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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

 

 

STRUCTURAL BEHAVIOUR OF PRECAST CONCRETE SANDWICH 

PANEL WITH HIGH THERMAL EFFICIENCY 
 

 
By 

 

 

SANI MOHAMMED BIDA 

 

 

October 2018 

 

 

Chairman:  Assoc. Prof. Farah Nora Aznieta Binti Abd.Aziz, PhD 

Faculty:  Engineering 

 
 

Malaysian Government has targeted the year 2020 for full implementation for energy 

efficiency in buildings known as Green Building. In line with this perspective, this 

research aims to develop a thermally efficient and structurally acceptable precast 

concrete sandwich panels (PCSP) for structural applications. In order to achieve the aims, 

four objectives are outlined to determine the thermal and structural performance of 

staggered shear connectors. The staggered shear connector is a method used to avoid 

thermal bridges between layers. In this research, PCSP is designed with staggered shear 

connection spaced at 200, 300 and 400 mm on each concrete layers. While the control 

panel is designed with a direct shear connection at 200 mm. Four panels of 500mm x 

500mm and 150mm thick are subjected to Hot Box Test to determine the thermal 
performance. While for structural performance, four (4) number of a full-scale panel of 

size 2500mm x 1650mm x 150mm are subjected to flexural test and another four (4) of 

3000mm x 1650mm x 150mm size for axial load tests. These experimental results are 

validated by numerical analysis using the finite element method (FEM). In addition, an 

empirical equation of axial load capacity of the reinforced concrete wall was modified to 

determine the PCSP capacity. The hot box test result shows that thermal efficiency of the 

PCSP with staggered shear connectors increases with increase in spacing. The PCSP with 

400 mm staggered shear connectors indicate the best thermal efficiency with a thermal 

resistance (R-value) of 2.48 m²K/W. The R-value is higher than the maximum value 

recorded in the literature. The thermal performance was verified by FEA which shows 

less than 5% error coupled with a precise prediction of isothermal flux lines behaviour. 
The structural performance of PCSP under flexural loading showed that all PCSP with 

staggered shear connector achieved full compositeness with no debonding failure 

observed. The PCSP panel with a staggered shear connector at 300mm is capable of 

sustaining the axial capacity for five (5) storey load. However, beyond 300 mm staggered 

shear connector, the PCSP failed due to bucking. The experimental results were verified 

by FEA with about 4% and 15% error for the flexural and axial loadings, respectively. 

The empirical equation of axial load capacity of the reinforced concrete wall has 

overestimated the ultimate load capacity of PCSP. Therefore, the equation is subjected 

to statistical analysis using particle swarm optimization technique (PSO) by taking into 
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consideration the effect of insulation and shear connection in PCSP. The modified 

equation has successfully predicted load capacity of PCSP with high accuracy. The result 

was achieved with objective function (MAE) at swarm 30 with minimum iteration and 

CoV value of 10%. In conclusion, the PCSP with 300mm staggered shear connectors has 

met the energy efficiency requirement for sustainable buildings i.e. thermally efficient 

with excellent structural performance in both axial and flexural behaviour. These results 

proved that better thermal resistant and structural performance of PCSP can be achieved 

using conventional steel and concrete materials using staggered thermal path approach. 
Hopefully, the output of this research will help designers; both architects and engineers 

to choose PCSP wall to provide better thermal resistance and load bearing structural 

panels toward green and sustainable buildings. 
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Pengerusi:  Prof. Madya Farah Nora Aznieta Binti Abd.Aziz, PhD 
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Kerajaan Malaysia mensasarkan tahun 2020 untuk perlaksanakan sepenuhnya kecekapan 

tenaga di bangunan yang dikenali sebagai Bangunan Hijau. Sejajar dengan perspektif ini, 

kajian ini bertujuan untuk membangunkan panel apit konkrit pratuang (PCSP) yang 

berkecekapan haba dan strukturnya diterima untuk aplikasi struktur. Bagi mencapai 

