
 
 

 
SYNTHESIS AND ELECTROMAGNETIC CHARACTERIZATION OF 

POLYCAPROLACTONE FILLED WITH HEMATITE AND OPEFB FIBER 
NANOCOMPOSITE 

 

 
 
 
 
 
 
 
 
 

MENSAH, EBENEZER EKOW 
 
 
 
 
 
 
 
 
 
 
 
 
 

FS 2019 54 



 

i 

 
 

 

SYNTHESIS AND ELECTROMAGNETIC CHARACTERIZATION OF 

POLYCAPROLACTONE FILLED WITH HEMATITE AND OPEFB FIBER 

NANOCOMPOSITE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By 

 

 

MENSAH, EBENEZER EKOW  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 

in Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

 

 

July 2019 

 

© C
OPYRIG

HT U
PM



 

 

 

ii 

COPYRIGHT 

 

 

All material contained within the thesis, including without limitation text, logos, icons, 

photographs, and all other artwork, is copyright material of Universiti Putra Malaysia 

unless otherwise stated. Use may be made of any material contained within the thesis 

for non-commercial purposes from the copyright holder. Commercial use of material 

may only be made with the express, prior, written permission of Universiti Putra 

Malaysia. 

 

 

Copyright © Universiti Putra Malaysia  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© C
OPYRIG

HT U
PM



 

 

 

iii 

DEDICATION 

 

 

This thesis is dedicated to the Almighty God, my beloved wife and children 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© C
OPYRIG

HT U
PM



 

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Doctor of Philosophy 

 

 

SYNTHESIS AND ELECTROMAGNETIC CHARACTERIZATION OF 

POLYCAPROLACTONE FILLED WITH HEMATITE AND OPEFB FIBER 

NANOCOMPOSITE 

 

 

By 

 

 

MENSAH, EBENEZER EKOW 
 

 

July 2019 

 

 

Chairman :   Associate Professor Zulkifly Abbas, PhD 

Faculty :   Science  

 

 

The most common materials used for microwave absorbing applications are ferrites. 

However, ferrites are expensive, heavy, non – biodegradable and have low dielectric 

loss properties especially at high frequencies. This study presents the development of 

novel composites using recycled ferrite in conjunction with biodegradable oil palm 

empty fruit bunch (OPEFB) fiber and polycaprolactone (PCL) as an alternative for 

reducing the limitations of ferrite – based microwave absorbing materials.  Hematite 

(α – Fe2O3) was recycled from mill scale waste (steel waste) material and the particle 

sizes reduced to nanosize after several hours of high energy ball milling (HEBM). The 

relationship between the reduced particle sizes and the dielectric properties was then 

determined. α – Fe2O3/PCL and α – Fe2O3/OPEFB fiber/PCL nanocomposites with 

different loadings (5 to 25%) of 16.2 nm α – Fe2O3 nanofiller were fabricated and 

characterized for their dielectric, magnetic and microwave absorption properties. The 

material composition and structural properties were analyzed using X – ray diffraction 

(XRD), scanning electron microscopy (SEM), energy dispersive X – ray spectroscopy 

(EDX), high resolution transmission electron microscopy (HRTEM), Fourier 

transform infrared spectroscopy (FTIR) and Brunauer – Emmett – Teller (BET) 

techniques. The relative complex permittivity and permeability of the samples were 

respectively measured using the open – ended coaxial probe and the rectangular 

waveguide techniques while the microwave absorption properties were measured with 

the microstrip at 1 GHz to 4 GHz. The results showed that the relative complex 

permittivity of the recycled α – Fe2O3 increased with reduced particle size. The 

dielectric loss factor ('') increased from 0.17 to 0.46 when the particle size was 

reduced from 1.73 μm to 16.2 nm at 8 GHz. Within the X – band (8 GHz – 12 GHz) 

frequency range, the relative complex permittivity properties of the recycled α – Fe2O3 

particles were higher as compared to a commercial α – Fe2O3 (Alfa Aesar).  

Additionally, the relative complex permittivity (ε*) values of the nanocomposites 

increased with recycled α – Fe2O3 nanofiller content and were higher in the α–
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Fe2O3/OPEFB/PCL nanocomposites than the α – Fe2O3/PCL nanocomposites. This is 

due to the high loss factor of the incorporated OPEFB fiber.  

