

UNIVERSITI PUTRA MALAYSIA

INSECTICIDESRESISTANCE OF BROWN PLANTHOPPER (Nilaparvatalugens) FROM INTEGRATED AGRICULTURE DEVELOPMENT AREA (IADA) UTARA, KERIAN PERAK DARUL RIDZUAN

MUHAMMAD AFANDI BIN KHAIRUDDIN

FP 2014 15

INSECTICIDESRESISTANCE OF BROWN PLANTHOPPER

(Nilaparvatalugens) FROM INTEGRATED AGRICULTURE

DEVELOPMENT AREA (IADA) UTARA, KERIAN

PERAK DARUL RIDZUAN

BY

MUHAMMAD AFANDI BIN KHAIRUDDIN

A project report submitted to Faculty of Agriculture, Universiti Putra Malaysia, in fulfillment of the requirement of PRT 4999 (Final Year Project) for the award of the

degree of Bachelor of Agricultural Science

Faculty of Agriculture University Putra Malaysia 2013/2014

CERTIFICATION FORM

This project report entitled "Insecticide Resistance of Brown Planthopper (Nilaparvatalugens) from Intergrated Agriculture Development Area (IADA) Utara, Kerian. Perak DarulRidzuan" is prepared by Muhammad Afandi bin Khairuddin and submitted to the Faculty of Agriculture in fulfillment of the requirement of PRT 4999 (Final Year Project) for the award of the degree of Bachelor of Agricultural Science.

Student's name :

Student's signature:

MUHAMMAD AFANDI BIN KHAIRUDDIN

Certified by:

(DR. NORIDA MAZLAN)

Project Supervisor

Department of Agriculture Technology

Faculty of Agriculture

University Putra Malaysia

Date: _____

INSECTICIDES RESISTANCE OF BROWN PLANTHOPPER (Nilaparvatalugens) FROM INTERGRATED AGRICULTURE DEVELOPMENT AREA (IADA) UTARA, KERIAN. PERAK DARUL RIDZUAN

MUHAMMAD AFANDI BIN KHAIRUDDIN

UNIVERSITI PUTRA MALAYSIA

SERDANG, SELANGOR DARUL EHSAN

2013/2014

ACKNOWLEDGMENT

First and foremost, I wish to express my thankfulness to Almighty Allah S.W.T because of His bless fullness and guidance to me from the beginning of this project until now. Apart of the efforts of me, the success of this project depends mostly on the encouragement and guidelines of many others. I take this opportunity to express my appreciation to the people who have been instrumental in the successful completion of this project report.

I would like to express my deepest appreciation to my project supervisor, Dr.NoridaMazlanfor his invaluable advice, ideas, encouragement, guidance, discussion and suggestion throughout this project to make sure I can finish this project smoothly. Furthermore I would also like to acknowledge with much appreciation the crucial role of laboratory staff especially En Ahmad TamsilShariff, En HishammudinZainuddin, and En JarkasiSarbinifor their guidance and help as well as assisting me during handling this project at laboratory. Their guidance and assist are giving me a good knowledge how to work in laboratory.

A special thanks goes to my beloved family especially my parent, Khairuddin bin MohdKadri and RabeahbtHjZaini for their pray, support and encouragement for me to finish this final year project. Lastly, Last but not the least, many thank go to all my friends especially to NurulAshiqinbt Mat Nawi, Mursidatunbt Ad Jalal and MohdHafizanizam b Shaari for their helping and accompany me during handling this project. Without their support and advice I will not able to finish this project in the given period.

ABSTRACT

Brown planthopper (Nilaparvatalugens) is a serious pest in rice field because it causes a directdamage to rice plant and also as a vector several serious viruses. Intensive use of similar insecticide at rice field in Malaysia has result a low mortality of BPH population today. Therefore, a study of insecticide resistance to BPH and what type of level is of great interest because if resistance could be monitored, the population and the disease that came from BPH can easily be controlled. Applying the insecticide to BPH not only can cause of resistance but also could bring another impact such as the mortality of natural enemies, BPH resurgence, effect on human health and polluting the environment. In this case studies, BPH will be collected at rice field at Kerian, Perak by using an aspirator and transfer into mylar cages in glasshouse. Taichung Native 1 of variety rice will be the planted as a food for BPH in insect rearing process where until the instar of BPH will develop into female adult. Two types of insecticide will be used in this study (Imidacloprid and Fipronil) to determine resistant level. Insecticides treatment will be applied topically on the thoracic region of insects. Mortality observation was recorded after 24 hours and 48 hours. The results from bioassays demonstrated that BPH population in 2013 has developed resistance to Imidacloprid and less resistance towards Fipronil with resistance ratio ranging from 2.71-fold and 0.59-fold respectively. By comparing BPH population in 2013 with results from 2012, Fipronil has the highest toxicity level as having the lowest LD₅₀values $(1.05 - 67.26 \,\mu g/g)$ which mean it needed only small amount of insecticides to kill half of the population. Meanwhile, Imidacloprid have least toxicity at range $(1.05 - 67.26 \,\mu\text{g/g})$ respectively.

