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Lithium tantalate solid solution, Li3+5xTa1-xO4 was prepared by conventional solid-state 

reaction at 925 ⁰C over 48 h. The x-ray diffraction (XRD) analysis confirmed that these 

materials crystallised in a monoclinic symmetry, space group of C2/c and Z=8, which 

was similar to the reported International Crystal Diffraction Database (ICDD), 98-006-

7675. β-Li3TaO4 has a rock-salt structure with a cationic order of Li+ : Ta5+ = 3 : 1 over 

the octahedral sites. The lithium solubility was investigated by varying the lithium 

content through a proposed formula, Li3+5xTa1-xO4 (0 ≤ x ≤ 0.059). Ac impedance study 

releaved that Li3TaO4 exhibited the highest conductivity, 3.82 x 10-4 S cm-1 at 600 ºC. 

The activation energy in the range 0.63 – 0.68 eV were found in these materials. 

 

 

In attempt to investigate the correlation between structural and electrical properties of 

the Li2O-Ta2O5 systems, various chemical doping was performed. Tetravalent dopant, 

e.g. Ti4+ was introduced into the host structure with a proposed formula, Li3TixTa1-xO4-x 

(0.45 ≤ x ≤ 0.75) at same synthesis condition. The formation mechanism involved a 

one-to-one replacement to Ta5+ cation by Ti4+ cation with the creation of oxygen 

vacancy for charge compensation. The phase changed from an ordered monoclinic to a 

disordered cubic phase when x increased from 0 to 0.40. While, a disordered cubic 

Li3TaO4 phase was observed at x = 0.45-0.75. These materials were refined and fully 

indexed with a space group of Fm-3m, Z=1 with a slightly smaller lattice parameters, 

a=b=c, in the range 4.1907(2) – 4.1681(2) Å. The unit cell contraction may be 

attributed to the replacement of larger Ta5+ (0.64 Å) by a smaller Ti4+ (0.61 Å) at the 

six-coordination. Li3Ta0.25Ti0.75O3.625 exhibited the highest conductivity among the Ti 

dopants at all temperatures, i.e. 2.33 x10-4 S cm-1 at 600 C. The activation energies of 

these materials were estimated to be 1.16 - 1.32 eV.  

 

 

On the other hand, an attempt was made to replace Nb by Ta using a proposed formula 

of Li3Ta0.5-xNbxTi0.5O3.775. A complete substitutional solid solution was formed, which 

was mainly due to the similar chemical characteristics between these pentavalent 

cations. The lattice parameters a=b=c were determined to be 4.1866(1) – 4.1849(4) Å. 
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Li3Ta0.4Nb0.1Ti0.5O3.75 (x = 0.1) was found to exhibited the highest conductivity, i.e. 

1.78 x 10-3 S cm-1 at 600 C. The activation energies of these materials were estimated 

to be 1.35 - 1.49 eV.  

 

 

Selected divalent cation dopants were chemically doped into the β-Li3TaO4 monoclinic 

phase. Both Mg and Zn dopants formed solid solutions with limit up to x = 0.1 only. 

The chemical formulae of Li3-2xMxTaO4 (M = Mg or Zn) was proposed wherein two 

Li+ ions were substituted by a divalent M2+ cation. Both doped samples exhibited 

relatively higher conductivity than that of parent material, β-Li3TaO4. This was 

probably attributed to the creation of lithium vacancy or well-connected grain. The 

conductivity values of Li2.8Mg0.1TaO4 and Li2.8Zn0.1TaO4 were determined to be 3.60 x 

10-4 S cm-1 and 5.99 x 10-4 S cm-1 at 600 C, respectively. Their resulted activation 

energies did not change significantly but remained reasonably low, i.e. 0.55 - 0.58 eV. 

 

 

All the prepared samples appeared to be thermally stable as there are not thermal event 

detect in both TGA and DTA thermograms. The chemical stoichiometry of these 

samples was confirmed by ICP-OES, in which comparable values between theoretical 

and experimental concentrations were obtained. Structural analysis by FT-IR disclosed 

that several metal-oxygen bonds were found in the wavenumber range 250 - 1000 cm-1. 

