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Chairman : Professor Thomas Choong Shean Yaw, PhD, P.Eng 
Faculty : Engineering 

This study has demonstrated that the current sizing criteria for a gas-liquid separator 
commonly used in the industry maybe inadequate. The sizing criteria has not taken 
into account the inlet flow pattern and fluid hydrodynamics inside the separator. In 
this study, the inlet flow pattern was showed to have significant impact in the 
separator sizing and the fluid hydrodynamics inside the separator. The experiment 
was conducted using a test rig consists of a horizontal gas-liquid separator operating 
at 45 °C. The liquid was constantly fed at 430 mL/min while the gas flowrate was 
adjusted to meet the requirement of inlet momentum from 200 to 2500 Pa. The liquid 
and gas phase used in the experiment were water and air, respectively. Experimental 
results demonstrated that the inlet flow was slug flow for inlet momentum of 200 to 
1500 Pa, and the Mandhane’s map could be used to predict the flow pattern. 

Computational Fluids Dynamics (CFD) has demonstrated its function as an essential 
tools to simulate hydrodynamic inside the separator. However, the standard approach 
for Volume of Fluids (VOF) does not able to model the hydraulic jump in the inlet 
slug flow and additional User Define Function (UDF) using normal distribution 
equation was used at the inlet boundary to simulate the hydraulic jump. Another 
advantage was demonstrated using CFD in this study is the complex calculation such 
as kinetic energy of turbulence can be solved easily. Realizable  turbulence 
model has provided good agreement with experimental result and is recommended 
for this type of application. 

At inlet momentum of 800 Pa and lower, the sloshing does not occurred in the 
separator and the Souders-Brown constant from the guidelines is still valid for gas 
phase section sizing for horizontal gas-liquid separator which provided acceptable 
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low level liquid carryover at gas phase. For inlet momentum of 1000 Pa and higher, 
the impact of inlet slug flow initiated the separator sloshing phenomena. Sloshing 
was found to increase the liquid carryover in the gas phase. Kinetic energy of 
turbulence at liquid phase shall be kept below 15 m2/s2 to avoid any sloshing in the 
separator. The sloshing phenomena in the separator can be avoided by lowering the 
liquid level in the separator which is a very economical approach in retrofitting gas-
liquid separator and to avoid expensive separation internals. Additional 
recommended liquid level from this study was suggested in the gas-liquid separator 
sizing in order to mitigate the sloshing phenomena in the separator.  
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KESAN OLEH ALIRAN SLUG DI DALAM PEMISAH GAS-CECAIR 
MENDATAR 

Oleh 

LEE SIONG HOONG 

November 2018 

Pengerusi : Professor Thomas Choong Shean Yaw, PhD, P.Eng 
Fakulti : Kejuruteraan 

Kajian ini telah menunjukkan kriteria saiz semasa pemisah gas-cecair yang biasa 
digunakan dalam industri yang berdasarkan momentum masuk, pemalar Souders-
Brown dan masa pengekalan cair adalah tidak mencukupi. Kriteria saiz semasa tidak 
mengambil kira corak aliran masuk dan hidrodinamik cecair di dalam pemisah akibat 
daripada kesan corak aliran masuk. Dalam kajian ini, corak aliran masuk (inlet slug 
flow) menunjukkan kesan yang ketara dalam saiz pemisah dan hidrodinamik 
bendalir di dalam pemisah. Eksperimen ini dijalankan dengan menggunakan rig 
ujian dua fasa atmosfera yang terdiri daripada pemisah gas-cecair mendatar dan 
operasi pada suhu 45 OC. Aliran cecair yang digunakan adalah 430 mL/min manakala 
aliran gas disesuaikan dengan memenuhi syarat momentum masuk dari 200 hingga 
2500 Pa. Fasa cecair dan gas yang digunakan dalam eksperimen adalah air dan udara 
masing-masing. Keputusan eksperimen telah membuktikan bahawa inlet slug flow 
berlaku di antara momentum masuk 200 hingga 1500 Pa dan peta Mandhane 
menunjukkan persetujuan terbaik dengan hasil eksperimen. 

