FACTORS INFLUENCING THE ACHIEVEMENT IN MATHEMATICS OF MALAY SECONDARY SCHOOL STUDENTS

CHE A. HALIM BIN CHE DAUD

FEP 2001 15
FACTORS INFLUENCING THE ACHIEVEMENT IN MATHEMATICS OF MALAY SECONDARY SCHOOL STUDENTS

By

CHE A. HALIM BIN CHE DAUD

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Management and Economics
Universiti Putra Malaysia

May 2001
DEDICATION

This work is dedicated to all mathematics teachers who have been working hard in helping their students succeed in learning mathematics.
FACTORS INFLUENCING THE ACHIEVEMENT IN MATHEMATICS
OF MALAY SECONDARY SCHOOL STUDENTS

By

CHE A. HALIM BIN CHE DAUD

MAY 2001

Chairman : Associate Professor Mohd Salleh bin Lebar, M. Sc

Faculty : Management and Economics (Department of Education)

The present situation of many secondary school students having difficulty in learning mathematics needs to be thoroughly investigated. Various factors need to be studied in order to determine why these students failed to perform satisfactorily in mathematics. For this research, a group of three hundred secondary school students were studied in order to determine the influence of students' internal characteristics on achievements in mathematics. This research focused on the following seven internal characteristics: Attitudes towards mathematics, mathematics anxiety, motivation to study mathematics, personality and behavioural characteristics, cognitive readiness, learning strategies, and learning styles.
For learning styles, Kolb’s Learning Style Inventory (1985) was used. Cognitive readiness test consisted of questions involving abstract reasoning, logical thinking, and numerical computation. For the other variables, the tests consisted of questionnaires using likert scale from one to five. Mathematics achievements were determined by the scores that the students got for mathematics in the Trial SPM Examination, 1999.

The research findings showed that mathematics achievements were significantly and positively correlated with attitudes towards mathematics, motivation to study mathematics, and personality and behavioural characteristics. Mathematics anxiety, on the other hand, had negative influence on achievements in mathematics. The result suggested that efforts must be made to reduce the level of mathematics anxiety in order to raise the students’ performance in mathematics.

Mathematics achievements were found to correlate strongly with abstract reasoning, logical thinking, and numerical computational abilities. As for learning strategies, higher achievers were found to be more oriented towards meaningful learning, as opposed to rote memorising. The findings for learning styles indicated that higher achievers were more oriented towards abstract conceptualisation and active experimentation modes of learning. Convergence was found to be the dominant learning style of students who were excellent in mathematics.
In the inter-groups comparison analyses, the findings showed that weak students did not have positive attitudes and strong motivation to succeed in learning mathematics. Their levels of mathematics anxiety were relatively high, and their personality and behavioural characteristics were relatively unfavourable. Weak students also had a relatively lower level of ability in abstract reasoning, logical thinking, and numerical computation. Weak students were more oriented towards rote memorising and concrete experiencing mode of learning.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

FAKTOR-FAKTOR YANG PEMPEGARUHI PENCAPAIAN DALAM MATEMATIK OLEH PELAJAR-PELAJAR MELAYU SEKOLAH MENENGAH

Oleh

CHE A. HALIM BIN CHE DAUD
MEI 2001

Pengerusi: Profesor Madya Mohd Salleh bin Lebar, M. Sc
Fakulti: Pengurusan dan Ekonomi (Jabatan Pendidikan)

Hasil kajian menunjukkan bahawa pencapaian dalam matematik mempunyai korelasi yang signifikan dan positif dengan sikap terhadap matematik, motivasi untuk belajar matematik, sahsiah dan ciri-ciri tingkah laku. Kerisauan terhadap matematik, di sebaliknya, mempunyai pengaruh yang negatif ke atas pencapaian dalam matematik. Hasil kajian mencadangkan usaha perlu dibuat bagi mengurangkan tahap kerisauan terhadap matematik agar pencapaian dalam matematik dapat ditingkatkan.

Pencapaian dalam matematik mempunyai korelasi yang kuat dengan kebolehan berhujah secara abstrak, berfikir secara logikal, dan mengira. Bagi strategi pembelajaran, pelajar-pelajar yang mempunyai pencapaian tinggi dalam matematik didapati lebih cenderung kepada pembelajaran yang bermakna dan bukan pembelajaran secara hafalan. Hasil kajian bagi gaya pembelajaran menunjukkan bahawa pelajar-pelajar yang mempunyai pencapaian tinggi dalam matematik lebih cenderung kepada kaedah belajar yang menekankan konseptualisasi abstrak dan pengkajian aktif. Konvergen telah didapati sebagai
gaya pembelajaran yang dominan di kalangan pelajar-pelajar yang cemerlang dalam matematik.

