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HAMRA ASSYAIMA ABDUL BASHID 

 

April 2019 

Chair  : Associate Professor Janet Lim Hong Ngee, PhD  
Faculty  : Science 
 
 
With the emergence of flexible electronic devices, flexible supercapacitors have 
attracted widespread interest in developing lightweight, thin and efficient 
portable/wearable energy storage devices. Along with the general information 
about flexible supercapacitors, this thesis focuses on flexible supercapacitors 
including the planar-structured flexible supercapacitors as well as the new-type 
fiber supercapacitors. Thus, in this thesis, the construction of electroactive 
materials on the flexible substrates and feasible strategies to achieve high-
performance flexible supercapacitors were discussed. In the planar-structured 
flexible supercapacitors, aluminium carbide was being employed as a current 
collector, where it is light, thin and highly flexible. The simultaneous exfoliation 
and reduction of graphene-based materials by rapid microwave irradiation were 
employed to generate a microwave graphene mix (MGM). To demonstrate the 
supercapacitors application, a supercapacitor device were constructed and 
yielded a specific capacitance value of 78.1 F g-1 using a solid-state electrolyte 
with excellent cycling stability of 93.8% after 1000 cycles of charge/discharge. 
Then, the as-prepared MGM was mixed with polypyrrole (PPy) to further 
enhance the electrochemical performance. A supercapacitor device using 
MGM-PPy as an electroactive material recorded a specific capacitance value of 
137.2 F g-1 which is 1.8 times higher than that of MGM with cycling stability of 
89.9% after 1000 cycles of charge/discharge.  
 
 
Different from the planar-structured supercapacitors, the fiber-structured was 
fabricated through a simple electrochemical deposition process of 
polypyrrole/reduced graphene oxide onto the surface of carbon bundle fiber. 
The surface morphology revealed a high degree of porosity in the PPy-rGO-2 
composite; facilitating the ionic penetration, leading to an excellent 

© C
OPYRIG

HT U
PM



ii 
 

electrochemical performance. The PPy-rGO-2 exhibits good electrochemical 
performance (96.2 F g-1) with an energy density of 13.4 Wh kg-1 and a power 
density of 322.9 W kg-1. However, after a series of charging-discharging cycles, 
the electrochemical performances of the PPy-rGO-2 deteriorated due to the 
changes in the structural properties such as the reduction in pore size, and 
transformation of the structure of rGO from amorphous to graphitic. To 
investigate the mechanical bendability/flexibility of the as-fabricated 
supercapacitor devices, both planar- and fiber-structured supercapacitor 
devices were bent at various angles and revealed that the bending had nearly 
no effect on the specific capacitance values. The combination of solid-state 
electrolyte and flexible current collector with flexible free-standing electroactive 
materials made up of graphene-based materials and PPy, capable of 
withstanding stress with no drastic changes in its electrochemical performance, 
demonstrating an excellent mechanical bendability. Overall, the sustainable 
electrochemical performance, mechanical flexibility, low-cost and lightweight, 
flexible supercapacitors are undoubtedly emerging as promising renewable 
energy technology for future energy storage systems.  
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Oleh 

HAMRA ASSYAIMA ABDUL BASHID 

 