Dynamics Fluid Dynamics (CFD) telah menunjukkan fungsinya sebagai alat penting 
untuk mensimulasikan hidrodinamik dalam pemisah. Walau bagaimanapun, 
pendekatan standard untuk Volume Fluid (VOF) tidak dapat memodelkan lompatan 
hidraulik dalam inlet slug flow dan User Define Function (UDF) menggunakan 
persamaan edaran normal digunakan di sempadan masuk untuk mensimulasikan 
lompatan hidraulik. Kelebihan lain ditunjukkan dengan menggunakan CFD dalam 
kajian ini adalah pengiraan kompleks seperti tenaga kinetik turbulen boleh 
diselesaikan dengan mudah. Model turbulen k-ε yang boleh diperolehi telah 
memberikan persetujuan yang baik dengan keputusan eksperimen dan disyorkan 
untuk jenis aplikasi ini.
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Pada momentum masuk 800 Pa dan ke bawah, sloshing tidak berlaku dalam pemisah 
dan pemalar Souders-Brown untuk fasa gas masih berada di dalam lingkungan garis 
panduan yang ditetapkan, oleh itu, pengalihan cecair pada fasa gas berada di tahap 
rendah yang boleh diterima. Fenomena sloshing berlaku akibat dripada inlet slug 
flow untuk momentum masuk 1000 Pa ke atas. Tenaga kinetik turbulens pada fasa 
cair hendaklah disimpan di bawah 15 m2/s2 untuk mengelakkan fenomena sloshing 
di dalam pemisah. Fenomena sloshing di dalam pemisah boleh dielakkan dengan 
menurunkan tahap cecair di dalam pemisah dan merupakan pendekatan yang sangat 
ekonomik semasa pengubahsuaian pemisah gas-cair dan mengelakkan penggunaan 
pemisahan dalaman yang mahal. Tahap cecair tambahan yang dicadangkan dari 
kajian ini untuk pemisah gas-cecair dapat melenyapkan fenomena sloshing di 
pemisah.
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CHAPTER 1 

1 INTRODUCTION 

1.1 Upstream Production  

A typical schematic diagram of an upstream oil and gas production facility is shown 
in Figure 1.1. The equipment or systems at a production facility are integrated, each 
having their own functionality.  For example, a compression system is used to 
increase the gas pressure to its delivery pressure, glycol system is designed for gas 
dehydration which remove water moisture from the gas stream and amine system is 
installed to remove the acidic components in the gas such as carbon dioxide and 
hydrogen sulfide (Arnold, 2007; Arnold & Stewart, 1999).  One of the basic yet 
essential equipment is separator.  Separators are commonly found in pre and post 
treatment, primarily used to remove free liquid from the gas stream (Arnold & 
Stewart, 2008b).  A receiving separator can be found in an upstream section which 
is in series arrangement for gas pretreatment and crude stabilization. These 
separators receive and separate incoming fluids using gravity separation (Arnold & 
Stewart, 2008a). In these separators, bulk phases such as gas and liquid will be 
separated before undergoing further treatment at the downstream processing. 
Therefore, under performance of a separator will directly impact its downstream 
equipment (Arnold & Stewart, 2008b).

Figure 1.1: Typical Schematic Diagram of a Production Facility
(Arnold & Stewart, 2008a)
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1.2 Gas-Liquid Separators in Production 

The primary function of a gas-liquid separator is to separate bulk phases using 
gravitation concept. To ensure a separator to perform as it is, Hansen (2001) has 
proposed several important criteria for sizing:- 

1. Provide sufficient time to allow the immiscible gas and liquid phases to
separate by gravity.

2. Provide sufficient time to allow for the coalescence of gas bubbles in the bulk
liquid phase to improve degassing.

3. Allow for variation in the flow rates of gas and liquid without adversely
affecting separation efficiency.  This variation in flow rates is often
represented using inlet momentum.

These sizing criteria will be further explained in Section 2.2. 

A separator shall be robust in handling incoming fluids. The incoming fluids from a 
subsurface flowline enters a separator at different momentum and the magnitude of 
the incoming fluids are subjected to reservoir pressure, fluids mixture and overall 
production plan. An ideal separator is designed to withstand and dampen this inertia 
or commonly known in the industry as inlet momentum.  