Dalam analisis perbandingan antara kumpulan, hasil kajian menunjukkan bahawa mereka tidak mempunyai sikap yang positif dan motivasi yang kuat untuk berjaya dalam pembelajaran matematik. Mereka mempunyai tahap kerisauan yang lebih tinggi terhadap matematik, dan sahsiah dan ciri-ciri tingkah laku yang kurang memuaskan. Pelajar-pelajar lemah mempunyai tahap keupayaan yang lebih rendah dalam penghujahan abstrak, pemikiran logikal, dan kemahiran mengira. Pelajar-pelajar lemah lebih cenderung kepada menghafal dan mengalami secara konkrit sebagai kaedah pembelajaran mereka.
ACKNOWLEDGEMENTS

I would like to thank and express my deep gratitude to both of my former and present chairman of the supervisory committee, Associate Professor Dr. Mohd Khalid bin Mohd Nor and Associate Professor Salleh bin Lebar for their invaluable contribution, inputs and supervision of my Master programme in Kolej University Terengganu, University Putra Malaysia. Without their guidance and encouragement, the study would not have succeeded and this thesis would not have been written.

I would like to express my sincere heartfelt thanks to Associate Professor Dr. Mohd Khalid bin Mohd Nor for his willingness to supervise this study as a member of the supervisory committee after his transfer to University Putra Malaysia, Serdang in June 2000. I am very much indebted to him for his invaluable contribution and inputs in the study while he was the chairman of the supervisory committee from January 1999 to June 2000. I would like to extend my appreciation and gratitude to Associate Professor Salleh bin Lebar for his guidance and contribution as chairman of the supervisory committee from June 2000 until the completion of the writing of this thesis.

I also would like to express sincere heartfelt thanks and gratitude to the committee members of the supervisory committee, Associate Professor Dr. Shamsuddin bin Hussin and Mr. Mohd Nordin bin Mohd Abdullah for their invaluable contribution in the study. Associate Professor Dr. Shamsuddin bin Hussin was not able to supervise this study until the completion of this thesis because of his retirement.
from the university in May 2000. However, I am greatly indebted to him for giving me invaluable contribution and inputs from the beginning of my Master programme in Kolej University Terengganu, University Putra Malaysia.

I also would like to extend my deep appreciation and heartfelt thanks to Associate Professor Dr. Sakri bin Ibrahim and Mr. Abdul Rahim bin Ibrahim for giving me assistance, guidance and encouragement during my study at the university.

I wish to acknowledge and express my deep gratitude to my employer, Majlis Amanah Rakyat (MARA) for giving me study leave and financial assistance which has enabled me to carry out this research for Master programme.

Finally, I would like to express my deepest gratitude to my parents. my wife and my sons and daughters. Words are not enough to express my heartfelt feelings to my parents for providing me guidance, support and encouragement since childhood. Last but not least, a very special note of sincere thanks is due to my wife, Faudziah, for her patience to bear with me throughout the course of my study. and for the inspiration, enthusiasm and encouragement which she has always given me.
I certify that an Examination Committee met on 26th July 2001 to conduct the final examination of Che A Halim bin Che Daud on his Master of Science thesis entitled “Internal Characteristics of Malay Secondary School Students and Their Relationships with Mathematics Achievements” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

WAN SALIHIN WONG ABDULLAH, Ph.D.
Associate Professor
Faculty of Management and Economics
University College of Science and Technology Malaysia
(Chairman)

MOHD SALLEH BIN LEBAR, M.Sc.
Associate Professor
Faculty of Management and Economics
University College of Science and Technology Malaysia
(Member)

MOHD KHALID BIN MOHD NOR, Ph.D.
Associate Professor
Universiti Putra Malaysia
(Member)

MOHD NORDIN BIN MOHD ABDULLAH, M.Sc.
Faculty of Management and Economics
University College of Science and Technology Malaysia
(Member)

KHALID BIN SAMO, Ph.D.
Deputy Dean of Graduate School
University College of Science and Technology Malaysia

Date: 24 SEP 2001
This thesis is submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfillment of the requirements for the degree of Master of Science.

NORHAYATI BT. MOHD TAHIR, Ph.D.
Associate Professor
Dean of Graduate School
University College of Science and Technology Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

..
CHE A. HALIM BIN CHE DAUD

Date: 24 SEP 2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
 1.1 Background of Research 1
 1.2 Research Objective 13
 1.3 Statement of Research Problem 16
 1.4 Hypotheses 19
 1.5 Expectations of Research 24
 1.6 Significance of Research 27
 1.7 Definition of Main Terms 29