The irregular shaped grains in the range 0.95 – 10.82 μm were also shown by the SEM 

micrographs. This was further supported by TEM analysis as the results showed some 

spherical particles with quadrangle edges were found in the samples. 

 

 

In attempts to investigate the possibility of new solid solution formation and to 

determine the electrical performed of the Li2O-Ta2O5 materials, chemical dopants were 

performed. These materials showed different solid solution limit and moderate lithium 

ionic conductivity 
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SYAFIQAH BINTI SHARI 

November 2018 

Pengerusi : Tan Kar Ban, PhD 

Fakulti  : Sains 

 

 

Larutan pepejal litium tantalat, Li3+5xTa1-xO4 telah disintesis secara tindak balas 

keadaan pepejal pada suu 925 ⁰C dalam 48 jam. Analisis belauan sinar-x (XRD) telah 

mengesahkan bahan-bahan menghablur dalam simetri monoklinik, kumpulan ruang 

C2/c dan Z=8 seperti yang telah dilaporkan di dalam Pangkalan Data Belauan Kristal 

Antarabangsa (ICDD), 98-006-7675. β-Li3TaO4 mempunyai struktur garam batuan 

dengan tertib kation Li+ dan Ta5+ 3:1 pada tapak oktahedron. Keterlarutan litium telah 

dikaji dengan pengubahan kandungan litium secara formula, Li3+5xTa1-xO4 (0 ≤ x ≤ 

0.059). Kajian ac impedans Li3TaO4 menunjukkan kekonduksian yang paling tinggi, 

3.82 x 10-4 S cm-1 pada 600 ºC. Tenaga pengaktifan dalam julat 0.63 – 0.68 eV 

ditentukan untuk bahan-bahan ini. 

 

 

Dalam usaha untuk mengkaji korelasi diantara sifar struktur dan elektrik sistem Li2O-

Ta2O5, pelbagai pendopan kimia telah dibuat. Dopan tetravalensi, Ti telah 

diperkenalkan ke dalam struktur perumah dengan mekanisme, Li3TixTa1-xO4-x (0.45 ≤ x 

≤ 0.75) pada keadaan sintesis yang sama. Mekanisme pembentukan melibatkan 

penggantian satu kation Ta5+ dengan satu kation Ti4+ dan juga kekosongan oksigen 

demi pampasan cas. Peralihan fasa dari monoklinik teratur kepada kubik yang tak 

teratur berlaku apabila x meningkat dari 0 hingga 0.40. Manakala, fasa kubik Li3TaO4 

tak teratur ditemui pada x = 0.45-075. Bahan-bahan ini telah diindeks sepenuhnya 

dengan kumpulan ruang, Fm-3m, Z=1 dan juga pengecilan parameter kekisi, a=b=c, 

yang berasa dalam julat 4.1907(2) - 4.1681(2) Å. Penyusutan sel unit adalah 

disebabkan oleh penggantian saiz jejari ion Ta5+ (0.64 Å) yang lebih besar jika 

dibandingkan dengan Ti4+ (0.61 Å) pada koordinasi-enam. Li3Ta0.25Ti0.75O3.625 

menunjukkan nilai kekonduksian yang paling tinggi di antara dopan Ti pada semua 

suhu, iaitu 2.33 x10-4 S cm-1 pada 600 C. Tenaga pengaktifan untuk bahan-bahan telah 

dianggarkan dalam julat 1.16 - 1.32 eV. 

 

Selain itu, satu percubaan telah dilakukan untuk menggantikan Nb dengan Ta secara 

formula, Li3Ta0.5-x Nbx Ti0.5O3.775. Larutan pepejal penggantian yang lengkap telah 
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dihasilkan atas sebab ciri kimia yang sama di antara kation pentavalensi. Parameter 

kekisi, a=b=c, telah ditentukan dalam julat 4.1866(1) - 4.1849(4) Å. 