April 2019 

Pengerusi : Profesor Madya Janet Lim Hong Ngee, PhD 
Fakulti  : Sains 
 
 
Dengan kemunculan alat-alat elektronik yang boleh lentur, superkapasitor 
boleh lentur telah menarik minat yang meluas dalam membangunkan peranti 
penyimpanan mudah alih yang nipis dan ringan. Melalui maklumat umum 
mengenai superkapasitor boleh lentur, tesis ini memfokuskan kepada 
superkapacitor boleh lentur, termasuk superkapasitor yang berstruktur satah 
serta jenis baru yang berstruktur gentian. Oleh itu, dalam tesis ini, pembinaan 
bahan-bahan elektroaktif pada substrat yang boleh lentur dan strategi yang 
boleh dilaksanakan untuk mencapai superkapasitor yang berprestasi tinggi 
telah dibincangkan. Dalam superkapasitor boleh lentur berstruktur satah, 
karbida aluminium telah digunakan sebagai pengumpul arus, di mana ianya 
ringan, nipis dan sangat lentur. Pengelupas dan pengurangan bahan grafin dan 
derivatifnya secara serentak dengan menggunakan penyinaran gelombang 
mikro yang mudah dan cepat telah digunakan untuk menghasilkan campuran 
gelombang mikro grafin (MGM). Untuk menunjukkan aplikasi superkapasitor, 
peranti superkapasitor telah dibina dan berjaya menghasilkan nilai kapasitif 
spesifik sebanyak 78.1 F g-1 dengan menggunakan elektrolit keadaan pepejal 
dan mengekalkan pengekalan kapasitif yang cemerlang iaitu sebanyak 93.8% 
selepas 1000 kitaran cas berterusan. Kemudian, MGM yang disediakan telah 
dicampurkan dengan polipirrol (PPy) untuk meningkatkan lagi prestasi 
elektrokimia. Peranti superkapasitor menggunakan MGM-PPy sebagai bahan 
elektroaktif mencatatkan nilai kapasitif spesifik 137.2 F g-1 iaitu 1.8 kali lebih 
tinggi daripada MGM dengan kestabilan kapasitif sebanyak 89.9% selepas 
1000 kitaran caj/nyahcas. 
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Berbeza dari superkapasitor berstruktur satah, superkapasitor berstruktur 
gentian telah dibina melalui proses deposit bahan elektroaktif PPy and grafin 
ke atas permukaan gentian ikatan carbon. Morfologi permukaan mendedahkan 
tahap keliangan yang tinggi dalam komposit PPy-rGO-2; memudahkan 
penembusan ionik, membawa kepada prestasi elektrokimia yang sangat baik. 
PPy-rGO-2 mempamerkan prestasi elektrokimia yang baik (96.2 F g-1) dengan 
ketumpatan tenaga 13.4 Wh kg-1 dan ketumpatan kuasa 322.9 W kg-1. Walau 
bagaimanapun, selepas beberapa siri kitaran pengecasan, prestasi 
elektrokimia PPy-rGO merosot disebabkan oleh perubahan sifat-sifat struktur 
seperti pengurangan saiz liang, dan transformasi struktur rGO daripada 
amorfus kepada grafit. Untuk menyiasat kebolehan boleh lentur secara 
mekanikal peranti supercapacitor yang telah dibuat, kedua-dua superkapasitor 
yang berstruktur satah dan gentian telah dibengkokkan di pelbagai sudut dan 
ia mendedahkan bahawa lenturan itu tidak memberi kesan ke atas nilai 
kapasitapan spesifik. Gabungan elektrolit keadaan pepejal dan pengumpul 
arus dengan bahan elektroaktif yang boleh lentur yang terdiri daripada bahan 
berasaskan grafin dan PPy, mampu menahan tekanan tanpa memberikan 
perubahan drastik dalam prestasi elektrokimia, menunjukkan kebolehan 
mekanikal yang sangat baik. Secara keseluruhannya, prestasi elektrokimia 
yang mampan, kebolehan boleh lentur secara mekanikal, kos yang rendah dan 
ringan, superkapasitor boleh lentur tidak dapat dinafikan lagi sebagai teknologi 
tenaga boleh diperbaharui untuk sistem penyimpanan tenaga pada masa akan 
datang. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Flexible Supercapacitors 
 
The rapid growth of next-generation portable electronics has led to intensive 
efforts to develop supercapacitor with flexible, rigid, small, lightweight, eco-
friendly, and high storage capacity (Lu, et al. 2014). Supercapacitor, which are 
also known as electrochemical capacitors, offer a promising alternative 
approach to energy storage devices because of their ability to store and deliver 
a high power density, and long life cycle with short charging time, simply by 
utilising the charge-separation of the electrochemical interface between the 
electrode and electrolyte (Sun, et al. 2016; Wang, et al. 2009; Zhang, et al. 
2010). The conventional two-electrode system supercapacitor is planar-
structured, consisting of two active electrodes kept apart by an electrolyte as an 
indispensable and electrically insulating separator (Shao, et al. 2015).  