 

 

Attenuation and power loss due to absorption equally increased with recycled α – 

Fe2O3 nanofiller loadings.  At 2.4 GHz, the range of attenuation for the α–

Fe2O3/OPEFB/PCL nanocomposites was from 2 dB to 2.6 dB while the power loss 

values were from 15 dB to 17.3 dB. The attenuation values for the α – Fe2O3/PCL 

nanocomposites were however from 1.8 dB to 2 dB while the power loss values were 

in the range of 13.6 dB to 15.2 dB. The recycled α–Fe2O3/OPEFB/PCL 

nanocomposites can therefore serve as promising alternatives for microwave 

absorbing applications in the 1 – 4 GHz in view of their low cost, low density, 

biodegradability and attractive absorption behaviour.  Recycled hematite at reduced 

particle size has the potential for use as a filler in other polymeric composites and its 

application can reduce the cost of ferrite – based microwave absorbing materials 

significantly without compromising the absorption efficiency of the materials.  
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Bahan yang kerap digunakan untuk aplikasi penyerapan mikro gelombang adalah ferit. 

Walau bagaimanapun, ferrite adalah mahal, berat, tidak terbiodegradasikan dan 

mempunyai sifat kehilangan dielektrik yang rendah terutama pada frekuensi tinggi. 

Kajian ini membentangkan mengenai pembangunan satu novel komposit yang 

menggunakan ferit yang dikitar semula sehubungan dengan serat tandan buah kelapa 

sawit yang biodegradasi (OPEFB) dan polikaprolakton (PCL) sebagai alternatif untuk 

mengurangkan keterbatasan bahan penyerapan mikro gelombang berasaskan ferit. 

Hematit (α - Fe2O3) telah didapati daripada bahan sisa skala kilang (sisa buangan 

keluli) boleh dikitar semula dan saiz zarah telah dikurangkan menjadi nano-saiz 

selepas beberapa jam melalui proses penggilingan bola tenaga yang tinggi (HEBM). 

Hubungan antara saiz zarah yang dikurangkan terhadap sifat dielektrik telah 

ditentukan. α - Fe2O3 / PCL dan α - Nanoplastik Fe2O3 / OPEFB / PCL nanokomposit 

dengan berisi α - Fe2O3 nanofiller yang berbeza muatan (5 hingga 25%), yang 

difabrikkan dan dicirikan sifat dielektrik, magnetik dan sifat penyerapan gelombang 

mikro. Komposisi bahan dan sifat struktur dianalisis dengan menggunakan 

pembelauan sinar-X (XRD), pengimbasan mikroskop elektron (SEM), spektroskopi 

serakan tenaga sinar-X (EDX), mikroskop penghantaran elektron resolusi tinggi 

(HRTEM), transformasi Fourier spektroskopi inframerah (FTIR) dan Brunauer - 

Emmett-Teller (BET). Ketulusan kompleks dan kebolehtelapan sampel diukur dengan 

menggunakan proba sepaksi hujung terbuka dan pandu gelombang segi empat tepat 

sementara sifat penyerapan gelombang mikro diukur dengan menggunakan mikrostrip 

pada 1 GHz hingga 4 GHz. Kadar ketelusan dielektrik oleh α - Fe2O3 yang dikitar 

semula meningkat apabila saiz zarah yang dikecilkan. Kadar faktor kehilangan 

dielektrik (") meningkat dari 0.17 ke 0.46 apabila saiz zarah dikecilkan daripada 1.73 

μm hingga 16.2 nm pada 8 GHz. Dalam jalur-X julat frekuensi (8 GHz – 12 GHz), 

sifat ketelusan kompleks relatif  bagi zarah α - Fe2O3 yang dikitar semula adalah tinggi 

berbanding dengan α - Fe2O3 komersial (Alfa Aesar). Tambahan pula, nilai ketelapan 

dielektrik (ε*) nano-komposit meningkat dengan kandungan kitar semula terisi nano 
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(nanofiller) α – Fe2O3 dan lebih tinggi bagi sampel α – Fe2O3/OPEFB/PCL nano-

komposit, berbanding α–Fe2O3/PCL nanokomposit. Ini disebabkan oleh faktor 

kehilangan yang tinggi  yang disebabkan oleh penggabungan serat OPEFB.  