Li3Ta0.4Nb0.1Ti0.5O3.75 (x = 0.1) menunjukkan nilai kekonduksian yang paling tinggi di 

antara dopan Nb iaitu 1.78 x 10-3 S cm-1 pada 600 C. Tenaga pengaktifan untuk bahan-

bahan telah dianggarkan dalam julat 1.35 - 1.49 eV. 

 

 

Dopan kation divalensi yang terpilih telah didopkan secara kaedah kimia ke dalam fasa 

β-Li3TaO4. Kedua-dua Mg dan Zn membentuk larutan pepejal terhad dengan nilai x = 

0.1 sahaja. Formula kimia, Li3-2xMxTaO4 (M = Mg or Zn) telah dicadangkan di mana 

dua Li+ telah digantikan dengan M2+ kation. Kedua-dua bahan terdop telah 

menunjukkan kekonduksian yang lebih tinggi dari induk β-Li3TaO4. Ini mungkin 

disebabkan oleh kekosongan litium ataupun butiran yang rapat. Kekonduksian yang 

diperolehi oleh Li2.8Mg0.1TaO4 dan Li2.8Zn0.1TaO4 ialah 3.60 x 10-4 S cm-1 dan 5.99 x 

10-4 S cm-1 pada 600 C. Tenaga pengaktifan yang terhasil tidak menunjukan sebarang 

perbezaan yang ketara dan kekal rendah iaitu 0.55 -0.58 eV. 

 

 

Semua sampel yang telah dihasilkan menunjukkan kestabilan terma kerana tiada 

kejadian terma ditemui di dalam kedua-dua termogram TGA dan DTA. Stoikiometri 

kimia untuk sampel ini ditentukan oleh ICP-OES, di mana nilai kepekatan diantara 

diteori dan eksperimen yang diperolehi adalah hampir sama. Analysis struktur oleh FT-

IR menemui beberapa ikatan logam-oksigen di dalam julat nombor gelombang 250-

1000 cm-1. Bijirin berbentuk tidak teratur ditentukan dalam julat 0.95 -10.82 µm 

ditentukan dengan menggunakan mikrograp SEM. Ini disokong lagi dengan analisis 

TEM kerana keputusan menunjukkan zarah sfera bersama segi empat telah ditentukan 

di dalam sampel. 

 

 

Dalam usaha untuk menyiasat kemungkinan pembentukan larutan pepejal yang baru 

dan menentukan prestasi elektrik keatas bahan-bahan Li2O-Ta2O5, pendopan kimia 

telah dijalankan. Bahan-bahan ini menunjukkan had larutan pepejal yang berbeza dan 

kekonduksian ionik litium yang sederhana. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Electroceramics 

 

Electroceramics are advanced materials which are used in electrical, optical and 

magnetic applications (Bharadwaj et al., 2012). This includes several groups of 

dielectric and conductive ceramics. In general, dielectric ceramics counting a large 

number of materials which can be divided either linear or non-linear dielectric. On the 

contrary, conductive ceramics are more numerous, including superconductors, 

semiconductors and conductors of which the charge carrier could be either ions or 

electrons (Setter, 2001). 

 

 

There are two categories of conductive ceramics which are either electrically 

homogeneous or heterogeneous (Table 1.1). The electrically homogeneous materials, 

e.g. ionically conducting ceramics or microwave dielectrics, usually have high dense 

microstructure of which the grain boundaries have less influence on their electrical 

properties. On the contrary, electrically heterogeneous materials, e.g. varistors and 

barrier capacitors, have properties which are controlled by the structure of interfacial 

region at grain boundaries and grain surface. In additional, these materials rely strongly 

on the control processing control by a series of post-sintering heat treatments, so that 

the correct defect segregation, degree oxidation or reduction at the grain boundaries 

and surfaces could be achieved (West et al., 2004). 

 

 

Ceramic materials have been used in a wide range of industrial applications, e.g. 

electrical and electronic components, superconductors, catalysts, and automobile 

components. These materials are generally polycrystalline, which are comprised of 

inorganic, non-metallic, non-water soluble compounds that show ionic contribution in 

their chemical bond. Other examples of applications including transportation, industrial 

production, power engineering, medicine and health care, consumer electronic and 

communication (Setter and Waser, 2000). 