2. LITERATURE REVIEW
 2.1 Attitudes Towards Mathematics 33
 2.2 Motivation to Study Mathematics 37
 2.2.1 Human Needs 39
 2.2.2 Hierarchy of Needs 41
 2.2.3 Achievement motivation 44
 2.3 Mathematics Anxiety 50
 2.4 Personality and Behavioural Characteristics 58
 2.5 Cognitive Readiness 61
 2.5.1 Piaget’s Theory of Cognitive Development 63
 2.5.2 Stage 1: Sensory-motor Experience 67
 2.5.3 Stage 2: Intuitive or Pre-operational Thought 68
 2.5.4 Stage 3: Concrete Operations 71
 2.5.5 Stage 4: Formal Operational 75
 2.6 Learning Strategies 81
 2.6.1 Rote Learning 82
 2.6.2 Instrumental Learning 88
 2.6.3 Surface and Deep Processing Strategy 90
 2.6.4 Meaningful Learning 93
 2.7 Learning Styles 100
 2.7.1 Kolb’s Model of Learning Styles 104
 2.7.2 Characteristics of the Four Learning Styles 109

xiv
LIST OF TABLES

TABLE 1.1 : Results of Trial Examination 1996

Additional Mathematics

Maktab Rendah Sains MARA, Kuala Terengganu 3

TABLE 2.1 : Kolb’s Learning Styles 106

TABLE 4.1 : Number of Papers Returned, Rejected and Accepted 136

TABLE 4.2 : Results of Correlation Tests 142

TABLE 4.3 : Results of Multiple Comparisons Tests 143

TABLE 4.4 : Correlation between SAM

and Attitudes Towards Mathematics 144

TABLE 4.5 : Correlation between SAM and Mathematics Anxiety 145

TABLE 4.6 : Correlation between SAM and Motivation to Study

Mathematics 146

TABLE 4.7 : Correlation between SAM and Personality and Behavioural

Characteristics 147

TABLE 4.8 : Correlation between SAM and Psychological Readiness 148

TABLE 4.9 : Correlation between SAM and Cognitive Readiness 149

TABLE 4.10 : Correlation between SAM and Learning Strategies 150

TABLE 4.11 : Correlation between SAM and Learning Styles 151

TABLE 4.12 : Mean Differences of Attitudes Towards Mathematics 153
TABLE 4.13 : Mean Differences of Mathematics Anxiety

TABLE 4.14 : Mean differences of Motivation to Study Mathematics

TABLE 4.15 : Mean Differences of Personality and Behavioural Characteristics

TABLE 4.16 : Mean Differences of Psychological Readiness

TABLE 4.17 : Mean Differences of Cognitive Readiness

TABLE 4.18 : Mean Differences of Learning Strategies

TABLE 4.19 : Mean Differences of AC Learning Style

TABLE 4.20 : Results of Multiple Regression Analysis

TABLE 5.1 : Personality and Behavioural Characteristics Test: Mean Scores of VESG, GSG and WSG for all items in the test
LIST OF FIGURES

FIGURE 2.1 : Maslow’s Hierarchy of Needs 42
FIGURE 2.2 : Symptoms of High Anxiety 52
FIGURE 2.3 : Flowchart of Meaningful Learning Process 96
FIGURE 2.4 : Kolb’s Model of Learning Styles (1965) 105
FIGURE 3.1 : Population and Sampling 119
FIGURE 3.2 : Learning Style Type Grid 131
FIGURE 5.1 : Analysis of Students and Their Learning Styles 183
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Many students in secondary schools have shown great difficulty in learning mathematics. Results in standardised examinations such as the standard six Ujian Penilaian Sekolah Rendah (UPSR), form three Penilaian Menengah Rendah (PMR) and form five Sijil Pelajaran Malaysia (SPM), have shown that majority of these students failed to score good grades in mathematics. Parents, teachers and others involved in education have expressed their great concern to this situation. Mathematics teachers are very much aware of this situation, and they are under intense pressure to raise the achievement level of their students in mathematics. Efforts have been made to remedy the situation, but many mathematics teachers have found that this task is not easy. Most of their efforts have not produced significant improvement in the performance of students in mathematics.

Mathematics teachers are indeed facing a challenging task in raising the ability of these students to learn mathematics. As a mathematics teacher, who has been teaching mathematics for a number of years at Maktab Rendah Sains MARA (MRSM), which is a fully residential school, the researcher finds the situation
very disturbing. Only good students who have performed well in form three PMR Examination, with at least 6As including mathematics and science, are selected to study in MRSM. Among these good selected students, there exists a large number of students who have difficulty in learning mathematics, especially additional mathematics. Even though they are highly motivated, and have given effort and shown interest towards the subject, a large number of them have shown great difficulty in learning mathematics, and subsequently, failed in tests given by their teachers.