matlamat penyelidikan ini, empat objektif dinyatakan untuk mengenalpasti kemampuan 

haba dan struktur bagi sambungan ricih berperingkat panel. Metod sambungan ricih 

berperingkat ini adalah untuk mengelakkan jambatan haba antara lapisan. Dalam kajian 

ini, PCSP direka dengan sambungan ricih berperingkat pada jarak 200, 300 dan 400 mm 

pada setiap lapisan. Manakala, panel kawalan direka dengan sambungan ricih langsung 

pada jarak 200 mm. Empat panel bersaiz 500mm x 500mm dan ketebalan 150mm 
dikenakan ujian kotak panas untuk mengenalpasti kemampuan habanya. Manakala untuk 

kemampuan struktur, empat (4) jumlah panel berskala penuh bersaiz 2500mm x 1650mm 

x 150mm dikenakan ujian lenturan dan empat (4) lagi panel persaiz 300mm x 1650mm 

x 150mm dikenakan ujian paksi. Keputusan ujian ini telah divarifikasi oleh  analisis 

berangka yang menggunakan perisian metod  elemen terhad (FEM). Tambahan pula, 

persamaan empirikal bagi kapasiti beban paksi bagi dinding konkrit bertetulang 

diubahsuai untuk mendapatkan kapasiti PCSP. Keputusan ujian kotak panas mendapati 

kecekapan haba bagi PCSP dengan sambungan ricih bertingkat bertambah dengan 

pertambahan jarak sambungan ricih tersebut. Panel PCSP dengan sambungan ricih jarak 

400 mm mencapai kecekapan haba terbaik dengan rintangan haba (nilai R)( sebanyak 

2.48 m²K/W.  Nilai R ini jauh lebih tinggi daripada yang direkodkan dalam kajian 
terdahulu. Prestasi termal ini telah diverifikasi menggunakan perisian FEA dengan ralat 

kurang daripada 5% dan meramalkan kelakuan lilitan fluks isoterma dengan tepat. 

Perlakuan struktur PCSP di bawah beban lenturan menunjukkan bahawa semua PCSP 

dengan sambungan ricih bertingkat mencapai kapasiti komposit penuh dengan tiada 

kegagalan sambungan permukaan yang diperhatikan. Panel PCSP dengan sambungan 

ricih bertingkat 300 mm menunjukkan kapasiti paksi mampu mencapai beban bangunan 

lima (5) tingkat, namun, bagi PCSP bersambungan lebih dari 300mm, kegagalan lenturan 

dikenalpasti. Keputusan hasil ujikaji atau eksperimen divarifikasi oleh FEA dengan ralat 

lebih kurang 4% dan 15% untuk beban lenturan dan paksi. Persamaan empirikal bagi 
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kapasiti beban paksi bagi dinding konkrit bertetulang telah terlebih anggar kapasiti 

muktamad PCSP. Oleh itu, persamaan empirikal tersebut telah dikenakan analisis 

statistik menggunakan teknik pengoptimuman swarm partikel (PSO) dengan 

mengambilkira kesan lapisan insulasi dan sambungan ricih. Persamaan yang telah 

diubahsuai telah berjaya menganggarkan kapasiti muktamat beban PCSP dengan 

ketepatan yang tinggi. Hasilnya dicapai dengan fungsi objektif (MAE) pada kumpulan 

30 dengan pengulangan minimum dan nilai CoV 10%. Sebagai kesimpulan, PCSP 

dengan sambungan ricih 300mm telah berjaya memenuhi keperluan kecekapan tenaga 
untuk bangunan lestari i.e. kecekapan haba, dengan pencapaian struktur yang cemerlang 

didalam perlakuan paksi dan lenturan. Keputusan ini membuktikan ketahanan haba dan 

pencapaian struktur yang lebih baik mampu dicapai oleh PCSP yang menggunakan 

tetulang dan konkrit konvensional dengan pendekatan jambatan haba bertingkat.  

