here aimed to develop genetic markers for the investigation of population genetic structure of the Malayan tapir in Peninsular Malaysia. Forty-one microsatellite markers comprising of seven random amplified microsatellite (RAM)-isolated and 34 cross-amplification microsatellite markers, obtained from literature and National Center for Biotechnology Information (NCBI) database, were screened with polymerase chain reaction (PCR), sequencing and fragment analysis in 67 Malayan tapirs. Eight polymorphic markers were successfully developed and used in the population genetic structure analysis. Using K-means clustering algorithm, five clusters were inferred among the wild samples (N = 57), which showed a complex population structure probably comprising multiple continuous populations that also experiencing considerably restricted gene flow due to isolation by geographical barriers especially mountain ranges. Mitochondrial control region sequences in Peninsular Malaysia samples (N = 44; including two samples from Singapore Zoo) revealed two clades that might be established during the late Pleistocene. One of the clades was exclusive in Peninsular Malaysia samples in comparison with the Thailand samples from a previous study. However, the geographical distribution of the clades did not show a clear population structure. A total of 12 novel haplotypes were detected. Both the markers suggested low to moderate genetic diversity in the Malayan tapir studied. In addition, a universal sex-typing method based on the sex-
determining region Y and zinc finger gene (as positive control) was tested. A preliminary assessment of sex ratio was conducted using the data extracted from the tapir datasheets obtained from the Department of Wildlife and National Parks, Sungai Dusun Wildlife Conservation Centre and Zoo Negara; and aided with the developed sex-typing marker for those biological samples with unknown sex. Overall, there was no significant bias towards either sex. Nevertheless, in the wild-born tapirs, the sex ratio seemed to favour females and the opposite was observed in the captive-born tapirs. From 2004 to 2015, there seemed to be an increase in the male proportion but no extreme ratio was found. Combined with microsatellite data, there was no sex-biased dispersal detected in a spatial autocorrelation analysis that might shape the population structure of the Malayan tapir observed. A major limitation in all these studies was the sampling bias where, across Peninsular Malaysia, more samples were sampled from the Selangor-Negeri Sembilan-Pahang regions and only a few were representatives of the populations from the north forest complexes.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

STRUKTUR POPULASI GENETIK TAPIR MALAYA (Tapirus indicus Desmarest) DALAM SEMENANJUNG MALAYSIA

By

LIM QI LUAN

Mac 2019

Pengerusi: Geetha Annavi, PhD
Fakulti: Sains

ACKNOWLEDGEMENTS

Along this journey, I have gained support from so many people who are big-hearted and helpful in so many ways that without them, I might not be able to complete this master thesis to fulfil the graduation requirement of a Master course with research from University Putra Malaysia (UPM), and to step forward for another chapter in life into the science of wildlife conservation.

First and foremost, I would like to give thanks to my supervisory committee: Dr Geetha Annavi, Dr Christina Yong Seok Yien, Dr Ng Wei Lun, and Prof. Dr Ahmad Ismail for their teachings and guidance in conducting research and writing scientific papers. Thanks to my family who are always there to support me financially and emotionally.

I also want to thank Department of Wildlife and National Parks (PERHILITAN) personnel e.g. Dr Jeffrine Japning Rovie-Ryan and Ms Norsyamimi Rosli for their support and advice during my time at National Wildlife Forensic Laboratory (NWFL), PERHILITAN, where I conducted part of my research works. Regarding the samples, all the sampling procedures were approved by the Institutional Animal Care and Use Committee, UPM (ethical approval ref.: UPM/IACUC/AUP-R033/2016). I would like to thank PERHILITAN for their permission and provision of most of the samples used in this study (permit ref. NRE 600-2/2/21 JILID 2(42)). Thanks to Mdm Noor Azleen binti Mohd Kualaim (PERHILITAN) for aiding in the collection of tapir samples from the NWFL. Many thanks to Dr Geetha Annavi and her students who were involved in collecting the Malayan tapir samples from Zoo Negara (also known as the National Zoo of Malaysia) and Sungai Dusun Wildlife Conservation Centre (Sungai Dusun WCC). I would like to thank Dr Donny Yawah (PERHILITAN), Dr Mat Naim Bin Haji Ramli (Zoo Negara) and Dr Kavitha Jayaseelan (Zoo Negara) for their assistance in collecting blood samples at the Sungai Dusun WCC and Zoo Negara respectively.

Financially, this project was supported by Ministry of Education’s Fundamental Research Grant Scheme (FRGS); project code: FRGS/1/2014/SG03/UPM/02/8); project vote no: 5524552, and Malaysian Nature Society Tapir Project Grant awarded to Dr Geetha Annavi. I also want to thank UPM for the Graduate Research Fellowship Fund and Ministry of Education for the MyBrain5c Scholarship that has supported me financially throughout the first two years of my master study. Additionally, I would like to take this opportunity to thank various institutes on the materials used in this thesis. Maps containing geography layers used the following services: SRTM 1ARC, a product of USGS; and ASTER GDEM, a product of METI and NASA. The map was produced using Copernicus data and information funded by the European Union - EU-DEM layers.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Geetha Annavi, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Christina Yong Seok Yien, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Ahmad Ismail, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Ng Wei Lun, PhD
Assistant Professor
China-ASEAN College of Marine Sciences
Xiamen University of Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from the supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ___________________________

Name and Matric No.: ___________________________
Declaration by Members of Supervisory Committee

This is to confirm that:

• The research conducted and the writing of this thesis was under our supervision;
• Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Name of
Supervisory Member of
Committee: Supervisory Committee:

Signature: ___________________________ Signature: ___________________________
Name of Member of Name of
Member of Supervisory Supervisory Committee:
Committee:

Signature: ___________________________ Signature: ___________________________
Name of Member of Name of
Member of Supervisory Supervisory Committee:
Committee:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Introduction to the Family Tapiridae 4

2.2 Malayan Tapir (*Tapirus indicus* Desmarest) 5

2.2.1 Nomenclature and Subspecies 5

2.2.2 Morphological Characteristics 6

2.2.3 Reproduction and Longevity 7

2.2.4 Nocturnal Behaviour and Vocal Communication 7

2.2.5 Population Density, Distribution and Range of Habitat 8

2.2.6 Foraging Pattern and Ecological Role 12

2.2.7 IUCN Status of Malayan Tapir and Threats Faced by the Fauna 13

2.2.8 Malayan Tapir Conservation Programmes 13

2.3 What is a Genetic Marker and What Can It Do? 15

2.3.1 Microsatellite as a Genetic Marker 16

2.3.2 Mitochondrial DNA Control Region as a Genetic Marker 18

2.3.3 Sex Markers as Genetic Tools for Sex-Identification 20

2.4 Principles of Conservation Genetics 22

2.4.1 What is Population Genetic Structure? 23

2.4.2 Why Genetic Diversity Matter in Species Conservation? 23

2.5 Importance of Conservation Genetics for Malaysian Fauna 24

2.5.1 Conservation Genetics as a Solution to Conservation Questions 25

2.5.2 Conservation Genetics in the Case of Malayan Tapir 26

2.6 Previous Genetic Studies on Tapirs 26
3 DEVELOPMENT OF MICROSATellite MARKERS AND SUBSEQUENT APPLICATION FOR INVESTIGATING GENETIC DIVERSITY AND POPULATION GENETIC STRUCTURE OF THE MALAYAN TAIPR IN PENINSULAR MALAYSIA

3.1 Introduction 28
3.2 Methodology 29
 3.2.1 Descriptions for the Malayan Tapir Samples Used in This Study 29
 3.2.2 Extracting the DNA of Malayan Tapir Samples 29
 3.2.3 Development of Microsatellite Markers and Multiplex PCR Design 30
 3.2.4 Genotyping the Malayan Tapir Samples in Fragment Analysis 38
 3.2.5 Characterisation of Microsatellite Markers 39
 3.2.6 Population Structure Analysis 41
3.3 Results 43
 3.3.1 The Quality of Sample DNA 43
 3.3.2 Development of Microsatellite Markers and Multiplex PCR Design 44
 3.3.3 Genotyping the Malayan Tapir Samples in Fragment Analysis 56
 3.3.4 Characterisation of Microsatellite Markers 56
 3.3.5 Revealing Population Genetic Structure in the Malayan Tapir 65
3.4 Discussion 75
 3.4.1 Development of Microsatellite Markers 75
 3.4.2 Genetic Diversity of the Malayan Tapir as Shown by the Microsatellites 75
 3.4.3 Population Genetic Structure in the Malayan Tapir 76
 3.4.4 Conservation Implications of This Study 78
 3.4.5 Underlying Assumptions and Errors in This Study 79
3.5 Conclusion 79

4 GENETIC DIVERSITY, POPULATION GENETIC STRUCTURE AND PHYLOGEOGRAPHIC OF THE MALAYAN TAIPR IN MALAY PENINSULA

4.1 Introduction 81
4.2 Methodology 82
 4.2.1 PCR Amplification and Sequencing of Mitochondrial DNA CR in the Malayan Tapir 82
 4.2.2 Assembly and Alignment of the Mitochondrial DNA CR Sequences 83
 4.2.3 Genetic Diversity Accessed by Mitochondrial DNA CR 83
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.4</td>
<td>Population Genetic Structure and Differentiation</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>Results</td>
<td>85</td>
</tr>
<tr>
<td>4.3.1</td>
<td>PCR Amplification and Sequencing of Mitochondrial DNA CR, and Error Estimation</td>
<td>85</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Sequence Variations Detected in PM and TH Samples</td>
<td>85</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Estimation of Genetic Diversity of PM and TH Samples</td>
<td>85</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Population Genetic Structure and Phylogeographic Distribution of Two Clades of Malayan Tapir</td>
<td>89</td>
</tr>
<tr>
<td>4.3.5</td>
<td>AMOVA Tests for Population Differentiation</td>
<td>94</td>
</tr>
<tr>
<td>4.4</td>
<td>Discussion</td>
<td>95</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Low to Moderate Genetic Diversity in the Malayan Tapir</td>
<td>95</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Population Genetic Structure of the Malayan Tapir in the Malay Peninsula</td>
<td>96</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Inference of Population Demographic History</td>
<td>98</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Conservation Implications of This Study</td>
<td>100</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Other Notes on Haplotypes of Mitochondrial DNA CR versus CytB</td>
<td>101</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusion</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>MOLECULAR SEX-IDENTIFICATION AND PRELIMINARY ESTIMATION OF WILD MALAYAN TAPIR SEX RATIO IN PENINSULAR MALAYSIA</td>
<td>103</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>103</td>
</tr>
<tr>
<td>5.2</td>
<td>Methodology</td>
<td>104</td>
</tr>
<tr>
<td>5.2.1</td>
<td>PCR Amplification, Sequencing and Nucleotide BLAST in NCBI Database</td>
<td>104</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Characterisation of SRY and ZF by Fragment Analysis</td>
<td>106</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Sex-Typing Samples of Unknown Sex</td>
<td>106</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Estimation of Sex Ratios and Testing for Sex-Biased Dispersal</td>
<td>107</td>
</tr>
<tr>
<td>5.3</td>
<td>Results</td>
<td>108</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Searching for Matching SRY and ZFX Sequences in NCBI Database</td>
<td>108</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Testing and Characterisation of Sex Marker</td>
<td>108</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Sex-Typing Samples of Unknown Sex</td>
<td>110</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Overall Sex Ratios, Sex Ratios by States or Biennium, and Sex-Biased Dispersal in the Malayan Tapir</td>
<td>111</td>
</tr>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td>113</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Verification and Characterisation of SRY and ZF Gene for Sex-Identification</td>
<td>113</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 3.1 List of 78 Malayan tapirs in Category A and their referred identities (ID), types of samples, PERHILITAN reference numbers (PERHILITAN ref. no.), individual names, sample collection year, sex, locations (from Table 3.2), year caught or born, gDNA concentrations (X: not measured). No. 1-68: wild-born or assumed to be wild-born. No. 69-78: captive-born. √ - DNA of biological samples used in Chapter 3 (SSR), Chapter 4 (CR) and Chapter 5 (SexID). Bold and underlined sex symbols (M and F) dictates sexes of samples that were identified in Chapter 5. Category B lists down extra eight Malayan tapirs used only for analysis in Chapter 5 but do not have available biological samples