ABSTRAK

Benaperang (Nilaparvatalugens) adalahperosaktanamanpadiutamakeranaianyamenyebabkankerosakanlansungterhadaptanamanpa didanjugamerupakanvektor virus yang serius.Penggunaanracunseranggadenganintensif di kawasantanamanpadikinitelahmenyebabkanperatuskematianbenaperangmenurun.Jadi, kajianmengenaitahapkerintanganbenaperangterhadapracunseranggadanpadatahapberapakahkeri ntangantersebutadalahperludikajidenganlebihmendalamsupayapopulasidankehadiranpenyakitme laluibenaperangbolehdibendung.Mengaplikasikanracunseranggabukansahajamenyebabkanbenap erangmenjadirintang, tetapiiajugabolehmenyebabkanimpak lain sepertikematianmusuhsemulajadibenaperang, benaperangbertambahbanyak, kesankeataskesihatanmanusiadanpencemaranterhadappersekitaranjugaturutterlibat. Dalamkajianini, benaperangakan di ambildariKeriandandibela di rumahkaca. Varietipadi Taichung akanditanamsebagaimakananbenaperangsehinggabenaperangtersebutberubahmenjadibetinadew asa. DuajenisracuniaituImidaclopriddanFipronilakandigunakanuntukdisuntikkebahagiantoraksbenap erangtersebut.Peratuskematianbenaperang yang telahdikajiakandicatatuntukdianalisistahapkerintangannya. Tahapkematianakandicatatselepas 24 iam danselepas 48 jam. Hasileksperimenmenunjukkanpopulasi BPH padatahun 2013 telahrintangterhadapracunImidaclopriddankurangrintangterhadapracunFipronildengan ratio dari 2.71dan 0.59.Denganmembandingkanpopulasi BPH 2013 dengan 2012. Fipronilmempunyaitahaptoksik tinggi $LD_{50}(1.05)$ paling 67.26 $\mu g/g$)

TABLE OF CONTENTS

	PAGES
ACKNOWLEDGEMENT	i
ABSTRACT	ii
ABSTRAK	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF PLATES	viii
LIST OF APPENDICES	ix
CHAPTER 1	
INTRODUCTION	1
PROBLEM STATEMENT AND OBJECTIVE	3

BPH

Ć

CHAPTER 2

LITERATURE REVIEW

2.1	Threat to Rice Production	4
2.2	The Brown Planthopper (<i>Nilaparvatalugens</i>) 5	
2.3	Types of Insecticide in Controlling BPH	7
2.4	Impact of Insecticide	8
2.5	Insecticide resistance development	9
	CHAPTER 3	
3.1	Material	11
3.2	Location	11
3.3	Planting Material	
	3.3.1 Planting of Taichung Native 1 Rice Variety	12
	3.3.2 Collecting of BPH from site	13
	3.3.3 Treatment	13

G

CHAPTER 4

4.1	Probit analysis Based on the Data Mortality Observed at 24 and	18	
	48 HAT		
4.2	Comparison of Insecticide Resistance on BPH from Kerianbetwee	n 2012	
	and 2013		
		20	
	4.3.1 Imidacloprid	20	
	4.3.2 Fipronil	23	
CHAPTER 5			
CONCI	USIONS	25	
REFER	ENCES	26	
APPEN	DICES	28	

LIST OF TABLE

Table		Pages
Table 1	Bioassays treatment of BPH resistant on Fipronil&	16
	Imidacloprid	
Table 2	Toxicity of insecticides at 24 HAT towards BPH,	19
	Nilaparvatalugens	
Table 3	Toxicity of insecticides at 48 HAT towards BPH,	19
	Nilaparvatalugens	
Table 4	Toxicity and Relative Potencies of Imidacloprid to BPH	
	fromKerian. Perak in 2012 and 2013	22
Table 5	Toxicity and Relative Potencies of Fipronil to BPH	
	fromKerian. Perak in 2012 and 2013	24