Mudah-mudahan, hasil kajian ini akan membantu pereka bentuk seni bina dan jurutera 

untuk memilih PCSP sebagai dinding yang memberikan ketahanan haba dan struktur 

penanggung beban yang lebih baik ke arah bangunan hijau dan lestari. 
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         CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 Background 

 

Innovative technology is required in the construction industry in order to provide more 

sustainable buildings that are practicable in the field. Therefore, precast component are 

more preferable to conventional building construction, which can shortened construction 

period without sacrificing quality of the product. In addition, the offsite or factory 

manufactured components has reduced the cost of production due to it shorten 

construction time and less labour.  

 

 

In Malaysia, precast system is also known as Industrialised Building Systems (IBS) that 

is implemented in two stages, namely: (1) productions of modular parts in a yard/factory 

located near the site or transported and, (2) assemble for erection at the construction sites 

at in-situ position.  IBS received greater attention after the Second World War 

particularly in the war-devastated countries due to rapid population growth, but its 

development and acceptance especially in Asia is still low.  Beside Europe and USA, 

conventional construction technique is still predominant in most countries in Asia 

including Malaysia (Thanoon et al., 2003; Mydin et al., 2014). Survey conducted by 

Construction Industry Development Board (CIDB) Malaysia revealed that the adoption 

level of IBS in Malaysia stands at about 15% after over 40 years of initiation (Nawi et 

al., 2011). Hence, it is necessary for researchers in Malaysia to continue doing research 

on IBS development, compatibility and practicality to the local environment.  

 

 

Apart from IBS, the need to produce sustainable buildings is growing. Sustainable 

building, also refer to as green building is a design philosophy that emphases on 

increasing efficiency in the use of resources such as energy, water, and materials in 

buildings. It reduces possible negative impacts on human life and the environment during 

it intended lifecycle through design, construction, operation and maintenance (Chua and 

Oh, 2011). Therefore, the most important sustainability feature in this research is the 

ability to use less energy during the intended design lifecycle of buildings. In tropical 

countries, most buildings use air-conditioners to control the temperature while, in Polar 

Regions, heaters are used that is subsequently becoming unsustainable.  

 

 

Recently, global interest in energy conservation due to sustainability issues has called 

for a renewed demand for energy efficiency in building components. Because, substantial 

amount of thermal (heat) transfer through convection or radiation from external 

surrounding of the building into the inner part, thus, requiring power for cooling or 

heating (Demirboǧa, 2003). In America, a significant share of energy consumption 

comes from housing with about 50-70% coming from heating and cooling or air-

conditioning (Al-Homoud, 2005). In Europe, buildings account for about 30% of energy 

use which could be more in arid and semi-arid region of the word. In China, heating or 

cooling energy requirement in buildings account for about 15% of the total energy and 
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is increasing by the day (Jiang and Wu, 2010; Zeng et al., 2011). Generally, buildings 

account for about 25–40% of total energy consumption which is mostly due to space 

heating or air-conditioning (Široký et al., 2011; Zeng et al., 2011; Robinson et al., 2017). 

So, this has become a challenging phenomenon with far-reaching consequences on the 

environment.  

 

 

Therefore, in an effort to conserve the energy, various governments’ agencies have been 

working vigorously toward zero energy buildings (ZEBs) which is becoming part of 

energy policy in several countries; in the Europe, EU Directive on Energy Performance 

of Buildings (EPBD) was set to the year 2020 in which all new buildings are expected to 

comply with “nearly zero energy buildings” (Sartori et al., 2012). In the United States, 

US Department of Energy (DOE) unveiled its strategic master plan toward “marketable 

zero energy homes in the year 2020 and commercial zero energy buildings in 2025”, 

while in Malaysia, the government introduced Green Building Index (GBI) in 2009 

whose target is to achieve 100 green rated factories and more in buildings by the year 

2020 (Chua and Oh, 2011). Similar policies have been enacted in many countries as 

shown in Table 1.1.  

