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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of the requirement for the degree of Doctor of Philosophy 

MODELLING TSUNAMI BORE-INDUCED PRESSURES ON VARIOUS 
SEAWALL TYPES 

By 

ZATY AKTAR BINTI MOKHTAR

January 2019 

Chair       : Badronnisa Yusuf, PhD 
Faculty       : Engineering 

Catastrophic failures of many tsunami seawalls along the affected coasts during 
the 2011 Japan Tsunami has prompted extensive investigation into improving 
and revising design codes for tsunami defence structures. To date, researchers 
and coastal engineers are investigating to understand the failure mechanisms of 
seawall and to find solutions so that the structures merely remain intact in the 
extreme event such as tsunami. With this as the background, the main objective 
of this study was to experimentally investigate and quantify the tsunami bore-
induced pressures exerted on various seawall types. In addition, the tsunami 
bore impact pressures on seawall models protected by a porous breakwater was 
also investigated. Four different seawall models; a solid vertical wall, a porous 
vertical seawall that consisted of a perforated front wall and a solid rear wall and 
two prevalent curved front seawalls, that were installed individually downstream 
in a 2D wave flume. Five impounding water depths (0.55, 0.60, 0.65, 0.70 and 
0.75 m) were used to produce dam-break waves with various heights and 
velocities, which have been shown to be analogous to tsunami-induced bore 
characteristics as stated in theories. Time-history of bore pressures exerted on 
the seawall models were recorded. In additon, the flow depth-time histories were 
also recorded at various locations along the length of the flume. A high-speed 
video cameras together with a regular camera were used to monitor the bore-
structure interaction. Experimental results revealed that there were significant 
differences between the measured pressures exerted on each seawall model. A 
high impulsive pressure was measured at the lowest-located pressure sensor of 
solid vertical wall model with 8 kPa in this study. It is found that the impulsive 
pressure recorded at other seawall models were less than that recorded at the 
solid vertical wall. It is also noted that the maximum pressure occurred at 
different times in one recorded time history of bore impacts for all seawall 
models. In addition, a partially submerged perforated wall with 30% porosity were 
installed upstream from the seawall models to investigate its efficiency as 
tsunami mitigation measures. Experimental results indicated that the maximum 
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pressure exerted on the perforated seawall type can be reduced by 
approximately 20% to 50%. It was also revealed that the higher amount of 
pressure exerted on the upper section of the recurved seawall type can be 
reduced approximately 45% in the presence of the breakwater. The experimental 
measured data were also compared with those estimated from the current 
available formulations. The results and analysis presented in this study will be 
significant use to better understand the interaction between the tsunami bore 
and more complex seawall geometries. The findings from this study could also 
be used for validating any numerical models works as well as can be a guideline 
for future research in designing tsunami barrier structures. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMODELAN TSUNAMI MENIMBULKAN TEKANAN-TEKANAN PADA 
PELBAGAI JENIS TEMBOK LAUT 