LIST OF FIGURES

	LIST OF FIGURES	
Figures		Pages
Figure 1	Probit Analysis of Imidacloprid between 2012 and 2013 studies	22
Figure 2	Probit Analysis of Fipronil between 2012	
	and 2013 studies	24
	LIST OF PLATES	Pages
Plate 1	Site location Sampling of Brown Planthopper N. lugens Located at	
	SgTiang, ParitBuntar. Kerian. Perak DarulRidzuan	28
Plate 2	Sampling of N. lugens by using Mouth Aspirator	28
Plate 3	Planting of TN1 Rice Variety in Glasshouse Ladang 2. UPM	29
Plate 4	Rearing of BPH	29
Plate 5	Treatment (Bioassays Topical Application)	30
Plate 5.1	Treatment (Bioassays Topical Application)	31
Plate 6	Several Apparatus Involved In Bioassays	32

LIST OF APPENDICES

Pages

Appendix 1	Pictures	28
Appendix 2	Calculation Weight of Technical Insecticides	34
Appendix 3	Standard Concentration of Insecticide Used by IRRI	35
Appendix 4	Recommeded Standard Concentrations Used for Bioassays Tests	36
Appendix 5	Polo Plus© Data Results	37
Appendix 6	Standard Residuals Plot Result	49

C

CHAPTER 1

INTRODUCTION

1.1 Introduction

The Brown Planthopper (BPH), *Nilaparvatalugens* from Delphacidae family and Homoptera order is a small plant hopper that feeds on rice plants. Feeding can cause plant injury,which show a hopperburn, due to a highly dynamic interaction between complex insect stimuli and the plant's response (Backus, Serrano, & Ranger, 2005). During 1970s, many countries in tropical Asia who develop rice field have received severe damage by BPH. The population of BPH easily can increase because of several factors such as high tillering varieties, nitrogen fertilizer and good water management. BPH have been assumed as the most destructive pest in 1970s (Thomas, 1979).

BPH actually can be controlled by several methods such as chemical method, cultural method, mechanical method, physical and biological method. However the most effective method to control BPH is by applying the insecticide (chemical method). Not only preventing the spreading of the disease, but insecticide also can cause a direct damage on BPH vector. Neonicotinoid pesticide is chemical that have been use in controlling the BPH, that is including imidacloprid, thiamethoxam, dinotefuran, nitenpyram, acetamiprid, thiacloprid, and imidaclothiz(Jeschke & Nauen, 2008). Many of these chemical is highly effective against the population of BPH.

Even so this insecticide shown a magnificent result in encounter the problem of BPH, at the same time it also brings a problem called resistance. Intensive use of these chemical has prompted of adaptation of BPH to the chemical (Wang et al., 2009). Insecticide resistance is the ability of insect to adapt the pesticide that was previously effective at controlling it. Exposure to the same of insecticides applied has made increases in BPH feeding activity, reduced length of the nymphal stages , increase adult longetivity, oviposition period, and stimulate reproduction (Ling, Zhang, & Zhang, 2011).

Rice farmers in Malaysia often apply similar insecticides in controlling this insects and this could lead for resistance in the BPH(Ooi & Heong, 1988). In laboratory studies, mortality of BPH was dependent on the dosage of applied insecticide. The sublethaleffectdoses of insecticides that show higher rates of LD₅₀ bring the result of BPH have developed resistance. The results indicate that BPH had potential to developed high level of resistance to common insecticides.

However, insecticides resistance in field populations of BPH is under control. In this paper, the insecticides resistance was studied to check if the results from laboratory treatment were true and is there any difference of resistance percentage from last year compare to this year.

1.2 Problem Statement and Objective

Continuous use of similar insecticide could result of resistance among the BPH population. If resistant happen and persist, farmer will have a problem in controlling the pest and higher pesticide concentration will be used, which will lead to more contamination into the environment. Therefore, the objective of this study is to determine if there is any insecticide resistance occurs in brown planthopper from Kerian, Perak. Secondly, to determine the level of brown planthopper resistant levels towards two different types of commonly insecticides by comparing with last year's case studies from Muhammad Adip (2012).

REFERENCES

Alavanja, R.C.M., Hoppin, A.J., Kamel, F., 2004. Health Effects of Chronic Pesticide Exposure : Cancer and Neurotoxicity. Annu. Rev. Public Health. 25:155-97.