In the end of the semester or end of the year examinations, it is normal to see the majority of these students failed in additional mathematics. Figures in table 1.1 give an example of how poorly the majority of these students performed in additional mathematics test. In non-residential schools, especially in the rural areas, we can expect to see a much more disappointing performance in additional mathematics.
Table 1.1 Results of Trial SPM Examination 1996

Maktab Rendah Sains MARA, Kuala Terengganu

Subject: Additional Mathematics

Source: Examination Unit

Maktab Rendah Sains MARA, Kuala Terengganu (1997)

<table>
<thead>
<tr>
<th>Score</th>
<th>No. of students</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>2.24</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>8.95</td>
</tr>
<tr>
<td>21</td>
<td>30</td>
<td>23.32</td>
</tr>
<tr>
<td>31</td>
<td>40</td>
<td>27.48</td>
</tr>
<tr>
<td>41</td>
<td>50</td>
<td>19.49</td>
</tr>
<tr>
<td>51</td>
<td>60</td>
<td>10.54</td>
</tr>
<tr>
<td>61</td>
<td>70</td>
<td>5.43</td>
</tr>
<tr>
<td>71</td>
<td>80</td>
<td>2.24</td>
</tr>
<tr>
<td>81</td>
<td>90</td>
<td>0.32</td>
</tr>
<tr>
<td>91</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Total number of students: 313

Min score: 37.63%

Standard deviation: 15.25

Maktab Rendah Sains MARA, Kuala Terengganu is a fully residential school.

From Table 1.1, we can see that even among these selected students, the majority
of them had not performed satisfactorily in additional mathematics. From the 313 students, 194 (62 %) scored less than 40 marks in the examination. Only one student was able to score more than 80 marks. The low min score of 37.63 % is a clear indication of how poorly this group of students performed in additional mathematics. With such an unsatisfactory performance in additional mathematics among selected students in a fully residential school, one should not be surprised to see much worse results among ordinary students in daily schools. Many of these students given up hope of succeeding in additional mathematics.

Situation like this is disheartening to mathematics teachers. Much time and effort have been given by both, the teachers and students involved, but not much success has been achieved. Many researchers in mathematics education have focussed their research on this problem. Richard R. Skemp (1986) expressed his concern with the problem of students who, though intelligent and hard-working, seemed to have a blockage about mathematics. This had led him to study and investigate the problems of learning mathematics. He suggested that there seemed to be a qualitative difference between two kinds of learning which he called habit learning or rote-memorising, and intelligent learning, which involves understanding. Because of the abstract nature of mathematical knowledge, which involves the formation of conceptual structures communicated and manipulated by means of symbols, the study of mathematics requires intelligent learning.

Gay and Cole (1967) studied mathematics learning difficulties of Kpelle pupils in Liberia. They concluded that there did not exist any inherent difficulties. What
happened in the classroom was that the contents did not make any sense from the point of view of Kpelle culture; moreover the methods used were primarily on rote memory and harsh discipline. In another study in Australia (Christie, 1985), it was found that the present approaches to mathematics education resulted in the Aboriginal children perceiving school mathematics more in terms of meaningless ritual than as a purposeful pursuit. Much of this unstable mathematical knowledge was soon forgotten.

Mathematics is abstract by nature, and abstractions take one away from a context. and knowledge learned without context is literally meaningless. Of course, mathematical ideas offer their own kind of context, so it is very possible to develop meanings within mathematics (Bishop, 1988). Mathematics involved the study of abstract objects: Facts, concepts, operations and principles (Begle, 1979). Because of its abstractness, it can be comprehended only by a few and with great difficulty.

Romberg (1992) contended that there needs to be a shift from the notion that mathematics is a set of rules and formalisms invented by experts, which everyone else is to memorise and use to obtain unique correct answers, to a view that learning mathematics involves processes of abstraction, inference and logical reasoning. From this perspective, learning mathematics should emphasise constructing mathematical meaning.
Currently, many educational researchers view learners as “architects building their own knowledge structures” (Wang, Haertel and Walberg, 1993). The learner is not a passive recipient of knowledge but an active constructor of knowledge. Learning is a process of knowledge construction, but not of knowledge recording or absorption. Current knowledge is used to construct a new knowledge. Learning is not a passive receiving of ready-made knowledge but it is a process of construction in which the students themselves have to be the primary actors (von Glasersfeld, 1991). The learner does not passively receive and record information, but he/she actively interprets and constructs meaning through the existing knowledge structures that he/she has earlier acquired.

The difficulty in learning mathematics is very much due to the highly abstract and conceptual nature of mathematical knowledge. This is further aggravated by the many symbols and notations which are used to communicate the knowledge. Many students face the problem of understanding mathematical lessons that are presented in the classrooms. They either fail to construct meaning or the meaning that they constructed is not consistent with what the teacher explains.

Learning and teaching strategies that are being practised in school very often do not promote intelligent learning. Much emphasis is put on rote-memorising and algorithmic learning. Drilling is highly practised, where students are required to solve a lot of problems with the hope that they will be able to solve similar problems in tests or examinations. A lot of emphasis is put on learning of