

TESTABLE CODE DETECTION TOOL FOR OBJECT ORIENTED

PROGRAMMING. A TOOL FOR NOVICE PROGRAMMER

SAIFUL BAHRI BIN HISAMUDIN

FSKTM 2019 20

© C
OPYRIG

HT U
PM

TESTABLE CODE DETECTION TOOL FOR OBJECT ORIENTED
PROGRAMMING. A TOOL FOR NOVICE PROGRAMMER

By

SAIFUL BAHRI BIN HISAMUDIN

Thesis submitted to School of Graduate Studies

Universiti Putra Malaysia

in Fulfillment of the Requirement for the

Master of Software Engineering

June 2019

© C
OPYRIG

HT U
PM

i

All material contained within the thesis, including without limitation text, logos, icons,

photographs and all other artwork, is copyright material of Universiti Putra Malaysia

unless otherwise stated. Use may be made of any material contained within the thesis for

non-commercial purposes from the copyright holder. Commercial use of material may

only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

ii

DEDICATION

To:

This dissertation is dedicated to my parents, Supervisor, Dr. Salmi Binti Baharom,
family and friends.

© C
OPYRIG

HT U
PM

iii

Abstract of dissertation presented to the Senate of Universiti Putra Malaysia in

fulfillment of the requirement for the degree of Master of Software Engineering

TESTABLE CODE DETECTION TOOL FOR OBJECT ORIENTED

PROGRAMMING. A TOOL FOR NOVICE PROGRAMMER

ABSTRACT

Automated software testing has gained huge attention in the last past decades due to

the rapid software development cycles. Ever increasing inherent complexity, dynamic

behaviors in system as well as new development paradigm required tedious work in

software testing. Object oriented design and programming has become the dominant

development paradigm for software projects and widely used in software development

industry. The concept of object oriented ease the software development process but it

make the testing process difficult. Subsequently, this will increase the testability effort

in software program. Prior researches analyze the complexity and testability using

object oriented design metrics where these research notably state that different

attributes may add directly to the complexity of design that require more testing efforts.

This research will focus on detecting the non-deterministic characteristics in software

program. A tool developed which able to detect pattern in method in object oriented

programming to determine the testability of the software product. The testing tool is

aim at to guide novice programmer to write testable code during software development

process.

© C
OPYRIG

HT U
PM

iv

Abstrak tesis yang dikemukakan kepada Universiti Putra Malaysia sebagai memenuhi

keperluan untuk ijazah Sarjana Kejuruteraan Perisian

TOOL UNTUK MENGESAN KEBOLEHUJIAN ATURCARA BAGI

PENGATURCARAAN BERASASKAN OBJEK. TOOL UNTUK

PENGATURCARA NOVIS.

ABSTRAK

Pengujian perisian secara automatik semakin mendapat perhatian dalam beberapa

dekad yang lepas. Sistem yang bertambah rumit dan dinamik serta kewujudan

paradigma pembangunan baru memerlukan usaha yang lebih semasa pengujian

perisian. Pengatucaraan dan reka bentuk berasaskan objek merupakan paradigma

pembangunan yang dominan dan digunakan secara meluas dalam industri

pembangunan perisian. Konsep pengaturcaraan berasaskan objek memudahkan

pembangunan perisian tetapi menyukarkan proses pengujian perisian. Oleh itu, ini

akan meningkatkan usaha terhadap kebolehujian bagi aturcara perisian. Kajian-kajian

terdahulu menganalisa kerumitan dan kebolehujian dengan menggunakan metrik

rekabentuk berasaskan objek di mana kajian tersebut menyatakan attribut berbeza

mungkin akan menambahkan kerumitan rekabentuk yang memerlukan lebih banyak

usaha semasa pengujian. Kajian ini memfokuskan kepada mengesan karekter tidak

deterministik dalam atur cara perisian. Satu alat dibangunkan di mana dapat mengesan

corak metod dalam pengaturcaraan berasaskan objek untuk menentukan kebolehujian

terhadap produk perisian. Alat pengujian ini bertujuan untuk membantu pengaturcara

novis menulis aturcara yang boleh di uji semasa proses pembangunan perisian.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENT

In the name of ALLAH, the Beneficent, the Compassionate, thanks and praise to God

for giving me strength and patience to complete my duties successfully.

I would like to express my gratitude to parents and family for supporting my education.

They have been a great support throughout my life and studies. Motivations and

encouragements from parents were never lacking in any situation.