 

 

Therefore, to achieve this targets, a more practical and sustainable approach through 

minimization of thermal (heat) transfer between outside and inner parts of buildings such 

as the provision of insulation layer between the building components refer to as precast 

concrete sandwich panel (PCSP) could be a way out. This is consistent with the report 

by Gervásio et al. (2010), who highlighted that material and energy efficiency are the 

two main factors contributing to the building’s sustainability. Therefore, optimization of 

energy use such as in heating and cooling during building’s service period by introducing 

an insulation material into the building is one way of improving the energy efficiency in 

buildings. 
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Table 1.1: Countries with their green/sustainable building indicator programs 

                        

Country 

Green Building Program Year of 

Initiation 

Achievement to date 

Autralia Green Star 2003 1900 Green rated 

projects 

Brazil  Aqua/ LEED Brasil 2010 1,308 registered 

projects 

Canada LEED canada/Green 

Globes 

2000 2576 

China GBAS 2006 - 

Finland  PromisE 1998 - 

France HQE 1996 16000 

Germany  DGNB 2007 2800 certificates 

Hong Kong HKBEAM 2009 Over 1000 

India Indian Green Building 

Council (IGBC) 

2007 Over 4794 buildings 

Indonesia Indonesian Green building 

Council (Greenship) 

2009 - 

Italy  Protocollo Itaca 2000 - 

Japan CASBEE 2004 500 Over buildings 

Korea KGBC 2000 1786 

Malaysia Green Building Index (GBI) 2008 Over 300 projects 

Mexico LEED Mexico 2000 Over 94000 

Netherlands BREEAM Netherlands - - 

New Zealand Green Star NZ 2005 153 buildings 

Portugal Lider A 2005 
 

Singapore Green Mark 2005 Over 360 projects 

South Africa Green Star SA 2007 - 

United States Build it 

Green/LEED/IGCC/ 

1993 - 

United Kingdom BREEAM  1990 - 

United Arab 

Emirate 

Estidama 2009 - 

Jordan EDAMA 2009 - 

Czech Republic SBToolCZ 2005  - 

 

 

1.1.1 Precast Concrete Sandwich Panel  

 

Generally, sandwich refers to the combination of different material together either in 

layers or as a matrix to form a composite. This approach can be implemented on various 
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materials and systems depending on its intended application. Precast concrete sandwich 

panels (PCSP) are composite system that consists of two or more layers of concrete called 

wythes which are separated by layer of insulation as shown in Figure 1.1. The wythes 

are connected to each other to form an assembly system through steel connectors, 

concrete webs or a combination of both (Einea et al., 1991; Benayoune et al., 2006).  

 

 

 
Figure 1.1: Section through Precast Concrete Sandwich Panel (Hamed, 2016) 

 

 

The existing PCSPs are designed with continuous shear connection, which causes 

thermal bridges across the layers (wythes) as shown in Figure 1.1. The thermal bridge 

significantly reduces the thermal performance of PCSP system.  Therefore, most research 

interest in PCSP have been focused on the use of alternative material such as fibre 

reinforced polymers (FRP) other than conventional steel as shear connectors to reduce 

the effect of thermal bridge. Some of the FRP materials used as shear connectors are 

carbon fibre reinforced polymers (CFRP) (Cho et al., 2010; Bunn, 2011; Frankl et al., 

2011; Hodicky et al., 2014), Basalt fibre reinforced polymers (BFRP), Glass fibre 

reinforced polymers (GFRP) (Maximos et al., 2007; Pantelides et al., 2008; Seo et al., 

2013; Woltman et al., 2013; Corradi et al., 2014; Choi et al., 2015; Kazem et al., 2015; 

Kim and You, 2015; Kang and Kim, 2016). However, these materials are expensive and 

will increase the cost of PCSP, coupled with structural effects such as high bond slip and 

high brittleness failure when used.  