 
Fiber-structured supercapacitor are commonly built on fibrous or interwoven 
substrates, and can be directly integrated into a wearable and embedded 
device units in sensors, environmental monitoring, display, and implanted 
medical devices (Cai, et al. 2014). Metal-based fibers such as aluminium wires 
have previously been used as a current collector or core electrode because of 
its high conductivity and ease of availability. However, the performance is 
limited due to its heaviness and easily oxidised under ambient conditions (Le, 
et al. 2013; Nam, et al. 2011). Carbon-based fibers, like carbon microfibers and 
graphene fibers, have been used to replace metal-based fibers owing to its 
great flexibility, light weight, high mechanical strength, high conductivity, and 
stability under ambient conditions (Le, et al. 2013; Li, et al. 2011).    
 
 
1.2  Graphene-based Electroactive Materials  
  
The choice of electroactive materials also plays important roles in determining 
the electrochemical performances of supercapacitor devices. Graphene has 
been studied extensively as an electroactive material for supercapacitor and 
often suggested as a replacement for activated carbon in a supercapacitor, in 
part due to its promising properties such as large (theoretical) surface areas, 
high charge carrier mobility, excellent conductivity, high mechanical strength, 
and extremely high thermal conductivity (Antiohos, et al. 2013; Frackowiak and 
Beguin 2001; Wu, et al. 2011), with the ability to store and release energy 
through the separation of electronic and ionic charges in the electrode and 
electrolyte interface (Berger, et al. 2006; Lee, et al. 2008; Stankovich, et al. 
2006; Stoller, et al. 2008). Also, being a material made up of one single atomic 
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layer, it is lighter and graphene is an ecologically friendly, unlike most other 
forms of energy storage due to its essential form of carbon (Liu, et al. 2010). 

 
Graphene was first obtained by mechanical exfoliation of graphite using scotch 
tape method (Yi and Shen 2015). Although scotch tape method has been 
reported to be successful for production of single-layer graphene with high 
structural and electronic quality, this method is generally unfavorable because 
of time-consuming and have low production yields (Geim 2009). Instead of 
cleaving graphite manually, other forms of graphene-based materials, including 
graphene oxide (GO) has been used as a precursor for the affordable and 
large-scale production of graphene (Huang, et al. 2011). Moreover, using GO 
as a starting material can provide good dispersion stability and prevent 
aggregation in the reaction solution (Lim, et al. 2013). The promising properties 
together with the ease of processibility and functionalization make graphene-
based materials ideal candidates for incorporation into a variety of functional 
materials for supercapacitor applications. 
 
 
1.3  Hybridization of Graphene-based Electroactive Materials  
 
One of the most prominent electroactive materials for supercapacitor electrodes 
is formed by the hybridization of carbon-based materials (i.e., activated carbon, 
CNT, and graphene) with a conducting polymer (i.e., polyaniline, polypyrrole, or 
poly[3,4-ethylenedioxythiophene]) (Fusalba, et al. 2001; Futaba, et al. 2006; 
Laforgue 2011; Lota, et al. 2008; Meng, et al. 2009; Sharma, et al. 2008; 
Snook, et al. 2011; Wang, et al. 2014; Wu, et al. 2010; Zeng, et al. 2012). A 
hybrid composite is formed to utilize the relative advantages (i.e., the high 
specific surface area, good mechanical properties, and excellent 
electrochemical stability) and reduce the relative disadvantages (i.e., the limited 
energy storage, lower rate capability, and cycling stability) of electrochemical 
double-layer capacitors (EDLC) and pseudocapacitors to realize better 
electrochemical performances (Frackowiak, et al. 2001; Jin, et al. 2011; 
Jurewicz, et al. 2001; Ng, et al. 2014). 

 
A hybrid capacitor has achieved high energy and power densities than EDLC 
and pseudocapacitors alone by utilizing both non-faradaic and faradaic 
processes to store a charge (Stoller, et al. 2008). The carbon-based materials 
increase the contact between the deposited materials and electrolyte through 
the high-surface-area backbone. Meanwhile, the conducting polymer provides 
the faradaic reactions to further enhance the capacitance by undergoing a 
redox reaction to store a charge in the bulk of the material and hence increase 
the energy stored and reduce self-discharge (Frackowiak, et al. 2006). Thus, 
the synergistic effect from the hybridization of carbon-based materials and 
conducting polymers is believed to be able to improve the capacitance and 
stability of a supercapacitor device (An, et al. 2010; Lee, et al. 2011).  