Table 3.2 Extract of entries from PERHILITAN tapir datasheet and assumption of sampling locations based on the entries. a – sampling locations partially deduced from the name of the individual; b – sampling locations deduced from other provided information

Table 3.3 Description of samples used in this study

Table 3.4 Forward (F) and reverse (R) primers selected from published literature or designed from GenBank-deposited microsatellite sequences for cross-amplification in the Malayan tapir. The loci with name prefixes Tte, Tter and TtGT were developed from the lowland tapir, Tba for the Baird’s tapir and TpGT for the mountain tapir

Table 3.5 Forward (F) and reverse (R) primers designed for seven microsatellite loci isolated from random amplified microsatellite (RAM) genomic sequences (Q. L. Lim et al. 2018)

Table 3.6 Touchdown profile for singleplex polymerase chain reaction

Table 3.7 General polymerase chain reaction profile

Table 3.8 Tails selected for the three-primer method of polymerase chain reaction. Each tail was assigned a fluorescent dye and colour: 6-FAM (blue), HEX (green), and ROX (red)

Table 3.9 Touchdown profile for multiplex polymerase chain reaction
3.10 Quantity of four types of samples and proportion of the samples that were genotyped, range of concentration and mean yield ± standard deviation (SD) of gDNA samples that were extracted and genotyped (N = 72)

3.11 List of markers that did not pass the screening at agarose gel, sequencing or fragment analysis levels. PCR profile used for the markers and their results were described

3.12 BLAST result of the sequences against Tapiridae (taxid: 9799), which were amplified with cross-amplification microsatellite primers in the Malayan tapir (Tapirus indicus)

3.13 Eighteen screened microsatellite loci and the detected repeat motifs compared to the reported repeat motifs

3.14 Primer dimer and hairpin formation that were detected in all possible three-primer systems of the 24 microsatellite markers

3.15 Modified forward (F) and reverse (R) primers of 24 selected microsatellite markers for the three-primer polymerase chain reaction, target motifs, selected dyes and tails (T), allele size (bp) detected in one Malayan tapir (TAP13) and all genotyped samples (N = 67). Underlined sequences are the attached tail sequences

3.16 Dimers detected in Multiplex Manager 1.2

3.17 Volumes of primer mix for the 23 markers (10 μM normal primer, 2.5 μM modified primer, and 10 μM dye-labelled tail) in 10 μL PCR reactions prepared for the three multiplex panels

3.18 Genotypes of 67 Malayan tapirs at 10 loci that carry more than one allele

3.19 Genotype error rate per allele as estimated in 11 replicate samples

3.20 Estimation of error rate per allele in 22 microsatellite markers

3.21 Scored genotypes of TAP13 under different amount of gDNA

3.22 Allele frequencies in 10 marker loci (allele number > 1) in WILD (N = 57), CAPTIVE (N = 10), and WIL+CAPTIVE (N = 67)

3.23 Counts and frequencies of all genotypes of eight microsatellite markers in 28 male and 34 female Malayan tapirs
3.24 Genetic diversity indices and Hardy-Weinberg (HW) exact test of eight microsatellite loci characterised in *WILD* (*N* = 57) 65

3.25 Genepop output for linkage disequilibrium test for *WILD* (*N* = 57) 190

3.26 Pairwise group matrix of Fst values for total genetic distance estimated with eight microsatellite markers in five clusters of the Malayan tapirs. Fst values are shown below the diagonal, while numbers of effective migrants per generation (Nm) are shown above the diagonal 73

3.27 Exact Hardy-Weinberg test and global tests across population, across locus, or across all loci and populations 191

3.28 Global tests for linkage disequilibrium using Fisher’s method across five clusters (*N* = 57) 192

3.29 Genetic diversity indices as determined with eight microsatellite markers in five clusters (*N* = 57) identified by K-means clustering 193

3.30 Probability test for linkage disequilibrium of eight microsatellite markers in five clusters (*N* = 57) identified by K-means clustering. Only pairs with *p*-values < 0.5 were shown 193

4.1 Forward (F) and reverse (R) primers of the mitochondrial control region (CR) 83

4.2 The output of jModelTest for the best-fit substitution model from among 88 models 194

4.3 Genetic diversity indices computed for Malayan tapir populations in Peninsular Malaysia (PM), Thailand (TH) and both (PM+TH) 87

4.4 Distribution of 23 haplotypes detected in 81 Malayan tapirs comprising PM (*N* = 44) and TH (*N* = 37) samples 197

4.5 Mitochondrial control region (1237 bp) revealed 23 haplotypes and their frequencies (*N*) based on 38 variable sites (32 parsimony variable sites and 6 singletons) in 81 Malayan tapirs. The haplotypes Ti-1 (A, B, C), Ti-2 (A, B, C, D, E), and Ti-3 (A, B, C) were identified in the previous study (Muangkram, Amano, et al., 2016). Red sites are singletons 88