 

 

The continuous shear connection are still in use and most of the previous works reported 

are on the structural performance of the panel alone. The influence of certain parameters 

such as slenderness ratio and aspect ratio on structural performance have been 

established (Bush and Stine, 1994; Benayoune et al., 2006; Benayoune et al., 2007; 

Benayoune et al., 2008; Gara et al., 2012; Carbonari et al., 2013). However, more 

research works are needed in the area of shear connection design which affect both the 

thermal and the structural performance of PCSP system.  
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Besides changing the shear conenctor materials, effort has been made to improve the 

thermal performance of PCSP by replacing the concrete wythes with foamed concrete 

due to its low thermal conductivity (Mohamad et al., 2011; Mohamad and Hassan, 2013; 

Amran et al., 2016a; Amran et al., 2018). Foamed concrete is defined as a light cellular 

concrete produced from mixture of foaming agent in mortar which contains randomly 

distributed air voids and have a density range of 400–1850 kg/m3 (Amran et al., 2015). 

This material result in a lightweight panels, but, is associated with structural effects such 

as crushing, sudden failure and high porosity which absorps water and reduce the thermal 

performance, that shows limited application particularly in weather exposed condition.  

 

 

1.2 Problem Statement 

 

In an effort to conserve the energy, various governments’ agencies have been working 

tirelessly toward a more sustainable and energy efficient buildings (Wells et al., 2018). 

Currently, energy efficiency in buildings has formed part of legislation as policy in many 

countries including Malaysia (Zuo and Zhao, 2014). In particular, the Malaysian 

government has targeted the year 2020 as a dateline for any new building or buildings 

undergoing major repairs to satisfy energy performance requirement before 

approval (Chua and Oh, 2011). However, despite this target, most building construction 

in Malaysia are still predominantly conventional masonry walls and solid concrete 

panels. This building technology exhibit high thermal transmittance and 

conductivity (Soares et al., 2013).  

 

 

In Malaysia a few agencies discussed on this issue, the Malaysian Government Green 

Building Index (GBI) master plan, which is given the responsibility to assess, certify, 

license and approve buildings that are deemed thermally efficient highlighted the needs 

of using green material and thermal efficient designs for buildings (GBI, 2018). Apart 

from that, the Malaysian Green Building Confederation has reported that after over 50 

years of rapid industrialization with an annual growth of between 5% to 9%, most of the 

successes recorded are unsustainable, in another word, it require holistic sustainable 

approach especially in terms of thermal performance (MGBC, 2018). Furthermore, 

MS1525 (2014) was enacted to ensure energy sustainability in the building sector but did 

not mentioned on the thermal efficiency of sandwich panel.  

 

 

According to Gervásio et al. (2010), the most sustainable way to develop thermally 

efficient building system is through the use of insulation material known as precast 

concrete sandwich panels (PCSP). These panels are more thermally efficient and are used 

as non-load bearing placed as partition walls (Losch et al., 2011). While, most building 

components used in Malaysia construction industry are slabs, beams and columns which 

are thermally inefficient (Mydin et al., 2014). 

  

 

Development of load-bearing PCSP requires high level of shear connection which in turn 

reduce thermal performance (Benedetti et al., 2018). In Malaysia, load-bearing PCSP 

application mainly focuses on single and double storey buildings (Badir et al., 2002). 

However, the limited space in city centres and the need for urbanisation has called for 

high rise and structural buildings. Therefore, if structural building made of PCSP can be 
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developed, the dreamed GBI master plan would easily be achieved. Therefore, the main 

component of PCSP that ensure load bearing capacity and composite action is the shear 

connectors and a concrete section that connect the two wythes together. 