Next, I would like to sincerely thank and express my deep thanks and gratitude to my

supervisor Dr. Salmi Binti Baharom for her endless support, guidance, correction,

encouragement, advice and valuable observations in my Master’s degree.

Finally, to all UPM staff, thanks you for your facilitation. I would like to acknowledge

to any individual who are not mentioned here for his/her irreplaceable helps and

cooperation.

.

© C
OPYRIG

HT U
PM

vi

APPROVAL

Thesis submitted to the Senate of University Putra Malaysia and has been accepted as

fulfillment of the requirement for the degree of Master of Software Engineering.

Supervisor,

Salmi Binti Baharom, PhD.

Department of Software Engineering and Information Systems

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

June, 2019

© C
OPYRIG

HT U
PM

vii

DECLARATION

I hereby confirm that:

 this thesis is my original work;

 quotations, illustrations and citations have been duly referenced;

 this thesis has not been submitted previously or concurrently for any other degree

at any other institutions;

 intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)

Rules 2012;

 written permission must be obtained from supervisor and the office of Deputy

Vice-Chancellor (Research and Innovation) before thesis is published (in the form

of written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports,

lecture notes, learning modules or any other materials as stated in the Universiti

Putra Malaysia (Research) Rules 2012;

 there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research)

Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: ________________________

Name : Saiful Bahri Bin Hisamudin

Matric No.: GS49373

© C
OPYRIG

HT U
PM

viii

TABLE OF CONTENTS
ABSTRACT.. iii

ABSTRAK... iv

ACKNOWLEDGEMENT...v

APPROVAL.. vi

DECLARATION... vii

LIST OF TABLES... x

LIST OF FIGURES..xi

LIST OF ABBREVIATIONS... xii

CHAPTER 1... 13

INTRODUCTION..13

1.1 Background...13

1.2 Problem statements... 15

1.3 Research objectives..16

1.4 Scope of the study..16

1.5 Dissertation organization... 17

CHAPTER 2... 19

LITERATURE REVIEW... 19

2.1. Software Testability...20

2.2. Non Deterministic Characteristics...23

2.3. Related Work...26

2.3.1. Sources of Non Deterministic Characteristics..26

2.3.2. Comparison on Sources of Non Deterministic...31

2.3.3. Non Deterministic Characteristic in Software Library..................................... 34

2.3.4. List of Non-Deterministic Methods..36

2.4. Summary..38

CHAPTER 3... 39

RESEARCH METHODOLOGY... 39

3.1 Overview of Research Methodology..39

3.1.1 Phase 1: Preliminary Investigation and Analysis...40

3.1.2 Phase 2: Proposing Tool..41

3.1.3 Phase 3: Tool Development... 42

© C
OPYRIG

HT U
PM

ix

3.1.4 Phase 4: Evaluating the Tool.. 42

3.1.5 Phase 5: Findings and Conclusion... 42

3.2 Summary...43

CHAPTER 4... 44

TESTABLE CODE DETECTION TOOL FOR OBJECT ORIENTED
PROGRAMMING. A TOOL FOR NOVICE PROGRAMMER............................44

4.1 Framework of the Proposed Tool...44

4.2 How the Framework Detects Non Deterministic Characteristic?.. 47

4.2.1 Detecting non deterministic characteristic using dictionary............................47

4.2.2 Steps for non deterministic characteristic detection..49

4.3 Testable Code Detection Tool.. 50

4.4 Summary...56

CHAPTER 5... 57

EVALUATION OF THE PROPOSED TOOL... 57

5.1 Evaluation method... 57

5.2 Referenced data set..59

5.3 Detecting Non Deterministic in Code Manually...60

5.4 Detecting Non Deterministic in Code Using Proposed Tool.. 61

5.5 Result and Discussion... 62

5.6 Summary...64

CHAPTER 6... 65

CONCLUSION.. 65

6.1 Research Discussion and Conclusion..65

6.2 Research Contribution..67

6.3 Research Limitations and future works..67

References...68

Appendix A: Questions..71

© C
OPYRIG

HT U
PM

x

LIST OF TABLES

Table 2.1: External Software Quality Metrics Affecting Testability.................................21

Table 2.2: Sources of Non Deterministic by C. Seguljaand and T. S Abdelrahman......... 26

Table 2.3: Sources of Non Deterministic by Sina Shamshiri et. al................................... 28

Table 2.4: Sources of Non Deterministic by Qingzhou Luo et. al.................................... 28