 
 

© C
OPYRIG

HT U
PM

file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_59
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_106
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_25
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_28
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_57
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_23
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_24
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_45
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_62
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_67
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_80
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_83
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_95
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_98
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_108
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_20
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_36
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_38
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_70
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_88
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_22
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_2
file:///C:/Users/user/Desktop/B5%20format_LATEST_page%20edit.docx%23_ENREF_50


 

3 
 

1.4  Problem Statements 
 
Though planar-structured supercapacitor is a conventional two-electrode 
system supercapacitor device, it is suffer from large, bulky, and heavy, which is 
not suitable to be used for portable electronic devices. Thus, to address this 
issue, much effort has been devoted to develop a fiber-structured 
supercapacitor that are flexible, lightweight, and easily shaped in portable 
electronic devices (Huang, et al. 2016; Le, et al. 2013; Liang, et al. 2015). 
 
 
Although graphene-based materials including graphene oxide (GO) and 
graphene nanoplatelets (GNP) has re-emerged as an intensive research 
interest as active materials in a supercapacitor, due to the attached oxygen 
functional groups, GO is electrically insulating and various reduction methods 
have been developed to restore its electrical conductivity (Eda, et al. 2009; 
Hsiao, et al. 2013). While for GNP, due to the high inter-sheet van der Waals 
attractions between graphene layers, it tends to agglomerate and restacks 
together (Yan, et al. 2012). Consequently, minimized the specific surface area 
and electron mobility of that individual graphene layers as well as reduced the 
electrochemical performances in a supercapacitor (Sridhar, et al. 2013). 
 
 
In addition, low cycling stability on the hybrid supercapacitor was found recently 
where the polypyrrole-graphene oxide-zinc oxide, only possible to retain up to 
~77% of their capacitance after 500 cycles of charging-discharging at a current 
density of 1 A g-1 (Chee, et al. 2015). Moreover, other reported results for a 
polypyrrole/carbon aerogel showed that it only exhibited a ~55% of capacity 
retention after 500 cycles of charging-discharging (An, et al. 2010). An 
enormous amount of effort on the various spectroscopic and electrochemical 
studies of polypyrrole-based composites supercapacitor (Mosch, et al. 2015), 
however the understanding of their capacity retention after a series of charging-
discharging cycles is still limited. 
 
 
1.5  Scope of Research 
 
In this research, I will focus on fabrication of flexible symmetrical solid-state 
supercapacitors in which both planar- and fiber-structured supercapacitors to be 
used as a flexible current collector together with polyvinyl alcohol-potassium 
acetate (PVA-CH3COOK) served as an indispensable solid-state electrolyte. 
While the graphene-based materials together with the PPy acts as electroactive 
materials in the supercapacitor devices. Also, the behavior of solid-state 
supercapacitor devices after a series of charging-discharging cycles will be 
evaluated by performing the electrochemical performances and structural 
configuration of the electrode. The flexibility of the as-fabricated solid-state 
supercapacitor device will also be carried out as a proof-of-concept. 
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1.6  Research Objectives 

This research is to fabricate a supercapacitor device that relies on the 
combination of graphene-based materials with polypyrrole. The main objective 
of this thesis is to investigate the flexible supercapacitor including the planar- 
and fiber-structured, and to use the graphene-based materials together with 
polypyrrole in the fabrication of supercapacitor device. Particular attention will 
be devoted to overcoming current problems and to improve the overall 
performances. Specifically, the objectives of the study involve: 

 
i. To construct a flexible supercapacitors device using different types of 

current collectors, aluminium carbide (planar-structured) and carbon 
bundle fiber (fiber-structured) supercapacitors. 

ii. To assemble a hybrid materials possessing electrical double layer 
capacitance like graphene-based materials, and pseudocapacitance like 
polypyrrole. 

iii. To investigate the stability of electroactive materials after a series of 
charge/discharge cycles. 
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