4.6 Nineteen haplotypes inferred from 32 parsimony variable sites in the mitochondrial control region sequences (1237 bp) that were found in Peninsular Malaysia and Thailand captivity 198
4.7 Analysis of Molecular Variance (AMOVA) based on mitochondrial control region comparing Malayan tapir populations in Peninsular Malaysia (PM) and Thailand (TH), and between clades in the PM+TH (N = 81), PM (N = 44) and its subset of tapirs with known locations (N = 34)

5.1 List of all Malayan tapirs used for the multiplex amplification of sex-determining region Y gene and zinc finger gene and for sex-typing

5.2 Primers of sex-determining region Y (SRY) and zinc finger (ZF) gene

5.3 Sex-identification of 18 Malayan tapirs by co-amplification of sex-determining region Y and zinc finger gene. Only bands or peak patterns that were consistent in two out of three replicates of polymerase chain reaction were accepted for sex-typing a sample

5.4 List of 18 Malayan tapirs from PERHILITAN database that were of unknown sex. √ - Presence of amplicon. × - No amplification. Numbers under the headings of three trials denote the detected fragment size of the gene

5.5 The number of male (N = 16) and female (N = 31) Malayan tapirs by state or region. The proportion of male tapirs is not calculated in the regions where there was only one tapir occurrence
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>53</td>
</tr>
</tbody>
</table>

2.1 Morphology of *Tapirus indicus* with Notes on the Physical Characteristics (Edited Image; Nash, n.d.).

2.3 Predicted Distribution of the Malayan Tapir (*Tapirus indicus*) in Peninsular Malaysia Using Maximum Entropy (MaxEnt) Model. Potentially Suitable Tapir Habitat (with ≥ 0.5 Logistic Value) Covers 69% of Forests in Peninsular Malaysia. Map Adapted from Clements et al. (2012).

3.2 Peak Patterns of 24 Microsatellite Markers Obtained in Fragment Analysis in One Sample TAP13.
3.3 Three Multiplex Panels, MP1, MP2 and MP3, Comprising a Total of 23 Markers in Multiplex Manager. Range of Allele Size was Estimated from the Detected Size ± 15 bp Detected in One Sample of Malayan Tapir, TAP13. The Image was Edited to Enlarge the Font Size.

3.4 Gel Electrophoresis of the Products of Multiplex Polymerase Chain Reactions (PCRs) According to Three Multiplex Panels (MP1, MP2 and MP3). Top Down, the Multiplex PCR Products are: (A) Tube 1—Ti26I2, TiGT021, Ti17L1 and Tter9; Tube 2—Ti13D2 and Tter18; Tube 3—TiGT215 and TiGT048; Tube 4—Ti28D1, Ti22G1 and Tle12; and Tube 5—Tter13 and TiGT137; (B) Tube 1—Tter4, Ti22M1 and Tter7; Tube 2—TiGT070 and Ti17J1; and Tube 3—Tter17 and Tba25; (C) Tube 1—Tter3, Tube 2—Tter14 and Tube 3—Tba23. L – DNA Ladder with 50 bp (13 Bands) or 100 bp (10 Bands) HyperLadder™ (Bioline, Germany). bp – Base Pair.

3.5 Genotype Accumulation Curves for Eight Microsatellite Markers Characterised in 67 Malayan Tapirs (Left) and 57 Malayan Tapirs (Right). Graph Plotted by Random Sampling of One to Seven (1 to N – 1) Loci Without Replacement for 1,000 Iterations (Horizontal Axis) and Counting the Number of Multilocus Genotypes (MLGs) Observed (Vertical Axis). Red Dash Line Indicates 90% of Unique MLGs Observed. Best-Fit Curve (Blue) was the Trend.

3.6 Distribution of Multilocus Genotypes (MLGs) of Eight Microsatellite Markers in WILD+CAPTIVE (Top) and WILD (Bottom). Bars were Plotted for MLG Count (Vertical Axis) Against Unique MLGs (Horizontal Axis).

3.7 Graphs of Delta K Generated in Structure Harvester using Output of STRUCTURE in WILD Dataset (N = 57) Which was Analysed Using Eight Microsatellite Markers. Inferred Number of Clusters (K) = 2 from Admixture and Correlated Allele Frequency Model (Top); and from Admixture and Independent Allele Frequency Model (Bottom).

3.8 Bar Blot Illustrating the Bayesian Genetic Structure for K = 2 and K = 3 in WILD Dataset (N = 57). Different Colours Represent Proportion of Membership to Each Inferred Genetic Cluster.

3.9 Principal Coordinate Analysis (PCoA) Showing the Genetic Relationship Estimated with Eight Microsatellite Markers in 67 Malayan Tapirs in Different Dimensions: Principal Coordinate Axis 1 against Axis 2 (A), Axis 2 against Axis 3 (B), and Axis 1 against Axis 3 (C).
3.10 Bayesian Information Criterion (BIC) for Number of Clusters (K) between 1 and 15.

3.11 Cumulative Variance Explained by a Number of Principal Component (PC) Retained.

3.12 Discriminant Analysis of Principal Component (DAPC) Cross-validation. (A) The Proportion of Successful Outcome Prediction at Various Number of Retained Principal Components Analysis (PCA) Axes Run at 30 Replicates from PCA 1 to 16. PCA = 4 to 12 were Selected for Second Run. (B) Second Run of Cross-Validation with 1,000 Replicates for a Range of Principal Component Analysis (PCA) Axes Retained, PCA = 4 to 12.