- Backus, E. a, Serrano, M. S., & Ranger, C. M. (2005). Mechanisms of hopperburn: an overview of insect taxonomy, behavior, and physiology. *Annual review of entomology*, *50*, 125–51. doi:10.1146/annurev.ento.49.061802.123310
- Bao, H., Liu, S., Gu, J., Wang, X., Liang, X., & Liu, Z. (2009). Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. *Pest management science*, 65(2), 170–4. doi:10.1002/ps.1664
- Bottrell, D. G., & Schoenly, K. G. (2012). Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. *Journal of Asia-Pacific Entomology*, *15*(1), 122–140. doi:10.1016/j.aspen.2011.09.004
- Cheng, Y., Shi, Z., Jiang, L., Ge, L., Wu, J., & Jahn, G. C. (2012). Possible connection between imidacloprid-induced changes in rice gene transcription profiles and susceptibility to the brown plant hopper Nilaparvata lugens Stål (Hemiptera: Delphacidae). *Pesticide Biochemistry and Physiology*, 102(3), 213–219. doi:10.1016/j.pestbp.2012.01.003

Denno, F., & Roderick, G. K. (1990). POPULATION BIOLOGY OF PLANTHOPPERS, (107).

- Elbert, A., Haas, M., Springer, B., Thielert, W., & Nauen, R. (2008). Applied aspects of neonicotinoid uses in crop protection [†], *1105*(October 2007), 1099–1105. doi:10.1002/ps
- Fabellar, L. T., & Heinrichs, E. a. (1986). Relative toxicity of insecticides to rice planthoppers and leafhoppers and their predators. *Crop Protection*, 5(4), 254–258. doi:10.1016/0261-2194(86)90059-1
- Heong, K. L., Tan, K. H., Fabellar, L. T., & Lu, Z. (2011). Research Methods in Toxicology and Insecticide. IRRI.
- Jeschke, P., & Nauen, R. (2008). Neonicotinoids from zero to hero in insecticide chemistry, 1098(April), 1084–1098. doi:10.1002/ps
- Ling, S., Zhang, H., & Zhang, R. (2011). Effect of fenvalerate on the reproduction and fitness costs of the brown planthopper, Nilaparvata lugens and its resistance mechanism. *Pesticide Biochemistry and Physiology*, *101*(3), 148–153. doi:10.1016/j.pestbp.2011.08.009
- Nagata, T. (2002). Monitoring on Insecticide Resistance of the Brown Planthopper and the White Backed Planthopper in Asia. *Journal of Asia-Pacific Entomology*, 5(1), 103–111. doi:10.1016/S1226-8615(08)60138-7

- Mohd Tamami, M. A. (2012). Insecticides Resistance Of Brown Planthopper (*Nilaparvata lugens*) from IADA Utara, Kerian Perak Darul Ridzuan.
- Ooi, A. C. P., & Heong, K. L. (1988). Operation of a brown planthopper surveillance s y s t e m in , the Tanjung Karang Irrigation Scheme in Malaysia, (August), 273–278.
- Puinean, A. M., Denholm, I., Millar, N. S., Nauen, R., & Williamson, M. S. (2010). Characterisation of imidacloprid resistance mechanisms in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). *Pesticide Biochemistry and Physiology*, 97(2), 129–132. doi:10.1016/j.pestbp.2009.06.008
- Thomas, V. A. D. and B. (1979). Brown Planthopper: Threat to Rice Production in Asia. In Brown Planthopper: Threat to Rice Production in Asia.
- Wang, Y. H., Wu, S. G., Zhu, Y. C., Chen, J., Liu, F. Y., Zhao, X. P., ... Shen, J. L. (2009). Dynamics of imidacloprid resistance and cross-resistance in the brown planthopper, Nilaparvata lugens. *Entomologia Experimentalis et Applicata*, 131(1), 20–29. doi:10.1111/j.1570-7458.2009.00827.x
- Wen, Y., Liu, Z., Bao, H., & Han, Z. (2009). Imidacloprid resistance and its mechanisms in field populations of brown planthopper, Nilaparvata lugens Stål in China. *Pesticide Biochemistry and Physiology*, 94(1), 36–42. doi:10.1016/j.pestbp.2009.02.009
- Zewen, L., Zhaojun, H., Yinchang, W., Lingchun, Z., Hongwei, Z., & Chengjun, L. (2003). Selection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms. *Pest management science*, 59(12), 1355–9. doi:10.1002/ps.768