 

 

Atenuasi dan kehilangan kuasa disebabkan oleh penyerapan meningkat dengan 

muatan terisi nano α – Fe2O3  kitar semula. Pada 2.4 GHz, julat attenuasi untuk α- 

Fe2O3 /OPEFB /PCL nanokomposit adalah daripada 2 dB hingga 2.6 dB manakala 

nilai kehilangan kuasa adalah daripada 15 dB hingga 17.3 dB. Nilai atenuasi untuk α-

Fe2O3/PCL nanokomposit adalah daripada 1.8 dB hingga 2 dB manakala nilai 

kehilangan kuasa berada dalam lingkungan 13.6 dB hingga 15.2 dB. Kitar semula α–

Fe2O3/OPEFB/PCL nanokomposit dengan ini boleh digunakan sebagai satu alternatif 

sebagai penyerap gelombang mikro beraplikasi dalam julat frekuensi 1-4 GHz, 

sebagai bahan kos murah, ketumpatan rendah, terbiodegradasikan and mempunyai 

sifat penyerapan yang menarik. Kitar semula hematit dengan saiz zarah yang mengecil 

mempunyai potensi digunakan sebagai ‘filler’ (pengisi) dalam komposit polimer dan 

aplikasi ini boleh mengurangkan kos bahan penyerap gelombang mikro berasaskan 

ferit, paling penting, tidak berkompromis dengan kecekapan penyerapan bahan ini.  
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CHAPTER 1 

1 INTRODUCTION 

The recent rapid development of the electronics industry in the microwave frequency 

domain has intensified the electromagnetic interference (EMI) issue among devices 

having both civilian and military applications. EMI refers to stray or unwanted 

electromagnetic signals found within 300 MHz and 300 GHz, which are radiated 

and/or conducted from sources such as wireless networks and devices, mobile phones, 

car alarms, USB devices, FM/AM radio antennas and digital TV emitters. EMI has the 

potential to cause errors, system failures, malfunctions or other faults in neighboring 

electronic equipment and installations. As a result, EMI absorbing materials are 

needed to deliver electromagnetic compatibility (EMC) in various electronic devices 

operating in the microwave region to improve on their quality and reliability. In recent 

years, much attention has been focused on ferrite materials (spinel, garnet and 

hexagonal ferrites) for EMI absorption applications due to their superior saturation 

magnetization, reduced electrical losses, large electrical resistivity as well as chemical 

stability. Ferrites such as  zinc ferrite (Raju, 2017), cobalt ferrite (Li et al., 2017), 

magnetite (Zhang et al., 2018) and La – Ni substituted barium ferrite (Shen et al., 

2017), and many others have been used in composites which have shown improved 

microwave absorption over a wide frequency range. However, ferrite absorbers lack 

the right balance of low density, low cost, high dielectric loss performance, thinness, 

strong mechanical properties, and biodegradability. Subsequently, the development of 

new techniques to reduce the limitations of ferrites has received a lot of attention in 

the last few years. Nevertheless, the utilization of carbon bio – based materials, 

recyclable materials and biodegradable materials has received very little focus in spite 

of their economic and environmental benefits. This research therefore presents a novel 

technique to reduce the limitations of ferrite – based microwave absorbing materials 

using low – cost recycled α – Fe2O3 together with biodegradable materials. The focus 

is on the effectiveness of particle size reduction by the ball milling technique in 

enhancing the complex permittivity characteristics of the recycled α – Fe2O3 as well 

as the incorporation of OPEFB fiber and polycaprolactone matrix for the fabrication 

of novel nanocomposites for microwave absorbing applications within the L – S (1 – 

4 GHz) frequency range.  

1.1 Problem Statement 

Ferrites are the most common materials used for solving EMI problems in microwave 

and electronic devices due to their excellent electromagnetic properties at microwave 

frequencies. However, ferrites are often synthesized through chemical techniques 

which could be multi – staged, complicated and expensive. Moreover, ferrites also 

have low dielectric loss properties especially at high frequencies and are non – 

biodegradable. This research therefore presents a new method to reduce the cost of 

ferrite – based microwave absorbing materials by using recycled ferrite in conjunction 

with biodegradable materials.  The method involves the retrieval of hematite (α – 

Fe2O3) from recyclable mill scale waste and the subsequent improvement of the 
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dielectric properties by particle – size reduction to nanosize using high energy ball 

milling. The relationship between the particle – size reduction and the dielectric 

properties of the recycled α – Fe2O3 particles was then established. The recycled α – 

Fe2O3 with improved dielectric properties could be useful in reducing the limitations 

of the frequently utilized ferrites in microwave absorbing applications. α – Fe2O3 is a 

ferrite (corundum – kind iron oxide), stable in ambient conditions with unique 

magnetic and electric properties.  