3.13 Scatter Plot of Discriminant Analysis of Principal Components (DAPC) with Number of Genetic Clusters (A) K = 4 and (B) K = 5 for WILD (N = 57). Each Cluster is Represented by Different Colours and Inertia Ellipses. Compared to K = 4, More Overlapping between the Ellipses of Clusters was Observed When K = 5.

3.14 Bar Plot Illustrating the Membership Probabilities of 57 Malayan Tapirs at Different Number of Genetic Clusters, K = 4 and K = 5. Colours Represent Different Clusters.

3.15 Geographic Distribution of 43 Malayan Tapirs Assigned to Four (K =4) or Five (K = 5) Genetic Clusters Identified by K-Means Clustering.

3.16 Distribution of Five Clusters around the Titiwangsa Range, Benom Range, Pantai Timur Range and Endau-Rompin National Park. The Dark Shade Areas are the Hill Shades.

3.17 Mantel Test for Relationship between the Matrices of Pairwise Genetic and Geographic Distances under 999 Permutations. Correlation Coefficient (R) Obtained was 0.105 (p = 0.098), and Coefficient of Determination (R²) was 0.0109. Isolation-By-Distance was Insignificant in the Dataset (N = 43).

3.18 Correlogram Showing the Genetic Autocorrelation Coefficient (r) as the Function of Distance. Upper (U) and Lower (L) Confidence Limits Bound the 95% Confidence Interval about the Null Hypothesis of No Spatial Structure in the Dataset (N = 43) as Determined by 999 Permutations. Distance Classes 15-30 km and 30-45 km Showed Significant Spatial Structure (p < 0.05). Correlogram was Significant as Shown by Heterogeneity Test (Omega = 97.878, p = 0.001).
4.1 A Median-Joining (MJ) Network of 81 Malayan Tapirs from Peninsular Malaysia Inclusive of Two Samples from Singapore (N = 44; Blue), and Thailand (N = 37; Yellow). Nodes Represent 23 Haplotypes. Sizes of Nodes are Proportional to the Number of Individuals Included in the Haplotypes. A Total of 38 Variable Sites Without Considering Gaps were Used for the Network Calculation. Ti-1(A, B, C), Ti-2(A, B, C, D, E) and Ti-3(A, B, C) were Identified in the Previous Study (Muangkram, Amano, et al., 2016). The Small Red Dots Represent the Unobserved Sequences. Bars Represent Nucleotide Substitutions.

4.2 A Neighbour-Joining (NJ) Tree of 81 Malayan Tapirs from PM (N = 44; Prefix ‘TAP’) and TH Datasets (N = 37; Prefix ‘Ti-’) Representing the Topology of the 23 Haplotypes Identified with Mitochondrial Control Region. Lowland Tapir (Tapirus terrestris) was Included as an Outgroup. The Final Dataset for Tree Construction Has Included 1226 Positions. Bootstrapping (1,000 Replicates) Values > 50% were Shown Next to the Branches as Percentage. Labels Shown on the Right are the Haplotypes.

4.3 A Maximum Likelihood (ML) Tree Constructed Based on Mitochondrial Control Region of 81 Malayan Tapirs from PM (N = 44; Prefix ‘TAP’) and TH Datasets (N = 37; Prefix ‘Ti-’). Lowland Tapir (Tapirus terrestris) was Included as an Outgroup. The Final Dataset for Tree Construction Has Included 1226 Positions. The Larger Tree is the Midpoint-Rooted Subtree of the ML Tree Drawn at the Bottom Left Corner. The Branch Lengths were Drawn to Scale, and the Scale Bar Carries the Unit of Number of Substitutions Per Site. Bootstrapping (1,000 Replicates) Values > 50% were Shown Next to the Branches as Percentage. Subtree Labels on the Right are the Haplotypes.

4.4 The Phylogeographic of 34 Samples of Malayan Tapirs from PM Dataset That Made Up 12 Haplotypes (H_9 Not Included as the Only Representative TAP64 was from Unknown Location) As Shown in the Simplified Neighbour-Joining (NJ) Topology Tree Constructed with Mitochondrial Control Region (1266 Positions). Haplotypes in Black, Belong to Clade I, were Recorded Only in Thailand Samples and were Not Shown. Haplotypes in Blue Also Belong to Clade I, While Haplotypes in Red Belong to Clade II.

4.5 Test Statistic (z) Showing the Degree of Correlation between Two Matrices: The Genetic Distances and Geographic Distances of 34 Malayan Tapir. Line in the Centre is the Observed Z-Statistic (z = 429.6) with a Two-Sided P-Value = 0.710 Estimated from 10,000 Permutations, Indicating That
the Two Distance Matrices Did Not Correlate Significantly.

4.6 Test Statistic (z) Showing the Degree of Correlation between Two Matrices: The Genetic Distances and Geographic Distances of 33 Malayan Tapir. Line in the Centre is the Observed Z-Statistic (z = 377.3) with a Two-Sided P-Value = 0.766 Estimated from 10,000 Permutations, Indicating That the Two Distance Matrices Did Not Correlate Significantly.

4.7 A Neighbour-Joining (NJ) Tree Showing the Phylogenetic Relationships of Malayan Tapirs Based on Partial Mitochondrial DNA Cytochrome B Gene. NJ Tree Adapted from Rovie-Ryan et al. (2008).

4.8 Comparative Phylogenetic Relationship of Malayan Tapirs Based on Mitochondrial Cytochrome b (CytB) Haplotypes with Proposed Names Ti-1 and Ti-2 (Thailand) and Ti-3 (Thailand/Malaysia), Ti-4 (Unknown Origin), Ti-5 and Ti-6 (Malaysia), and Ti-7 (Sumatra). The Blue Horizontal Line Refers to the Number of Nucleotide Substitutions. Areas in Yellow Indicates the Current Distribution of the Malayan Tapir Modified from the IUCN Red List of Threatened Species (www.iucnredlist.org). Map Adapted from Muangkram et al. (2013).