 

 

Table 1.1: Electrical microstructure of electroceramics (West et al., 2004) 

Electrically homogeneous 
Electrically heterogeneous (grain 

boundary controlled) 

Ionic conductors Varistors 

Mixed conductors Barrier layer capacitors 

High Tc superconductors PTC thermistors 

Microwave dielectric Gas sensors 
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1.2 Solid Solution 

 

A solid solution is mostly a crystalline material that has variable composition and its 

properties usually vary with composition. Generally, a simple solid solution could 

divide into two types either substitutional solid solution or interstitial solid solution. 

For substitutional solid solution, atoms or ions that replace each other must have the 

same charge in the parent structure. On the other hand, interstitial solid solution has 

introduced species that to occupy a site that is normally empty and no ions or atoms are 

left out in the crystal structure. 

 

 

Dopants are generally introduced into a host structure in order to enhance the electrical 

properties (Moulson and Herbert, 2003). Several requirements must be met: first, the 

ions that replace each other must have the same charge to maintain elecroneutrality, 

else a structural change involving either vacancies or interstitial is required. Second, 

the replacing ion must be fairly similar in size. For example, the formation of metal 

alloy would allow 15 % difference in the ionic radii. In the case of extensive solid 

solution, ions of similar size may substitute each other easily and the resulted solid 

solution is stable at all temperatures. 

 

 

On the other hand, doping with aliovalent cations (the replacing and replaceable ion 

have difference oxidation states) would require creation of vacancies or interstitials 

(ionic compensation) or electron or holes (electronic compensation). Therefore, 

substitution of a cation with lower valence may result in either anion (oxide ion) 

vacancies or interstitial cations. Meanwhile, for substitution by higher valence cations 

would give interstitial anions and cation vacancies (West, 1999).  

 

 

In this study, few dopants with different charges have been introduced into host 

structure in order to investigate the influence of these on doping mechanism and 

electrical properties. The dopants are chosen, e.g. Mg2+, Zn2+, Ti4+, and Nb5+. The 

selection of these dopants is mainly based on their chemical and physical properties. 

These are the determining factors that influence the formation of new solid solution. 

Divalent cations, Mg2+ and Zn2+ are expected to form an extensive solid solution due to 

the factor of charge as the introduction of these dopants may create lithium vacancies 

for charge compensation, where two Li+ ions are substituted by one divalent ion. 

Meanwhile, a tetravalent cation, (e.g. Ti4+) is selected due to the size of ionic radii 

between the guest and host is less than 15%, therefore the formation of an extensive 

solid solution may be possible. This Ti4+ is used as a dopant for substitution at the Ta-

site of β-Li3TaO4. The formation will create more oxygen vacancies for the charge 

compensation in order to preserve the overall electroneutrality of the system. Lastly, 

pentavalent cations are chosen due to the replacing ion Nb5+ directly replaces the same 

charge Ta5+ ion in the parent structure, thus neither vacancies nor intersitialcies are 

required to maintain the overall electroneutrality of the system. Furthermore, both 

Nb5+and Ta5+ have an identical ionic radii (r= 0.64 Å) at the six coordination, thus the 

extensive solid solution are expected to form. In this study, the effects of all dopant are 

determined in term of solid solubility, structural and electrical properties. 
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1.3 Ionic Conductivity and Solid Electrolytes 

 

The first observation of conductivity in solid electrolytes was more than 150 years ago. 

Ionic conductivity occurs in materials known as solid electrolytes, superionic 

conductors or fast ion conductors with ions acting as charge carriers. While, for mixed 

conduction usually refers to the materials with good electronic conduction.  Superionic 

conductor or fast ion conductor is good for ionic conduction with negligible electronic 

conductivity (Kumar and Yashonath, 2006). 