Polycaprolactone is a biodegradable polymer which is easily blended, non – toxic 

lightweight, has good dielectric properties and binds well to α – Fe2O3. This desirable 

combination of characteristics makes it a suitable polymer matrix for hosting the 

recycled α – Fe2O3 nanofiller since the most commonly used host materials for ferrite 

– based absorbers are heavy, difficult to blend and non – biodegradable. Moreover, 

recycled α – Fe2O3 nanofiller compositions could have an effect on the permittivity, 

permeability and microwave absorbing properties of α – Fe2O3/PCL nanocomposites 

which has to be investigated. Furthermore, absorbers need to have high loss factor for 

higher absorbing properties. In this research, small grain – sized OPEFB fiber was 

incorporated into α – Fe2O3/PCL nanocomposites in order to provide the required high 

loss factor, while retaining the magnetic properties. The small grain – sized OPEFB 

fiber has a high loss factor and is biodegradable, cheap, low density with good thermal 

and mechanical properties and can easily be blended with PCL. Additionally, the low 

density can also make the nanocomposites lighter. The incorporation of OPEFB fiber 

into α – Fe2O3/PCL nanocomposites could enhance the permittivity, permeability and 

microwave absorbing properties of α – Fe2O3/OPEFB/PCL nanocomposites. 

The conventional technique used to determine the complex permittivity and S – 

parameters of the α – Fe2O3/PCL and α – Fe2O3/OPEFB/PCL nanocomposites 

materials is to place the samples in a closed waveguide. The technique is difficult as 

the samples have to be inserted tightly into the waveguide without any air gaps.  In 

this research, open ended coaxial probe (OEC) technique was used to measure the 

complex permittivity while and the microstrip measurement technique was used to 

acquire the S – parameters. The microstrip measurement method alone could not be 

used to describe the electromagnetic field distribution in the samples. Therefore, the 

visualization of the electromagnetic field in the samples was carried out where the 

samples were discretized into smaller meshes using the Finite Element Method (FEM).  

1.2 Research Objectives 

The main objectives of this research are as follows: 

1. To synthesize α – Fe2O3 using mill scale (steel waste) and reduce the particle 

sizes to nanosize using high energy ball milling and characterize their 

morphological, structural and dielectric properties. The effect of particle – 

size reduction on the dielectric properties of the particles will then be 

examined. 
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2. To fabricate α – Fe2O3/PCL nanocomposites with different mass percentages 

of recycled α – Fe2O3 nanofiller and investigate the effect of the nanofiller on 

the complex permittivity and permeability of the nanocomposites.  

3. To fabricate α – Fe2O3/OPEFB/PCL nanocomposites with different mass 

percentages of recycled α – Fe2O3 nanofiller and OPEFB fiber and examine 

the effect of the fillers on the complex permittivity and permeability of the 

nanocomposites.  

4. To investigate the effects of recycled α – Fe2O3 nanofiller and OPEFB fiber 

on the scattering parameters, attenuation and power loss due to absorption 

for the α – Fe2O3/PCL and α – Fe2O3/OPEFB/PCL nanocomposites using the 

microstrip measurement. The measured scattering parameter results will be 

compared with those obtained from the theoretical calculations using the 

Finite Element Method (FEM). 

5. To visualize the electric field distribution of the nanocomposites of different 

mass percentages of recycled α – Fe2O3 nanofiller. 

 

 

1.3 The Scope of Study 

In this study, α – Fe2O3 will be synthesized using mill scale and the particles reduced 

to three different nano sizes using high energy ball milling technique for several hours. 