Oleh 

ZATY AKTAR BINTI MOKHTAR

Januari 2019 

Pengerusi : Badronnisa Yusuf, PhD 
Fakulti : Kejuruteraan 

Kegagalan besar terhadap banyak tembok laut tsunami di sepanjang pantai 
yang terjejas semasa Tsunami Jepun 2011 telah mendorong kepada siasatan 
lebih menyeluruh untuk menambah baik dan menyemak semula kod-kod reka 
bentuk bagi struktur pertahanan tsunami. Sehingga kini, para penyelidik dan 
jurutera pantai masih menyiasat untuk memahami mekanisme kegagalan 
tembok laut dan mencari penyelesaian supaya strukturnya tetap utuh dalam 
kejadian bencana ekstrem seperti tsunami. Dengan ini sebagai latar belakang, 
matlamat utama kajian ini adalah untuk mengkaji dan mengukur secara 
eksperimen tekanan-tekanan yang disebabkan oleh tsunami yang dikenakan 
pada pelbagai jenis tembok laut. Di samping itu, tekanan impak tsunami bor 
pada model-model tembok laut yang dilindungi oleh tembok pemecah ombak 
berliang juga turut dikaji. Empat model tembok laut berlainan iaitu; dinding 
menegak padat, tembok laut menegak berliang yang terdiri dari dinding depan 
yang berlubang dan dinding belakang padat dan dua tembok laut depan 
melengkung yang lazim, yang dipasang secara individu di bahagian hilir flum 
gelombang 2D. Lima kedalaman air (0.55, 0.60, 0.65, 0.70 dan 0.75 m) 
digunakan untuk menghasilkan ombak-ombak empangan pecah dengan 
pelbagai ketinggian dan kelajuan, yang telah dibuktikan sama dengan ciri-ciri 
tsunami seperti yang dinyatakan di dalam teori. Sejarah waktu tekanan bor yang 
dikenakan pada model-model tembok laut direkodkan. Selain itu, sejarah waktu 
kedalaman aliran juga direkodkan di pelbagai lokasi sepanjang flum. Kamera 
video berkelajuan tinggi berserta dengan kamera biasa digunakan untuk 
memantau interaksi di antara bor dan struktur. Keputusan eksperimen 
menunjukkan bahawa terdapat perbezaan yang signifikan di antara tekanan 
yang diukur pada setiap model tembok laut. Tekanan impulsif yang tinggi diukur 
pada sensor tekanan yang terletak paling rendah di model dinding menegak 
padat iaitu 8 kPa di dalam kajian ini. Didapati bahawa tekanan impulsif yang 
direkodkan pada model tembok laut yang lain adalah kurang dari yang 
direkodkan di dinding menegak padat. Juga diperhatikan bahawa tekanan 
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maksimum untuk setiap model tembok laut masing-masing berlaku pada waktu 
yang berlainan dalam satu sejarah waktu impak bor yang direkodkan. Selain itu, 
tembok berpori dengan keliangan 30% juga telah dipasang dengan terendam 
sebahagiannya di hulu dari model tembok laut untuk menyiasat kecekapannya 
sebagai langkah-langkah untuk mengurangkan tsunami. Keputusan eksperimen 
menunjukkan bahawa dengan adanya pemecah ombak ini, tekanan maksimum 
yang dikenakan pada jenis tembok laut berlubang boleh dikurangkan kira-kira 
20% hingga 50%. Juga didapati bahawa jumlah tekanan yang lebih tinggi yang 
dikenakan pada bahagian atas jenis tembok laut melengkung dapat dikurangkan 
kira-kira 45% dengan kehadiran pemecah ombak ini. Data ukuran secara 
eksperimen ini juga dibandingkan dengan yang diperkirakan dari formulasi sedia 
ada pada masa ini kini. Hasil dan analisis yang dibentangkan di dalam kajian ini 
boleh bermanfaat secara signifikan untuk lebih memahami interaksi di antara 
tsunami bor dan geometri tembok laut yang lebih kompleks. Penemuan dari 
kajian ini juga boleh digunakan untuk mengesahkan sebarang model berangka 
dan dapat juga menjadi garis panduan untuk penyelidikan di masa hadapan di 
dalam merancang struktur penghalang tsunami.  
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CHAPTER 1  

 
INTRODUCTION 

 
1.1 Background 
 
Tsunami is a series of water waves in a wave train which caused by the vertical 
displacements of a water column. This deformation of the sea surface is 
commonly caused by an underwater earthquakes; submarine fault ruptures 
during seismic disturbances or due to volcano eruptions, submarine landslides 
and meteorites impact (Al-Faesly et al., 2012). The displacement of water 
column caused by an abrupt motion of sea floor will usually generate small initial 
amplitude of tsunami in the vicinity of a tsunami source region. The initial height 
of the sea surface displacement is typically only a meter or less in general.  
 

Most tsunamis are usually associated with a large and destructive wave. In 
general, tsunami typically has wave periods of 100 s – 2,000 s (1.6 min – 33 
min), depending on the wavelength and water depth. Unlike ordinary wind wave, 
tsunami has very long wavelength which can propagate at very high speeds 
which may reach up to 900 km per hour in the very deep ocean which is nearly 
similar to the speed of a jet airplane and with their kinetic energy is evenly 
distributed throughout the entire water depth (Ward, 1989). Tsunamis retain their 
energy in which they can propagate across the entire ocean or can travel great 
transoceanic distance with very little energy loss. 
 