5.1 Amplification of the SRY Gene and Zinc Finger (ZF) Gene in 22 Malayan Tapirs. (A) The Male Tapirs Yielded Amplicons of SRY Gene at ~200 bp and ZF Gene at ~450 bp. The Female Tapirs Yielded Only Amplicons of ZF Gene at ~450bp. ZF Gene Acts as a Positive Control for the Polymerase Chain Reaction (PCR). (B) Sex-Identification in 11 Females and 11 Males by Multiplexing the Primers of SRY Gene and ZF Gene in PCR, and the Products were Visualised on 2% Agarose Gel. All the Males and Females Show Consistent Sex-Specific Band Patterns. L - 50bp Ladder, N - Negative Control, M - Male, F - Female.

5.2 A Chromatogram Showing the Peaks of Sex-Identifying Sex-Determining Region Y (SRY) and Zinc Finger Gene (ZF) from a Male Malayan Tapir. The Scored Fragment Sizes were 244 bp for SRY and 464 bp for ZF. In Female, the Peak for SRY is Absent. DB - Dye Blob.

5.3 The Numbers of Male and Female Malayan Tapirs and the Sex Ratios (Male/[Male+Female]) Per Biennium for Years 2004-2015 (N = 54). One Male Tapir was Present in the Biennium 2016-2017 and was Not Shown in the Graph.

5.4 The Numbers of Male and Female Malayan Tapirs and the Sex Ratios (Male/Male+Female) Per Year (2004-2017). Total
Tapirs = 55.

5.5 Correlogram Showing the Genetic Autocorrelation Coefficient (r) As the Function of Distance. Heterogeneity Test between the Correlograms of Two sexes (N = 43) was Insignificant (Omega = 24.2, \(p = 0.536 \)).

6.1 Distribution of Two Clades That were Detected by Mitochondrial DNA Control Region in 44 Malayan Tapir Samples Over Five Clusters Detected by Eight Microsatellite Markers.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Details of Malayan Tapir Samples</td>
</tr>
<tr>
<td>B1</td>
<td>Genotype Scoring for 23 Microsatellite Markers</td>
</tr>
<tr>
<td>B2</td>
<td>Genotypes of 67 Malayan Tapirs at 10 Loci with More Than One Allele</td>
</tr>
<tr>
<td>C1</td>
<td>QIAamp® DNA Mini Kit</td>
</tr>
<tr>
<td>C2</td>
<td>DNA Quantification</td>
</tr>
<tr>
<td>C3</td>
<td>Gel Electrophoresis</td>
</tr>
<tr>
<td>C4</td>
<td>pGEM®-T Easy Vector and Colony PCR</td>
</tr>
<tr>
<td>C5</td>
<td>Wizard®SV Gel and PCR Clean-Up System</td>
</tr>
<tr>
<td>C6</td>
<td>R Script for Genotype Cumulative Curve</td>
</tr>
<tr>
<td>C7</td>
<td>R Script for Discriminant Analysis of Principal Components (DAPC)</td>
</tr>
<tr>
<td>C8</td>
<td>R Script for Mantel Test</td>
</tr>
<tr>
<td>D1</td>
<td>DAPC Cross-Validation</td>
</tr>
<tr>
<td>D2</td>
<td>Mantel Test</td>
</tr>
<tr>
<td>E</td>
<td>Table of Results</td>
</tr>
<tr>
<td>F1</td>
<td>Full or Partial Sequences of 25 Microsatellite Loci</td>
</tr>
<tr>
<td>F2</td>
<td>Mitochondrial DNA Control Region Sequences</td>
</tr>
<tr>
<td>F3</td>
<td>SRY and ZFX Sequences</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

+G (including) Gamma distribution
+I (including) Invariant site
λ Number of substitutions per site per year
π Nucleotide diversity
2n Diploid number
3' End of a linear DNA strand
5' Beginning of a linear DNA strand
6-FAM 6-carboxyfluorescein (a fluorescent dye for fragment analysis)
A Adenine
AMOVA Analysis of Molecular Variance
AU Action unit
BIC Bayesian Information Criterion
bp Base pair
C Cytosine
CLUMPAK Cluster Markov Packager Across K
CR Control region
CSB Conserved sequence block
CytB Cytochrome b
delta G Gibbs energy
DAPC Discriminant analysis of principal component
dN Number of substitutions per site
DNA Deoxyribonucleic acid
DBS Dried blood spot
PERHILITAN Department of Wildlife and National Parks
ESU Evolutionarily significant unit
ETAS Extended termination associated sequences
F Fixation index
Fst Fixation index (inbreeding coefficient)
G Guanine
GADM Database of Global Administrative Areas
gDNA Genomic DNA
H_ Name prefix for haplotype
Hd Haplotype diversity
He Expected heterozygosity
HKY Hasegawa, Kishino & Yano model
Ho Observed heterozygosity
HEX A type of fluorescent dye for fragment analysis
HWE Hardy-Weinberg equilibrium
I Shannon’s information index
IBD Isolation-by-distance
IUCN International Union for Conservation of Nature
K Number of genetic clusters
K-means Unsupervised learning algorithm for clustering observations
K80 Kimura 2-parameter model
LD Linkage disequilibrium
LIZ500 Dye-labelled size standard with 16 fragments up to 500 bp