 

 

The most predominant shear connectors use in the existing PCSP are shear steel truss, 

double truss, bend up bars, hooks, pins and continuous truss shear connection (Naito et 

al., 2011). These connectors are continuously connected from layer or wythe to another 

through the insulation which causes thermal bridges and subsequently reduces the 

thermal performance of the panel (Tomlinson and Fam, 2015). Besides, according 

to Amran et al. (2015), when 0.08% of direct steel pin shear connection is used, thermal 

reduction of about 77% is observed. Hence, the need to avoid the effect of thermal 

bridges due to the shear connectors is necessary in PCSP in order to improve its thermal 

efficiency. 

  

 

The other approach is the staggered thermal path reported by  Zarr et al. (1987) who used 

timber PCSP and successfully increase the thermal efficiency of the panel. This concept 

was then repeated on three layered PCSP without shear connectors by (Lee and Pessiki, 

2006)and reported better thermal efficiency than the conventional PCSP. Unfortunately, 

it is non-load bearing and un-economical due to excessive thickness and the production 

method is un-practicable.  

 

 

Despite the type of shear connectors, its material will also influence the thermal and 

strength behaviour of PCSP. As mentioned earlier, many researches had been carried out 

using FRP material due to its lower thermal conductivity behaviour. This approach is 

considered to reduce the effect of thermal bridges. Significant improvements were 

recorded in terms of strength, but bond slip and brittle failure between the shear 

connectors and concrete were observed. This can be improved by providing thicker 

concrete wythes sections to enable sufficient embedment length of the shear connectors. 

However, the panel becomes heavier and leads to uneconomical section. Apart from 

that,  FRP shear connectors failed in sandwich panels at strength far below its tensile 

capacity and in brittle mode making it less practical (Hodicky et al., 2014).    

  

  

Another approach to improving the thermal performance of the PCSP is by replacing the 

concrete wythes with Foamed and/or Aerated concretes. Even though, the thermal 

properties are improved, a significant reduction in strength parameters coupled with the 

sudden crushing of the specimen has been recorded (Mohamad and Muhammad, 2011; 

Amran et al., 2016b). Moreover, this material absorbs much more water than the 

conventional concrete that contributes to its high thermal performance. According 

to Steiger and   Hurd (1978), when a unit weight of concrete increase by 1% due to water 

absorption, the thermal conductivity increases by 5%, making porous materials like 

foamed concrete exhibit higher values of thermal conductivity. 

  

  

Many investigations on PCSP under flexural tests, shear tests and tests under combined 

shear and flexure abound in the literature (Huanzhi et al., 2017). However, investigations 

on PCSP under axial load are limited due to the high capacity equipment required and 

the cost of building full-scale panels (Benayoune et al., 2007). Based on these works of 
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literature, it is obvious that most of the existing PCSP are excellent in thermal efficiency 

when it is made for the non-load-bearing panel. But, when it is designed as load-bearing 

PCSP, the thermal efficiency need to be compensated in order to allow the strength of 

the PCSP to reached its load-bearing performance. Thus, this research is to study the 

load-bearing PCSP that will not compensate the thermal efficiency of the wall. Hence, 

the following research questions are highlighted:  

 

1. Is the staggered thermal path method suitable for load-bearing PCSP?  

 

2. If the thermal path method works, what is the appropriate spacing between the 

shear connectors that fulfilled the energy performance requirement as well as 

the structural performance?   

 

3. What are the axial and flexural capacity of the load-bearing PCSP with different 

spacing of the connectors?  

 

4. Is there any established equation to estimate the axial load capacity of PCSP? 

 

 

1.3 Objectives 

 

Based on the above-mentioned research questions, the aim of this research is to develop 

a thermally efficient load-bearing PCSP that satisfy both thermal and structural 

performances. To achieve this, the work tasks consists of four main objectives:  

 

1. Three different shear connector spacing will be studied using staggered thermal path 

methods to determine the optimum thermal performance of PCSP and the results 

will then be verified using Finite Element Analysis (FEA) method.  

2. To determine the structural performance of the proposed PCSP with staggered shear 

connectors when subjected to flexural and axial loads.  