As the tsunami approaches the shallow water and propagates towards the 
shoreline, the waves will experience a transformation. Their huge amounts of 
energy are remains nearly constant. Since the velocity of tsunami and the 
wavelength are depending on the water depth, both the speed of the waves and 
the wavelength will decrease. Whereas, the height of tsunamis will then be 
amplified due to shoaling effect and other factors, for instance the effects of 
coastal topography and bathymetry as well as harbour resonance effects. Upon 
reaching near the shoreline, the waves eventually break when the incident 
tsunami height is approximately equal to the ocean depth and thereafter forming 
a sequence of either strong turbulent hydraulic bores or surges advancing 
toward the shoreline (Yeh et al., 1989). As mentioned by Yeh (2007), the tsunami 
waves break in a plunging mode and when the overturning tip of the wave 
touches down on the sea surface, it will transform into bores. The bores run-up 
the shore and strike the coastal structures with considerably high velocity.  
 

From the past tsunami events, apparently the largest wave is not necessarily the 
first wave to arrive the shores. Snapshots from video footage of the 2011 Japan 
tsunami (Figure 1.1) and the 2004 Indian Ocean Tsunami (Figure 1.2) shown 
that the tsunami waves broke upon reaching near the shore area and 
transformed into a hydraulic bore.  
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Figure 1.1: The 2011 Japan tsunami arrived at the beach area: (a) Noda 
Coast (Source: Ogasawara et al., 2012), (b) Japan’s eastern coast 
(Source: Asian Tsunami Videos, 2011) 

The propagation of bores approaching the shores was clearly seen in many 
video recordings and photographic records during the occurrence of these two 
past devastated tsunami events. 

Figure 1.2: The 2004 tsunami bore and surge fronts arrived at the Krabi 
beach area 
(Source: Asian Tsunami Videos, 2005) 

The evidence of strong currents of tsunami flow can also be found in various 
documented structural failures and eyewitness accounts. As reported by many 
witnesses, a white foam strip visibly coming towards the shore which stretched 
along the distant horizon in a high speed during the 2004 Indian Ocean Tsunami 
waves struck a large part of Peninsular Malaysia’s western coast (Komoo and 
Othman, 2006). As a result, the 2004 Indian Ocean tsunami disaster had caused 
severe damage to many coastal infrastructures and facilities in various countries 
in the Indian Ocean including west coast of Malaysia. The huge tsunami 
generated had also claimed more than 230,000 lives, in which 68 fatalities were 
reported in Malaysia. The similar observations were also reported during the 

(a) (b) 
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occurrence of the 2011 Japan tsunami where the incident tsunami waves were 
in a form of a series of turbulent hydraulic bores, which inundating over hundred 
kilometres square of land and inundated some coastal regions by up to 10 
meters tsunami height (Miyamoto, 2011). Mori et al. (2012) reported that the 
measured run-up heights were over 30 meters. The massive tsunami devastated 
large parts of Japan’s north-eastern coastline and causing a critical failure mode 
to many well-engineered reinforced coastal protection structures and caused 
more than 15,000 deaths (Nandasena et al., 2012). Both these disastrous events 
have drawn the attention amongst the coastal engineers and scientists to re-
investigate the impact of tsunami wave forces on coastal structures and re-
evaluate the effective mitigation measures that could be considered. 
 
 
1.2 Problem statement 
 
It is known that the impact of tsunami is greater than any other natural disasters. 
Thus, tsunami protective structures for instance seawalls, breakwaters and dikes 
are most critical infrastructure that was crucial for protection of life and property 
against such an extreme wave actions like tsunamis and storm surges. Although 
tsunamis have been viewed as a very rare event, but it is desirable to ensure 
that the sea defence structures are adequately designed to provide some degree 
of protections to the coastal infrastructures, commercial development and 
coastal residential living in the tsunami hazardous areas. These tsunami barrier 
structures certainly would not be able to stop the incoming tsunamis onto the 
shore, but it could somehow minimize the tsunami inundation over the land and 
thus may contribute to less risk of tsunami impact. Besides, it may also indirectly 
play a great aspect in delaying the incoming tsunami waves, and therefore will 
give some ample times for the community evacuation purposes. Thereby, it is 
very crucial to ensure that the tsunami defences are well-designed constructed 
and are able to resist the forces imposed by the incoming tsunami wave energy, 
enable to reduce the impact of strong waves as well as to remain intact when 
the tsunami flows over. Therefore, in dealing with this issue, clear understanding 
of bore interaction with sea defence structures and characteristics of bore-
induced pressure on these structures is essential requirement to a successful 
design. 
 