xxv
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxEnt</td>
<td>Maximum entropy</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov chain Monte Carlo</td>
</tr>
<tr>
<td>MLG</td>
<td>Multilocus genotype</td>
</tr>
<tr>
<td>MJ</td>
<td>Median-joining</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum likelihood</td>
</tr>
<tr>
<td>MP</td>
<td>Multiplex panel</td>
</tr>
<tr>
<td>mtDNA</td>
<td>Mitochondrial deoxyribonucleic acid</td>
</tr>
<tr>
<td>MU</td>
<td>Management unit</td>
</tr>
<tr>
<td>MYA</td>
<td>Million years ago</td>
</tr>
<tr>
<td>N</td>
<td>Count or number</td>
</tr>
<tr>
<td>N_a</td>
<td>Allele number</td>
</tr>
<tr>
<td>N_e</td>
<td>Effective allele number</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NJ</td>
<td>Neighbour-joining</td>
</tr>
<tr>
<td>Nm</td>
<td>Number of effective migrants per generation</td>
</tr>
<tr>
<td>PC</td>
<td>Principal component</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PCoA</td>
<td>Principal coordinate analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PIC</td>
<td>Polymorphic information content</td>
</tr>
<tr>
<td>PM</td>
<td>Peninsular Malaysia</td>
</tr>
<tr>
<td>RAM</td>
<td>Random amplified microsatellite</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROX</td>
<td>A type of fluorescent dye for fragment analysis</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>SRY</td>
<td>Sex-determining region Y</td>
</tr>
<tr>
<td>SSR</td>
<td>Simple sequence repeat</td>
</tr>
<tr>
<td>STR</td>
<td>Short tandem repeat</td>
</tr>
<tr>
<td>T</td>
<td>Thymine</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>t_0</td>
<td>Divergence time</td>
</tr>
<tr>
<td>TH</td>
<td>Thailand mtDNA CR dataset</td>
</tr>
<tr>
<td>Ta</td>
<td>Annealing temperature</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>uH_e</td>
<td>Unbiased heterozygosity</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>WCC</td>
<td>Wildlife Conservation Centre</td>
</tr>
<tr>
<td>WGRB</td>
<td>Wildlife Genetic Resource Bank</td>
</tr>
<tr>
<td>X</td>
<td>X chromosome</td>
</tr>
<tr>
<td>Y</td>
<td>Y chromosome</td>
</tr>
<tr>
<td>ZF</td>
<td>Zinc finger</td>
</tr>
<tr>
<td>ZFX</td>
<td>X-linked zinc finger gene</td>
</tr>
<tr>
<td>ZFY</td>
<td>Y-linked zinc finger gene</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Genetic variation, which lays the basis for genetic diversity and thus genetic structure, is one of the three levels of biodiversity i.e. genetic diversity, species diversity and ecosystem diversity, that deserve to be conserved. Genetic diversity is often correlated to population fitness and surviving capacity of the population through adaptation (Barrett & Schluter, 2008; Reed & Frankham, 2003). International Union for Conservation of Nature (IUCN) ranking of a species as ‘Vulnerable’, ‘Endangered’, or ‘Critically Endangered’ is based on its statistics of population decline and range loss, which in turn implies a significant extinction risk faced by the concerned species as well as suggests a reduced genetic diversity by inbreeding and drift in the threatened populations (Rivers, Brummitt, Lughadha, & Meagher, 2014; Willoughby et al., 2015).

The Malayan tapir (Tapirus indicus Desmarest) is one of the endangered faunas listed in the IUCN Red List (Traeholt et al., 2016). The Malayan tapir is found in Southeast Asia including Thailand, Sumatra and Peninsular Malaysia. Its population in Peninsular Malaysia is declining due to threats such as habitat loss, habitat fragmentation and road kills. In Malaysia, the setting up of the Malayan Tapir Conservation Centre and the development of the Malayan Tapir Action Plan are among the efforts to conserve this species. The conservation efforts include captive breeding management and operations such as the rescue of displaced or injured tapirs, and reintroduction or translocation of the tapirs from one population to another (Magintan, Traeholt, & Karuppanannan, 2012; Mahathir et al., 2014).

While habitat protection and maintenance, and at one point, conservation intervention by humans are important to maintain the Malayan tapir population, population genetic diversity should not be overlooked in the conservation biology of the Malayan tapir. Examination of the amount of genetic diversity and its distribution pattern over a geographic area can provide valuable insights into the population genetic structure—number of subpopulations, genetic variation within the subpopulations, and the degree of gene flow between them, as well as make inference to the factors and demographic processes that shaped the genetic structure of the population (Allendorf, Luikart, & Aitken, 2013; Chakraborty, 1993). Understanding the Malayan tapir population genetic structure has important management and conservation implications for the species, for example, identifying population management units that may be genetically distinct from each other will help authorities such as Department of Wildlife and National Parks (PERHILITAN) in Malaysia to take caution when making decisions on reintroduction, translocation and breeding. Furthermore, the genetic data and information can be used for long-term monitoring programme for both wild and captive Malayan tapir populations. Prior information on population genetic structure will also allow wildlife
conservationist to design their experiment or research plan for testing more sophisticated hypotheses using subpopulations as groups.

Population studies of the Malayan tapir based on conventional methods such as camera trapping and radiometry (e.g. Rayan et al., 2012; Traeholt & Sanusi, 2009; K. D. Williams, 1979) to study its population distribution, population density, home range etc. did not include the information on population genetic structure, which requires molecular or genetic markers to explore. The genetic approach offers advantages in term of grasping population information at the molecular level that is inaccessible by conventional methods, yet with proper research design and assessments, it can reveal similar population information obtained from the latter techniques and even more. For example, while both approaches can be used to estimate population size and density (Janečka et al., 2011), population structure, in the sense of distribution of individuals in a geographical area, can be more readily assessed by evaluating distribution pattern of their genetic diversity using samples from various sources, rather than employing ecological field techniques to track down movement of a number of individuals. Genetic markers such as nuclear microsatellite markers (Pinho, Gonçalves da Silva, Hrbek, Venticinque, & Farias, 2014) and mitochondrial deoxyribonucleic acid (mtDNA) markers (Muangkram, Amano, et al., 2016) are popular tools for estimating genetic diversity within or among subpopulations.