The dielectric properties of the recycled will be determined at X – band (8 – 12 GHz) 

frequency range in order to compare with recent research works. The nanocomposites 

will be fabricated using recycled α – Fe2O3 with the smallest particle size and OPEFB 

fiber, through melt – blending by employing a Brabender Plastograph twin screw 

extruder. The mass percentage compositions of the recycled α – Fe2O3 will be taken 

from 5% - 25% with 5% increment. A fixed ratio of 7:3 will be used for OPEFB fiber 

and PCL respectively. The relative complex permittivity and permeability of the 

nanocomposites with different mass percentages of recycled α – Fe2O3 nanofiller and 

OPEFB filler will be determined using the open ended coaxial probe and the 

rectangular waveguide respectively. The dielectric and microwave characterizations 

of the nanocomposites will be conducted in the L – S (1 – 4 GHz) frequency range 

while the permeability properties will be performed in the X – band for comparisons. 

The morphological and microstructural characterizations of the samples will be carried 

out using specific techniques such as XRD, FTIR, SEM, EDX, HRTEM and BET.  

The effect of the fillers on the transmission and reflection coefficients of the α – 

Fe2O3/PCL and α – Fe2O3/OPEFB/PCL nanocomposites will also be studied using the 

microstrip technique. The study also proposes to use FEM through the COMSOL 

software to calculate the scattering parameters (S11 and S21) and also simulate the 

electromagnetic waves propagated through the α – Fe2O3/PCL and α – 

Fe2O3/OPEFB/PCL nanocomposites placed on top of the microstrip. The scattering 

parameter results obtained through measurement and simulation will then be 

compared. Error analysis of the comparison between measurements and FEM 

technique will be determined. The COMSOL software enables the visualization of the 

distribution of the electric fields around the system which provides a clear 

understanding about the material’s interaction with electromagnetic waves. FEM 
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utilizes the inputs of the material’s dielectric constant and loss factor values to 

accomplish the simulations.  

1.4 Organization of the Thesis 

This thesis consists of six chapters and an appendix. Chapter 1 gives a general 

introduction on EMI and the materials to be applied for its reduction in this research, 

followed by the statement of the problem, objectives of the study, the scope of the 

study and the thesis layout.  

Chapter 2 presents reviews on the properties of ferrites, recycled α – Fe2O3, 

polycaprolactone and OPEFB fiber. Composite material synthesis methods and 

microwave characterization techniques are also reviewed in this chapter. Finally, the 

Finite Element Method (FEM) as a numerical technique for the simulation of electric 

field distribution and determination of the S – parameters of samples placed on the 

microstrip is reviewed. 

Chapter 3 is the theory chapter and it discusses the theoretical concepts of the 

mechanical alloying technique, dielectric properties, polarization, the rule of mixtures, 

Bragg’s law of diffraction and basic electromagnetic wave equations. It concludes 

with the transmission and reflection coefficients calculation procedures with FEM 

formulation techniques. Sample preparation, microstructural, morphological and 

electromagnetic characterizations will be discussed in Chapter 4. The use of the OEC, 

RWG, microstrip and FEM methods are fully discussed in relation to the 

electromagnetic characterization while morphological characterization using XRD, 

HRTEM, SEM, EDX, BET and FTIR are all discussed in details.  

Chapter 5 is presented in six sections and it discusses the results of the material 

characterization and simulations involving all the samples used in this research. The 

first section presents and discusses the results of the morphological and structural 

characterization of the recycled α – Fe2O3 nanoparticles, α – Fe2O3/PCL and α – Fe2O3/ 

OPEFB/PCL nanocomposites using measurement techniques such as XRD, FTIR, 

SEM, HRTEM and EDX. This is followed by the second section which deals with the 

results of the complex permittivity measurements of the recycled α – Fe2O3 

nanoparticles and the fabricated nanocomposites using the OEC and Rectangular 

waveguide techniques. The third and fourth sections respectively discuss the results 

of the permeability measurements and scattering parameter measurements of the α – 

Fe2O3/PCL and α – Fe2O3/OPEFB/PCL nanocomposites using the microstrip and 

numerical simulation (Finite Element Method). The fifth section describes and 

discusses the results of material absorption where the scattering parameters S11 and 

S21 of the nanocomposites obtained from the microstrip technique were used to 

calculate attenuation, absorption and power loss of the samples. The final section of 

the chapter reports on the results of FEM simulations and visualization of the intensity 

and electric field distribution for the α – Fe2O3/PCL and α – Fe2O3/OPEFB/PCL 

nanocomposites based on the microstrip.  
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Finally, chapter 6 summarizes and draws conclusions based on the findings of this 

research and offers suggestions for future research in this area of study. 
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