While numerous large tsunami events have been recorded throughout history, 
the last decade has seen many coastal defensive structures were destroyed and 
failed due to tsunami impacts as reported in Camfield, (1994), Kato et al., (2012), 
Mase et al., (2013), Tanaka et al. (2012), Yamamoto et al., (2006), and Yeh et 
al. (2013). The 2011 Japan tsunami disaster have awakened the attention of 
many countries and it has prompted considerable rethinking amongst the coastal 
engineers on evaluating the existing coastal seawall’s design criteria and their 
performance under the impact of great tsunami wave forces. Many field surveys 
of the 2011 Japan tsunami reported that most of the coastal protection structures 
particularly the seawalls and breakwaters were severely damaged and 
destroyed due to tsunami impact forces. Field observations showed that the 
failures of many coastal seawall structures were because of these structures 
were not actually designed to withstand high impact tsunami loads, and instead, 
the structures were initially designed based on storm surge and high tide 



© C
OPYRIG

HT U
PM

4 

conditions as well as based on their historical tsunami event conditions that have 
occurred.  The field survey reports also revealed that the typical mechanisms of 
seawall failures include scouring due to strong overflowing currents and wall 
overturning due to the collision of the tsunami wave front into seawall (Kato et 
al., 2012; Takahashi et al., 2011). Interestingly, a number of studies later have 
attempted to demonstrate that the seawall failure mechanisms during the 
extreme 2011 Japan tsunami are due to the impact of tsunami wave force 
(Ishikawa et al., 2012; Mikami et al., 2014) and also due to the tsunami-induced 
local scour around seawalls (Kato et al., 2013; Jayaratne et al., 2014; Shimozono 
and Sato, 2016). Nevertheless, the actual mechanisms behind the failures of 
many coastal seawalls during this devastated tsunami occurrence are still not 
fully understood and explored. 

Consequently, it is rather important to have an effort to further enhance the 
coastal protection strategies that can withstand any extreme events such as 
large impact forces generated by tsunami wave in the future. To date, there have 
been numerous studies on the interaction of tsunami wave with coastal 
protection structures and their impact. Several attempts have been made to 
investigate the tsunami wave forces and pressures exerted on seawall. Though 
this subject of research has been an interest among the researchers since the 
late 1900s (Chen et al. 2016; Fukui et al., 1963; Hamzah et al., 2001; Hsiao and 
Lin, 2010; Kato et al., 2013; Kihara et al., 2015; Mizutani and Imamura, 2001; 
Nakamura and Tsuchiya, 1973; Ramsden, 1993), but there are still rooms for 
improving and extending the knowledge on this subject area. However, the 
challenging problems remain due to the difficulties in understanding the 
complicated behaviour of tsunami wave near the shore when downscaled to 
laboratory scale for further research.   

The current literature mainly shows that many experimental and numerical 
studies of the wave impact forces of tsunami bore on a typical type of coastal 
vertical seawall and sea dike. The literature survey indicates that research on 
the impact forces of bores on specifically curved-front seawall is scanty, which 
mostly pertain to forces of ordinary wind waves. This has indicated that study on 
the interaction between a tsunami bore and a curved-front seawall has received 
much less attention. The tsunami loading on this type of seawall is still unclear. 
Furthermore, the effect of upstream perforated breakwater on the exerted bore 
pressure on the seawall also has not been evaluated in the past research. The 
knowledge of tsunami-induced pressure acting on seawall is the most important 
parameter for designing the structural dimensions of seawall. Therefore, the 
current study is intended to fill this gap to some extent which is still fragmented. 

1.3 Objectives of the study 

The main objective of this research is to investigate experimentally the 
interaction of tsunami-induced bores with a different configurations of seawall 
models. The specific objectives of this study are:  

i) To investigate the characteristics of the simulated tsunami bore in terms
of bore depth and bore front velocity
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ii) To determine experimentally the distribution of pressure exerted on 
vertical and curved-front seawalls under tsunami-induced bores impact 

iii) To investigate the effect of upstream perforated breakwater on the 
distribution of tsunami pressure exerted on seawall models 

iv)  To evaluate the existing equations for predicting maximum tsunami 
pressure on seawall and to propose estimation equations to predict 
maximum bore pressure on seawalls based on the experimental results. 