 

 

In solid electrolytes, either cations or anions are free to move throughout the structure, 

i.e. they are not confined to specific lattice sites. Therefore, solid electrolytes are well 

known as intermediate between typical ionic solids, all ions are fixed on their lattice 

sites in a regular 3 dimensional structures. On the contrary, all ions are mobile in liquid 

electrolyte which does not have a regular structure. Usually solid electrolytes are stable 

at high temperature, while on cooling may they transform to a polymorph with a low 

ionic conductivity at low temperatures. The types of crystal structure shown are Figure 

1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Solid electrolytes as intermediate between normal crystalline solids 

and liquids (West, 1999) 

 

 

In addition, ionic conductivity is related to the presence of defects or disordered 

structure that may have a variation of positions by replacement of certain ion in the 

crystal structure. These materials have a high ionic conductivity can be classified into 

four groups with thermally induced defects, impurity-induced defects, crystal structure 

disorder and amorphous character (Koller, 1994). 

 

 

1.3.1 Ionic Conductors 

 

Solid ionic conductors are generally polycrystalline compounds in which electric 

current is carried by charged atoms, i.e. by ions. The passage of current is associated 

with mass transfer and such ionic conductors are called solid electrolytes. Examples of 

Normal crystalline 

solid 

Increasing defect 

concentration 

Phase 

transition 

Solid electrolyte Liquid  

Temperature  
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solid ionic conductor including doped ZrO2, AgI, -Al2O3 and CaF2. Ionic conduction 

in ceramic materials is associated with the movement of ionic point defect, the creation 

or movement requires energy. The conductivity increases with increasing temperature 

for all materials except metal and superconductors. Therefore, ceramic solid 

electrolytes are suitable for high temperature application. (Rickert, 1978; Moulson and 

Herbert, 2003). The examples of ionic and electronic materials are tabulated in Table 

1.2. 

 

 

Table 1.2: Typical values of electrical conductivity of ionic and electronic 

materials (West, 1999) 

Conduction mechanism Materials Conductivity,  

 (ohm-1 cm-1) 

Ionic conduction Ionic crystals  10-18 – 10-4 

 Solid electrolytes    10-3 – 104 

 Strong (liquid) electrolyte    10-3 – 104 

Electronic conduction Metals    10-1 – 105 

 Semiconductors    10-5 – 102 

 Insulators  10-12  

 

 

In ionic solids, ions are trapped on their lattice sites and they rarely have enough 

thermal energy to escape from their lattice site but to vibrate continuously. In The 

process of migration, hopping or diffusion is required, therefore ions must be able to 

escape and move into adjacent lattice sites. If some sites are vacant, the adjacent ions 

can hop into these vacancies, thus leaving their own sites vacant or some ions in 

interstitial sites which can hop into adjacent interstitial sites. Thus, ionic conduction is 

easier at high temperatures especially ions could vibrate more vigorously and the defect 

concentrations are higher (West, 1999).  

 

 

For any material and charge carrier, the specific conductivity,  proportionality 

constant between the current density, j and the electric field, E is given by  

 

 

(1.1)  

                                                                                                

While, for ionic conductivity,  
 

 = Nione ion      (1.2) 

 

Where Nion is the number of ion which can change their position under the influence of 

electric field, ion is the mobility of these ions and e is the elementary charge. 

 

 

Factors that influence the conductivity are the concentration of charge carrier, 

temperature, the availability of vacant-accessible sites (which is controlled by the 

𝑗/𝐸 =  = ∑ 𝑛𝑖𝑒𝑖𝑖
𝑖
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density of defects in the crystal) and ease of jumping of ions to another site. The 

numbers of jumping or hopping ions to a neighboring site is controlled by activation 

energy. The activation energy is a phenomenological quantity as it indicates the free 

energy barrier an ion has to overcome for a successful jump between the sites. Among 

the various factors that influence the ionic conductivity of a materials the activation 

energy is the utmost important factor since its dependence is exponential from 

Arrhenius expression (Kumar and Yashonath, 2006). The temperature dependence 

ionic conductivity is usually deduced by using Arrhenius equation, where the graph of 

loge  against 1/T should give a straight line with the slope –Ea/R. 