Table 2.5: Sources of Non Deterministic by Xu Zhou et. al... 30

Table 2.6: Sources of Non Deterministic by Amittai Aviram et. al.................................. 31

Table 2.7: Comparison on Sources of Non Deterministic... 33

Table 2.8: Non-Deterministic Methods by August Shi et. al.. 34

Table 2.9: Non-Deterministic Methods by Doug Lea et. al.. 36

Table 2.10: List of Non-Deterministic Methods..36

Table 4.1: Libraries in JSL with Description...47

Table 5.1: Referenced Libraries...59

Table 5.2 Result of Manual and Proposed Tool Detection from Student Submission...... 62

Table 5.3 Result of Manual and Proposed Tool Detection from Github Code Sample.....63

Table 5.4 Result Summary...64

© C
OPYRIG

HT U
PM

xi

LIST OF FIGURES

Figure 3.1: High Level Outlook of the Methodology in the Research.............................. 40

Figure 4.1: Framework of the Proposed Tool..45

Figure 4.2: Interface for Log In... 51

Figure 4.3:Interface for Add New Characteristic.. 51

Figure 4.4: Interface for Display List of Characteristic...52

Figure 4.5: Interface for Edit Characteristics...52

Figure 4.6: Interface for Add New Code... 53

Figure 4.7: Interface for Display List of Codes... 53

Figure 4.8: Interface for Display Code Details..54

Figure 4.9: Interface for Edit Code.. 54

Figure 4.10: Interface for List of Characteristics Details.. 55

Figure 4.11: Interface for Test Result.. 55

Figure 5.1: Evaluation Framework.. 58

© C
OPYRIG

HT U
PM

xii

LIST OF ABBREVIATIONS

OOP OBJECT ORIENTED PROGRAMMING

ISO INTERNATIONAL ORGANIZATION FOR
STANDARDIZATION

IEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS
ENGINEERS

CPU CENTRAL PROCESSING UNIT

UPM UNIVERSITI PUTRA MALAYSIA

API APPLICATION PROGRAMMING INTERFACE

OSS OPEN SOURCE SOFTWARE

JSL JAVA STANDARD LIBRARY

© C
OPYRIG

HT U
PM

13

CHAPTER 1

INTRODUCTION

1.1 Background

Software testing always perceived as being time consuming, increasing the cost and less

significant but in reality it is important to produce high quality software product. It is

mainly consist of validation and verification process that determine whether developed

system meets user’s requirement [1]. Meanwhile, implementation of object oriented

programming during software development process has improved the quality of

software product while increasing its complexity. As the complexity of software

increases, testability effort increased in line with it. Testability effort can be reduce by

automating the test which are more effective and efficient especially in large scale

software project as it may need to be executed repetitively and time consuming.

Automating the testing reduced human intervention that prone to error.

The most commonly used types of software testing are Black Box Testing,

White Box Testing and Grey-box Testing. In White Box Testing which is also known as

clear-box testing, the detailed analysis of internal structure and source code are required

where software engineer has full access to internal structure and source code of the

software. However, testing the internal structure of source code requires profound

knowledge and skill for the programming language of the source code [2]. Internal

structure of source code will determine testability effort needed by the software engineer.

© C
OPYRIG

HT U
PM

14

Testability in [12] is defined is the ease of performing testing. Software testability is an

external software quality attribute that evaluates the complexity and the effort required

for software testing where it is a key aspect in detecting difficult error to uncover defects

in software.

Testability in object oriented technology affected by encapsulation, inheritance

and coupling software design properties among others. Encapsulation is the main feature

of object oriented technology [6] where it involves the concept of information hiding.

Encapsulated parameters and methods declared as public or private will affect the

complexity and testability of software. The non-deterministic characteristic make it

impossible to test internal logic of method in the perspective of unit testing.

Therefore, there is a need to detect non-deterministic characteristics in software

program to evaluate the code testability. This research developed a testable code

detection tool that able to detect non-deterministic characteristics in software program to

determine testability of the software product. In [10] stated that testing tools help to

reduces time, cost and effort in by automating the testing process compared to manual

process which is tedious and time consuming.

© C
OPYRIG

HT U
PM

15

1.2 Problem statements

Unit testing usually considered as an approach for white box testing which is one of the

strategy in software testing. Other software testing strategy are integration testing,

system testing and acceptance test. Unit testing is a way of running a module in isolation

away is a usage of the test cases prepared and hence comparing the predicted result from

module designing and the actual result. This testing is done by the developer and the

proper knowledge of core program designing is required. It is the first level of testing

which helps to make whole picture of software testing as a complete system [5].