Estimation of sex ratio and sex-biased dispersal, which are among the factors that influence population genetic structure, can be achieved with sex-identification markers e.g. sex-determining region Y (SRY) and zinc finger (ZF) gene for identifying sexes of collected samples (Pelizzon, da Silva Carvalho, Caballero, Manoel Galetti Junior, & Sanches, 2017; Quaglietta, Fonseca, Hájková, Mira, & Boitani, 2013). However, studies with these markers i.e. microsatellite, mtDNA, and sex-identification markers are still few or largely lacking in the Malayan tapir, if not totally absent, especially for populations residing in Peninsular Malaysia and Sumatra. Only a few genetic research on the Malayan tapir population, whether captive or wild, were conducted in the past decade. These projects focused mainly on the mtDNA genes e.g. cytochrome b (CytB) gene and control region (CR) to assess genetic diversity, phylogenetic or phylogeographic relationships in Thailand (Muangkram, Amano, et al., 2016; Muangkram et al., 2013) and Japan zoos (Ogata, Watanabe, & Ogawa, 2009), and in Peninsular Malaysia (Rovie-Ryan et al., 2008). Others include research that only aimed to reconstruct phylogenetic relationships among members of Tapiridae (Ashley, Norman, & Stross, 1996; de Thoisy et al., 2010).

As such, more genetic markers need to be developed to lay the ground for further studies in the population structure and diversity for the Malayan tapir, as well as using the genetic information for improving in-situ and ex-situ conservation management. Therefore, the aim of this thesis and the research works performed within it was to fill the gap in the knowledge by developing and using genetic markers to provide novel insights into the population genetic
structure of the Malayan tapir in Peninsular Malaysia, to account for the current situation where the population genetic structure of Malayan tapir has remained not well-understood despite its 'Endangered' status. The objectives were:

1. to screen and characterise 41 microsatellite markers in the Malayan tapir, which includes seven novel microsatellite marker loci isolated from the Malayan tapir by random amplified microsatellite (RAM) markers and 34 microsatellite marker loci developed for the lowland tapir, Baird’s tapir, and mountain tapir;

2. to assess the genetic diversity and population genetic structure of the Malayan tapir in Peninsular Malaysia using the tested polymorphic microsatellite markers;

3. to assess the genetic diversity, population genetic structure and phylogenetic relationships of the Malayan tapir population in Peninsular Malaysia using mtDNA CR and with the inclusion of Thailand captive samples.

4. to verify and characterise the SRY/ZF sexing method in Malayan tapir for sex-typing samples of unknown sex, which are to be included for a preliminary assessment of sex ratio in the wild and captive-born Malayan tapir populations in Peninsular Malaysia, and to detect spatially sex-biased dispersal in relation to microsatellite data and geographical distances in the wild population.

Chapter 1, as has been described in this chapter, introduces the main research subject of this project—the Malayan tapir, clarifies the problems faced by the fauna and the main aim of this thesis in contributing valuable genetic tools and information for the conservation of the Malayan tapir. Chapter 2 gives a review of the subjects relevant to this project. Chapter 3 describes the development of microsatellite markers and its use to assess and clarify the population genetic structure of the Malayan tapir in Peninsular Malaysia. While Chapter 3 investigates population genetic structure in the Malayan tapir using biparentally inherited microsatellite markers, Chapter 4 investigates the population genetic structure using maternally inherited mtDNA CR. Other than population structure, the chapter also investigates phylogenetics and genetic diversity of Malayan tapir in Peninsular Malaysia by including the mtDNA CR sequences of the Malayan tapir kept in Thailand. Chapter 5 describes the development of a sex-typing method for samples of unknown sex. The sex data was then used to estimate sex ratio in the wild- and captive-born Malayan tapirs in Peninsular Malaysia. In addition, data from microsatellite markers and the sex data were combined to look for population structure caused by the differential in dispersal in different sexes. Chapter 6 provides a general discussion on the results obtained through Chapter 3 to Chapter 5. Lastly, Chapter 7 gives a recap of all the works conducted for objectives in Chapter 3 through Chapter 5 and the conclusions made and provides recommendations on what can be researched in the future to widen the knowledge about the ecology and genetics of the Malayan tapir.
REFERENCES

Cranbrook, E. of, & Piper, P. J. (2013). Paleontology to policy: the Quaternary history of Southeast Asian tapirs (Tapiroidea) in relation to large mammal species turnover, with a proposal for conservation of Malayan tapir by reintroduction to Borneo. *Integrative Zoology, 8*(1), 95–120.

Hoffman, J. D., & Genoways, H. H. (2012). Examination of annual variation in the adult sex ratio of Pronghorn (*Antilocapra americana*).
American Midland Naturalist, 168(2), 289–301.

experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats. *Genome Biology and Evolution*, 2, 620–635.

Milewski, A. V., & Dierenfeld, E. S. (2013). Structural and functional comparison of the proboscis between tapirs and other extant and extinct vertebrates. *Integrative Zoology, 8*(1), 84–94.

effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? *Molecular Ecology*, 17, 3428–3447.

http://www.rstudio.com/

transition. Journal of Vertebrate Paleontology, 31(2), 479–496.

Biology of Sex Differences, 8(1), 31.