The performance of a separator is measured in amount of liquid carryover to the gas 
phase.  Liquid carryover in the gas phase from a separator is one of the major issue 
in an upstream production facility.  A liquid carryover to the compressor will lead to 
imbalance of the impeller and excessive vibration. An excessive liquid carryover 
may eventually lead to mechanical failure in the long run (Prabhudharwadkar et al., 
2010; Ezzell, 2017). In gas processing system such as glycol and amine system, an 
excess condensate carryover will cause uncontrollable foaming in the contactors 
(Ezzell, 2017). Moreover, excessive liquid carryover in the flaring system will 
damage the flare tip and lead to more downtime due to maintenance work and 
incomplete combustion.

Information on hydrodynamics inside a separator is crucial to unlock the 
uncertainties in sizing a new separator or retrofitting an existing unit.  Besides 
physical experiment study, numerical simulation can be used to model the 
phenomena happened in a separator. Computational Fluid Dynamics (CFD) can be 
a useful tool to review the design or retrofitting of a separator (Laleh et al., 2011b).
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1.3 Problem Statement 

As mentioned by Bothamley (2013a), many two-phase separators in the oil and gas 
industry were reported to underperform, most likely due to inadequate sizing 
methodology.  One of the weakness associated with the current sizing methodology 
is the lack of quantification of feed flow, where the impact of flow pattern on the 
performance of a separator is not incorporated.  

The current practice, provided by vendor, in rectifying excessive liquid carryover in 
a gas-liquid separator is often by the installation of advanced separation internals 
such as inlet device, vane type coalescer and demisting cyclones.  However, this 
approach involves a high retrofitting cost and also adds more weight to the equipment 
which is unfavorable to the production operators. Note that an investment of millions 
of ringgit is often required for a major retrofitting (Chin, 2015a; Chin et al., 2015;
Morillo et al., 2016; Bothamley (2017)).

In order to achieve a simpler and a more economical solution, a deeper understanding 
on the behavior of inlet flow and its impact on hydrodynamics inside a separator is 
necessary.  However, there are very few literature reporting the details of inlet flow 
and its hydrodynamics inside a separator.  A detailed study in this particular field is 
required to realize this approach.  The focus of this research will be on slug flow as 
it is the most common flow pattern encountered in two-phase flow.  As mentioned 
recently by Bothamley (2017), a proper quantification of feed inlet and a proper 
understanding of hydrodynamics is crucial to prevent liquid carryover in a separator.  

1.4 Objectives 

This project was designed to study the inlet flow behavior and hydrodynamics inside 
a separator. A bare separator was used here in order to achieve a simple and 
economical solution.  The specific objectives of this research were as follows:- 

1) To study the type and impact of inlet flow on liquid surface movement inside 
a separator using an in-house gas-liquid separation test rig. 

2) To simulate the impact of inlet flow on liquid surface movement inside a 
separator using CFD simulation – ANSYS Fluent. 

3) To simulate and predict the performance of a gas-liquid separator using an 
experimental validated CFD model.   The performance of a separator is 
quantified using the amount of liquid carryover.  A practical guideline for 
mitigating the liquid carryover is proposed.   
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1.5 Scope of the Research  

In this study, the focus is on a two-phase or gas-liquid separator as experimental 
study of a three phase separator involves liquid-liquid phase separation which may 
require the use of actual crude oil. The Gas Volume Fraction (GVF) for the incoming 
fluids mixture is in the range of 0.90 to 0.99 where inlet slug flow occurred. The 
GVF range adopted in this research is commonly found in most separators for both 
associated and non-associated gas fields. Most of the first separator for associated 
and non-associated gas fields in this region have operating temperature no more than 
45 oC.  In this study, experiments were performed at atmospheric pressure and air, 
and water were used as gas and liquid phase. Furthermore, this work focused on the 
primary sizing criteria for horizontal gas-liquid separator, in which droplet size of 
carryover was not included.  The droplet size is an additional aspect covered by the 
secondary sizing criteria for separator. However, this criteria is not mandatory in the 
industry standard. The experiment in this study was designed to achieve the 
American Petroleum Institute (API) 17 N Technology Readiness Level 3 for research 
to prove feasibility where concept was proved by experimental or simulation. 
(Banke, 2017 and Grethe et. al., 2016) 
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