To enhance testing effectiveness, the developed artifacts (requirements, code)

must be designed to be testable [4]. By examining the internal logic of the code, white

box testing is basically a process of providing input values and monitoring how the

system processes in order to provide desires output. An isolated module without input

values make it impossible to test. However, module with input values may contain

untestable code’s characteristic such as poisoning the code base with non-deterministic

factors and side effect. To improve testability, bad practices in writing code must be

avoid to ensure the generated code are less troublesome, more robust and easy to

maintain.

Therefore, it would be useful to identify whether developed code are too

complex and poorly design. To determine that the code is testable, code’s characteristics

need to be assess by the software developer in the early stage of software development.

© C
OPYRIG

HT U
PM

16

In this paper we proposed a tool to detect testable code in object oriented programming

for novice programmer. The proposed tool is based on the object oriented programming

language because it is widely applicable in software development industry.

1.3 Research objectives

The main objective of this research is to propose a testing tool that can detect the non-

deterministic characteristics in software program in which be able to increase the

software testability during the testing phase. Other objectives as below:

i) To study the criteria of non-deterministic characteristics in object oriented

programming.

ii) To develop a testing tool that able to detect the non-deterministic characteristics

in object oriented programming.

iii) To compare and evaluate the effectiveness of testing tool on the software

program.

1.4 Scope of the study

The scope of this study is specifically to help the novice programmer in writing a

testable code in object oriented programming language during software development

process by detecting non-deterministic characteristics in software program.

© C
OPYRIG

HT U
PM

17

1.5 Dissertation organization

The remaining chapters of this research are ordered as follows:

CHAPTER 2 discusses general overview about software testing and its activities. It

also discusses on external software quality metrics that affecting testability such

controllability, and observability. In addition to that, it also explanation on how

controllability relate to the non-deterministic characteristic of software program. This

chapter also covered the sources of non deterministic characteristic in software program

based on the related work of the study.

CHAPTER 3 presents the overall methodology used to conduct this research in order to

achieve the main goal of the research. There are two parts: first part provides the general

overview of the methodology and divided into five phases by providing short

explanations of each phase. On the second parts, it discusses in detail the components

and how covered each phase.

CHAPTER 4 contains two main sections: the first section explain the framework of the

proposed tool in this study while second section explain implementation section of the

framework of the proposed tool.

CHAPTER 5 explains the evaluation of the study or research. An evaluation

framework provided to give an overview followed by detail explanation of evaluation

process. Then, result from manual detection compared to the result generated by the

developed tool.

© C
OPYRIG

HT U
PM

18

CHAPTER 6 gives explanation about the conclusion. It discussed the achievements of

the study based on the objectives and research questions. Then, it discussed

contributions, limitation as well as future works.

© C
OPYRIG

HT U
PM

68

References

[1] Muhammad Abid Jamil, Muhammad Arif, Normi Sham Awang Abubakar, Akhlaq
Ahmad (2016). Software Testing Techniques: A Literature Review. 2016 6th
International Conference on Information and Communication Technology for The
Muslim World. IEEE.

[2] Rashad Khalid (2017). Towards an Automated Tool for Software Testing and
Analysis. Proceedings of 2017 14th International Bhurban Conference on Applied
Sciences & Technology (IBCAST), Islamabad, Pakistan, 10th – 14th January, 2017.
IEEE.

[3] Er. Mohit kumar, Mr. Parteek Sharma and Dr. Harsh Sadawarti (2010). Measuring
Testability of Aspect Oriented Programs. 2010 International Conference on Computer
Applications and Industrial Electronics (ICCAIE 2010), December 5-7, 2010, Kuala
Lumpur, Malaysia. IEEE.

[4] Jane Huffman Hayes, Wenbin Li,Tingting Yu, Xue Han, Mark Hays, Clinton
Woodson (2015) Measuring Requirement Quality to Predict Testability. Advancing
Innovation in Residency Education(AIRE) 2015,Ottawa,ON,Canada. IEEE.

[5] Jai Gaur, Akshita Goyal, Tanupriya Choudhury, Sai Sabitha (2016). A walk through
of software testing techniques. Proceedings of the SMART -2016, IEEE Conference ID:
39669. IEEE.

[6] Sadaf Khalid,Saima Zehra, Fahim Arif (2010). Analysis of Object Oriented
Complexity and Testability Using Object Oriented Design Metrics. NSEC’10, 04-OCT-
2010, Rawalpindi, Pakistan. ACM 978-1-4503-0026-1/10/10.