 

 = A exp (-Ea/RT)     (1.3) 

 

Where  is the conductivity at temperature T in Kelvin, K, R is the Boltzman’s 

constant, Ea is the activation energy and A is called the pre-exponential factor, which 

depends on the vibration frequency of the potential mobile ions and same structural 

parameter (West,1999).  

 

 

1.4 Application of Ionic Conductivity  

 

There are numerous examples of materials with high ionic conductivity in the solid 

state, e.g. Ag+ ions in RbAg4I5, Li+ ions in α-Li2SO4 ( 570 ºC) and Na+ ions in ,”-

alumina. The high ionic conductivity value are found in the range 10-3- 101 -1 cm-1 

with activation energies in the range 0.1-0.3 eV (Lee and West, 1991). The applications 

of solid electrolytes in electrochemical devices have several advantages and this 

includes a long life, high energy density etc. Therefore, there are suitable for compact 

power batteries used in pace-maker, mobile telephones, laptops etc. Besides, they are 

can used to study thermodynamics and kinetics problems, and to build fuel cell, 

batteries, sensors and chemotronic components (Rickert, 1978). 

 

 

In addition, ionic conduction material is also found in sodium-sulfur cell. The cell 

systems have been developed with other solid electrolytes, some of these being 

characterised by very long lifetime. The storage time is more than ten years, whose 

lifetime cannot be even approached with conversional batteries. Rickert (1978) found 

that the energy density of the sodium-sulfur cell is much greater than the customary 

lead accumulators. Moreover, the cell can be recharged by reversing the direction of 

the current. These reasons present the great interest in this sodium-sulfur cell for large-

scale energy storage and for electric motor vehicles well known as electrotraction. 

 

 

Ionic conducting ceramic such as cubic ZrO2 which has heavily doped acceptor, are 

used for electrochemical oxygen sensors in car and for high-temperature solid oxide 

fuel cells (SOFCs). In addition, SOFC could produce electricity directly from oxidising 

a fuel. It is about 2-3 times more efficient if compared to a thermal engine as SOFC 

converts chemical potential to the electrical energy. By, reversing the current flow this 

can induce the full cell to be an electrolyser and energy storage (Setter and Waser, 

2000).  
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In 1972, a cardiac pacemaker was first implanted into a human, which was powered by 

Li/I2. Lithium/iodine pacemaker battery worked even though the electrolytes have a 

low conductivity 10-7 S/cm at room temperature. The battery was suitable as the 

application required an isothermal operation at 37 ºC, at a very low rate (10-year rate). 

The cell was a Wilson Greatbatch Model 702/C. To date, there are several million 

persons have benefited from these implantable devices (Ginnings et al., 1930; Owens 

et al., 1986).  

 

 

1.5 Problem Statement 

 

Intensive research has been focused on the materials of LiTaO3 and LiNbO3 systems 

due to their interesting optical properties. However, a structurally related -Li3TaO4 

has received less attention and limited information is available in literature review 

specifically about the structural and electrical properties. Few reported compositions 

may have been a mixture that contain trace amount of other secondary phases. Besides 

that, the study concerning chemical doping of the -Li3TaO4 is rarely reported. 

Therefore, this research is undertaken to study the formation mechanism and to 

determine the optimised synthesis condition for the sample preparation. The effect of 

chemical doping on the electrical properties is also part of the investigation. Hence, the 

correlation between composition and the electrical properties of various phases and 

other related solid solution in the Li2O – Ta2O5 systems has been discussed 

systematically. 

 

 

1.6 Objectives  

 

The objectives of this research are: 

 

1. To synthesise β-Li3TaO4 phase and other new related phases in the Li2O-

Ta2O5 system. 

2. To study the thermal stability, structure and subsolidus solution of the 

prepared samples. 

3. To investigate the effect of chemical dopants, e.g. TiO2, Nb2O5, MgO and 

ZnO in the Li2O-Ta2O5 system as to explore the possibility of new solid 

solution formation and determine their electrical performance by using ac 

impedance spectroscopy. 
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