 
 
1.4 Scope and limitations of the study 
 
To achieve the objectives of this study, a series of experimental works were 
conducted in the moderately smooth concrete large wave flume. In this 
experiment, a dam-break mechanism (the sudden release of water from an 
upstream reservoir) is employed to generate simulated tsunami bores to 
investigate their characteristics and the bore-seawall interaction. In this research 
study, four different seawall configurations and one perforated breakwater were 
utilised. Five different impounding water depths were used in this study to 
investigate the relation between bore depth and bore velocity with bore-induced 
pressures exerted on each seawall. The experimental data obtained from this 
study is also compared with the theoretical formulations to determine how well 
these theories describe different characteristics of a tsunami-like bore generated 
in this study. 
 

Limitations of this study are outlined below: 
i. Due to imperfections of the experimental facility such as the imperfect 

sealing mechanism of the sluice gate employed in the flume, 
experimental program was performed under wet flume bed condition. 

ii. Flow conditions in the form of rapid surge, which occur when the 
bathymetry of the beach is very steep, was not considered in this study. 

iii. Only four different configurations of existing seawall models were 
investigated. 

iv. Only one type of breakwater model was investigated: effect of different 
breakwater types, locations and heights were not considered in this 
study. 

v. For many of the experiments, the incident bore depths were measured 
along with the pressures exerted on the front face of seawalls at vertical 
and transverse directions. 

vi. The scale selection in this study was based on the capabilities of the 
wave generation method and experimental facilities  

vii. Due to limited number of pressure sensors employed in this study, only 
six pressure measurement points on the front face of seawalls were 
investigated.  

viii. The duration of the sustained flow was limited when compared to actual 
tsunami-induced bores. However, the duration of sustained flow attained 
in this study was sufficient to adequately quantify the characteristics of 
the bore pressure profiles. 

ix. The effect of debris (mud, sand, gravel, ruin of any objects, trees trunk, 
etc.) and the damming of debris on seawalls are beyond the scope of 
the present study.  
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x. Stability of seawalls under effect of tsunami bore is beyond the scope of 
the present study. 

xi. The effects of geological features were not considered in this study. 
 

1.5 Novelty of the research 
 
The novelty of the present study resides in the experimental investigation of 
tsunami-induced bores interaction with different configurations of vertical and 
curved front seawall structures, with respect to measuring the pressures exerted 
on the walls. Despite of a number of seawall impact studies under tsunami waves 
have been previously investigated, however, the tsunami forces and pressures 
acting specifically on curved-front wall has received little attention. The impact 
study of tsunami bore on curved-front seawall is still scanty and more knowledge 
could be explored. There is still questionable area relating to the interactive 
aspects between tsunami bores and the seawall’s characteristics (i.e. more 
complex seawall geometries). Thus, the present study is intended to enhance 
the understanding of the interaction between tsunami bore and more complex 
seawall geometries as well as the bore loads imposed on these seawalls. There 
are some features of the laboratory works conducted in this research are unique 
with respect to past tsunami impact studies in which for the first time in such an 
experimental program, two curved-front seawalls and a vertical perforated-front 
seawall types were used which have not been previously investigated either 
experimentally or numerically.  
 

To design a well-structured seawall, it is important to investigate the wave 
pressure distribution at various points along the seawall and the magnitude of 
maximum tsunami impact pressure acting on the structures. Therefore, the 
findings of this investigation are important for coastal engineers and the model 
equations proposed were found to be applicable in improving future sea defence 
designs in tsunami hazardous areas. A quantitative assessment on pressure 
reduction due to the presence of the perforated breakwater before the seawall 
will at least help for assessment of structural life extension in the presence of 
breakwater. In addition to that, the experimental results could be also used for 
the validation of any numerical models in future works. 
 
 
1.6 Layout of the thesis 
 
The thesis has been divided into five chapters. Chapter 2 includes review of 
previous experimental and numerical studies with respect to tsunami acting on 
vertical wall and other several types of seawall configurations. A review of failure 
mechanism of seawall due to tsunamis is also presented in Chapter 2. The 
methodology and procedures used in the experimental study is described in 
Chapter 3. The experimental findings are presented and discussed in Chapter 
4. Finally, the conclusions are stated in Chapter 5 along with the suggested 
recommendations for future research. A list of references and appendices are 
attached in the final part of the thesis. 
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