[7] Khaled M. Mustafa, Rafa E. Al-Qutaish, Mohammad I. Muhairat (2009).
Classification of Software Testing Tools Based on the Software Testing Methods. 2009
Second International Conference on Computer and Electrical Engineering. IEEE.

[8] International Standard ISO/IEC/IEEE 29119-1, First edition 2013-09-01

[9] Pradeep Kumar Singh, Om Prakash Sangwan, Amar Pal Singh, Amrendra Pratap
(2015). An Assessment of Software Testability using Fuzzy Logic Technique for
Aspect-Oriented Software. I.J. Information Technology and Computer Science, 2015,
03, 18-26.

[10] Tao Xie, Nikolai Tillmann, Pratap Lakshman (2016). Advances in Unit Testing:
Theory and Practice. ICSE ’16 May 14-22, 2016, Austin, TX, USA. ACM ISBN 978-1-
4503-4205-6/16/05.

[11] IEEE Standard Glossary (1990) Page 80. IEEE.

© C
OPYRIG

HT U
PM

69

[12] Mahfuzul Huda, Dr.Y.D.S.Arya, Dr. M. H. Khan (2014). Measuring Testability of
Object Oriented Design: A Systematic Review. International Journal of Scientific
Engineering and Technology. Volume No.3 Issue No.10, pp : 1313-1319

[13] Pushpa R. Suri andHarsha Singhani (2015). Object Oriented Software Testability
(OOST) Metrics Analysis. International Journal of Computer Applications Technology
and Research. Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656.

[14] Harsha Singhani Ratnani and Dr. Pushpa R. Suri (2015). Testability Assessment
Model for Object Oriented Software based on Internal and External Quality Factors.
Global Journals Inc. (US). Volume 15 Issue 5 Version 1.0 Year 2015

[15] Vahid Garousi, Michael Felderer and Feyza Nur Kılıçaslan (2018). What we know
about software testability: a survey. Page 17.

[16] R.V. Binder (1994), Design for Testability in Object-Oriented Systems,
Communications of the ACM, 37(9): p. 87-101. ACM.

[17] Vesa Vainio andJorma Sajaniemi (2007). Factors in Novice Programmers’ Poor
Tracing Skills. ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom.
ACM 978-1-59593-610-3/07/0006.

[18] Yizhou Qian and James Lehman (2017). Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans. Comput.
Educ. 18, 1, Article 1 (October 2017), 24 pages.

[19] Joseph Devietti, Brandon Lucia, Luis Ceze, Mark Oskin (2009). DMP:
Deterministic Shared Memory Multiprocessing. ASPLOS’09, March 7–11, 2009,
Washington, DC, USA. ACM978-1-60558-406-5/09/03

[20] Marek Olszewski Jason Ansel Saman Amarasinghe (2009). Kendo: Efficient
Deterministic Multithreading in Software. ASPLOS ’09 March 7–11, 2009, Washington,
DC, USA. ACM978-1-60558-406-5/09/03.

[21] Robert L. Bocchino Jr., Vikram S. Adve, Sarita V. Adve and Marc Snir (2009).
Parallel Programming Must Be Deterministic by Default. HotPar'09 Proceedings of the
First USENIX conference on Hot topics in parallelism Pages 4-4. ACM.

[22] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, James Cownie
(2010). PinPlay: A Framework for Deterministic Replay and Reproducible Analysis of
Parallel Programs. CGO’10, April 24–28, 2010, Toronto, Ontario, Canada. ACM 978-1-
60558-635-9/10/04.

[23] Jacob Burnim and Koushik Sen (2009). Asserting and Checking Determinism for
Multithreaded Programs. ESEC-FSE’09, August 24–28, 2009, Amsterdam, The
Netherlands. ACM 978-1-60558-001-2/09/08.

© C
OPYRIG

HT U
PM

70

[24] Cedomir Segulja Tarek S. Abdelrahman (2014). What is the Cost of Determinism?.
PACT '14 Proceedings of the 23rd international conference on Parallel architectures and
compilation Pages 99-112. ACM.

[25] Mohammad Mahdi Hassan, Wasif Afzal, Martin Blom, Birgitta Lindstrom, Sten F.
Andler and Sigrid Eldh (2015). Testability and Software Robustness: A Systematic
Literature Review. 2015 41st Euromicro Conference on Software Engineering and
Advanced Applications. IEEE.