3. To verify the structural behaviour of the PCSP using Finite Element Analysis (FEA) 

method when subjected to flexural and axial loads.  

4. To propose an empirical equation for axially loaded PCSP.  

 

 

1.4 Scope and Limitation 

 

This research covers experimental work, finite element modelling and empirical equation 

modelling on precast concrete sandwich panels. The experimental work involves thermal 

performance test, flexural test and axial load test. Each of the tests consists of four (4) 

PCSP. For the thermal test, the specimen size is 500 mm x 500 mm x 150 mm, while, for 

the flexural test is 2500 mm x 1650 mm x 150 mm and 3000 x 1650 x150 mm for the 

axial test. All the specimens are made from 40 MPa concrete strength and minimum 

reinforcements are provided. The shear connector studs are cast with mortar of 40 MPa. 

Three different staggered shear connector spacing is studied; 200mm, 300, and 400mm.   

 

 

The scope of the thermal test covers PCSPs with staggered shear connectors and Foamed 

Putra Blocks and Mortar Putra Block for comparison purposes. The test specimen is 

limited to small-scale to accommodate the test set-up. The results are verified by Finite 

element Analysis (FEA) using COMSOL Multi-physics, a software to develop 3D-
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models for the thermal performance verification. In the numerical modelling, insulation 

of the boundary conditions was ensured using the default full-insulation settings of the 

software. While for the structural tests, specimens are different in size to accommodate 

the size limitation of the test frame. The numerical analysis using Abaqus CAE was used 

to validate the experimental results of both flexural and axial tests.  

 

Since the theoretical equation regarding axial load capacity is scarce in literature, the 

existing equation for solid wall panel according to ACI 318-M (2011) is statistically 

modified using particle swarm optimization (PSO) method. This is done to incorporate 

the appropriate parameters to improve the equation for use in PCSP. The statistical 

analysis was carried out with the aid of MATLAB software using data obtained from 

experimental, FEA and literature. The PSO analysis takes into account two main 

parameters that influence the behaviour of the PCSP namely an insulation material and 

shear connection. The proposed equation is limited to estimation of axial load capacity 

for PCSP only. 

 

 

1.5 Layout of Thesis 

 

This section presents the layout of thesis and the content of each chapter. 

 

 

Chapter one presents the background to the need for the new/modification of the existing 

precast concrete sandwich panels. The objectives, problem statement, scope and 

limitation of the research work are also presented.  

 

 

Chapter two present the literature review on general precast concrete panels from the 

conventional precast normal weight walls to the current state of the art sandwich systems 

and the need to further modify the current systems toward sustainable and thermally 

efficient structural system. 

 

 

Chapter three discusses in detail the experimental and FEA results obtained on the 

thermal (heat transfer) analysis of the proposed sandwich panels. The investigation 

include; material, methodology, experimental and FEA analysis and verification of the 

results.  

 

 

Chapter four present the methodology used to carry out the experimental and FEA on the 

structural performance of the proposed PCSPs. The procedure employed and design 

approach used. Standard test methods adopted during the experiments are also presented. 

The methodology include experimental and numerical analysis used for the structural 

tests. 

 

 

Chapter five presents the experimental results of the proposed panels under structural 

test (flexural and axial loadings). Also, failure patterns and load capacity of the panels 

are discussed in details.  

 

 



© C
OPYRIG

HT U
PM

9 

 

Chapter six presents the FEA results of the proposed panels under structural test (flexural 

and axial loadings). Also, failure patterns and load capacity of the panels are discussed 

in details.  

 

 

Chapter seven presents the analytical equation developed for the structural capacity of 

the panels under axial loading. The analytical equation is developed using Particle swarm 

Optimization Approach with the aid of MatLab software. 

 

 

Chapter eight presents the discussion, conclusions and recommendations based on the 

results achieved. Recommendation for further investigation or action are proposed for 

continuous sustainable development. 
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