[26] Alex Gyori, Ben Lambert, Sarfraz Khurshid and Darko Marinov (2016).Exploring
Underdetermined Specifications using Java PathFinders. ACM. ISBN 978-1-4503-
2138-9.

[27] Amittai Aviram, Shu-Chun Weng,Sen Hu, Bryan Ford (2012). Efficient system-
enforced deterministic parallelism. Communications of the ACM. Volume 55 Issue 5,
May 2012. Pages 111-119. ACM.

[28] Sandra Loosemore, Richard M. Stallman, Roland McGrath, Andrew Oram, and
Ulrich Drepper. The GNU C Library Reference Manual Version 2.29.

[29] August Shi, Alex Gyori, Owolabi Legunsen and Darko Marinov (2016). Detecting
Assumptions on Deterministic Implementation of Non-deterministic Specifications.
2016 IEEE International Conference on Software Testing, Verification and Validation.

[30] Hirohiko Suwa, Akinori Ihara, Raula Gaikovina Kula, Daiki Fujibayashi, Kenichi
Matsumoto (2017). An Analysis of Library Rollbacks: A Case Study of Java Libraries.
2017 24th Asia-Pacific Software Engineering Conference Workshops. IEEE.

[31] JavaDoc “https://docs.oracle.com/javase/8/docs/api/index.html”

[32] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi and Darko Marinov (2014). An
Empirical Analysis of Flaky Tests. FSE’14, November 16–21, 2014, Hong Kong, China.
ACM 978-1-4503-3056-5/14/11.

[33] Sina Shamshiri, Ren´e Just, Jos´e Miguel Rojas�, Gordon Fraser�, Phil McMinn�
and Andrea Arcuri (2015). Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges. 2015 30th IEEE/ACM
International Conference on Automated Software Engineering. IEEE.

[34] Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung and Darko
Marinov (2018). DeFlaker: Automatically Detecting Flaky Tests Jonathan. ICSE ’18,
May 27-June 3, 2018, Gothenburg, Sweden. ACM ISBN 978-1-4503-5638-1/18/05

[35] Xu Zhou, Kai Lu, Xiaoping Wang, Wenxhe Zhang, Khai Zhang, Xu Li, Gen Li
(2013). Deterministic Message Passing for Distributed Parallel Computing. IEICE
TRANS. INF. & SYST., VOL.E96-D, NO.5 MAY 2013.

[36] Doug Lea (2005). The java.util.concurrent synchronizer framework. Science of
Computer Programming 58 (2005) 293–309. ScienceDirect.

	ABSTRACT
	 ABSTRAK
	ACKNOWLEDGEMENT
	APPROVAL
	 DECLARATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	1.1Background
	1.2Problem statements
	1.3Research objectives
	1.4Scope of the study
	1.5Dissertation organization

	CHAPTER 2
	LITERATURE REVIEW
	2.1.Software Testability
	2.2.Non Deterministic Characteristics
	2.3.Related Work
	2.3.1.Sources of Non Deterministic Characteristics
	2.3.2.Comparison on Sources of Non Deterministic
	2.3.3.Non Deterministic Characteristic in Software Libra
	2.3.4. List of Non-Deterministic Methods

	2.4.Summary

	CHAPTER 3
	RESEARCH METHODOLOGY
	3.1Overview of Research Methodology
	3.1.1Phase 1: Preliminary Investigation and Analysis
	3.1.2Phase 2: Proposing Tool
	3.1.3Phase 3: Tool Development
	3.1.4Phase 4: Evaluating the Tool
	3.1.5Phase 5: Findings and Conclusion

	3.2Summary

	CHAPTER 4
	TESTABLE CODE DETECTION TOOL FOR OBJECT ORIENTED P
	4.1Framework of the Proposed Tool
	4.2How the Framework Detects Non Deterministic Charac
	4.2.1Detecting non deterministic characteristic using d
	4.2.2Steps for non deterministic characteristic detecti

	4.3 Testable Code Detection Tool
	4.4Summary

	 CHAPTER 5
	EVALUATION OF THE PROPOSED TOOL
	5.1Evaluation method
	5.2Referenced data set
	5.3Detecting Non Deterministic in Code Manually
	5.4Detecting Non Deterministic in Code Using Proposed
	5.5Result and Discussion
	5.6Summary

	CHAPTER 6
	CONCLUSION
	6.1Research Discussion and Conclusion
	6.2Research Contribution
	6.3Research Limitations and future works

	References
	Appendix A: Questions

