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Abstract of dissertation presented to the Senate of Universiti Putra Malaysia in

fulfillment of the requirement for the degree of Master of Software Engineering

TESTABLE CODE DETECTION TOOL FOR OBJECT ORIENTED

PROGRAMMING. A TOOL FOR NOVICE PROGRAMMER

ABSTRACT

Automated software testing has gained huge attention in the last past decades due to

the rapid software development cycles. Ever increasing inherent complexity, dynamic

behaviors in system as well as new development paradigm required tedious work in

software testing. Object oriented design and programming has become the dominant

development paradigm for software projects and widely used in software development

industry. The concept of object oriented ease the software development process but it

make the testing process difficult. Subsequently, this will increase the testability effort

in software program. Prior researches analyze the complexity and testability using

object oriented design metrics where these research notably state that different

attributes may add directly to the complexity of design that require more testing efforts.

This research will focus on detecting the non-deterministic characteristics in software

program. A tool developed which able to detect pattern in method in object oriented

programming to determine the testability of the software product. The testing tool is

aim at to guide novice programmer to write testable code during software development

process.
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Abstrak tesis yang dikemukakan kepada Universiti Putra Malaysia sebagai memenuhi

keperluan untuk ijazah Sarjana Kejuruteraan Perisian

TOOL UNTUK MENGESAN KEBOLEHUJIAN ATURCARA BAGI

PENGATURCARAAN BERASASKAN OBJEK. TOOL UNTUK

PENGATURCARA NOVIS.

ABSTRAK

Pengujian perisian secara automatik semakin mendapat perhatian dalam beberapa

dekad yang lepas. Sistem yang bertambah rumit dan dinamik serta kewujudan

paradigma pembangunan baru memerlukan usaha yang lebih semasa pengujian

perisian. Pengatucaraan dan reka bentuk berasaskan objek merupakan paradigma

pembangunan yang dominan dan digunakan secara meluas dalam industri

pembangunan perisian. Konsep pengaturcaraan berasaskan objek memudahkan

pembangunan perisian tetapi menyukarkan proses pengujian perisian. Oleh itu, ini

akan meningkatkan usaha terhadap kebolehujian bagi aturcara perisian. Kajian-kajian

terdahulu menganalisa kerumitan dan kebolehujian dengan menggunakan metrik

rekabentuk berasaskan objek di mana kajian tersebut menyatakan attribut berbeza

mungkin akan menambahkan kerumitan rekabentuk yang memerlukan lebih banyak

usaha semasa pengujian. Kajian ini memfokuskan kepada mengesan karekter tidak

deterministik dalam atur cara perisian. Satu alat dibangunkan di mana dapat mengesan

corak metod dalam pengaturcaraan berasaskan objek untuk menentukan kebolehujian

terhadap produk perisian. Alat pengujian ini bertujuan untuk membantu pengaturcara

novis menulis aturcara yang boleh di uji semasa proses pembangunan perisian.
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CHAPTER 1

INTRODUCTION

1.1 Background

Software testing always perceived as being time consuming, increasing the cost and less

significant but in reality it is important to produce high quality software product. It is

mainly consist of validation and verification process that determine whether developed

system meets user’s requirement [1]. Meanwhile, implementation of object oriented

programming during software development process has improved the quality of

software product while increasing its complexity. As the complexity of software

increases, testability effort increased in line with it. Testability effort can be reduce by

automating the test which are more effective and efficient especially in large scale

software project as it may need to be executed repetitively and time consuming.

Automating the testing reduced human intervention that prone to error.

The most commonly used types of software testing are Black Box Testing,

White Box Testing and Grey-box Testing. In White Box Testing which is also known as

clear-box testing, the detailed analysis of internal structure and source code are required

where software engineer has full access to internal structure and source code of the

software. However, testing the internal structure of source code requires profound

knowledge and skill for the programming language of the source code [2]. Internal

structure of source code will determine testability effort needed by the software engineer.
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Testability in [12] is defined is the ease of performing testing. Software testability is an

external software quality attribute that evaluates the complexity and the effort required

for software testing where it is a key aspect in detecting difficult error to uncover defects

in software.

Testability in object oriented technology affected by encapsulation, inheritance

and coupling software design properties among others. Encapsulation is the main feature

of object oriented technology [6] where it involves the concept of information hiding.

Encapsulated parameters and methods declared as public or private will affect the

complexity and testability of software. The non-deterministic characteristic make it

impossible to test internal logic of method in the perspective of unit testing.

Therefore, there is a need to detect non-deterministic characteristics in software

program to evaluate the code testability. This research developed a testable code

detection tool that able to detect non-deterministic characteristics in software program to

determine testability of the software product. In [10] stated that testing tools help to

reduces time, cost and effort in by automating the testing process compared to manual

process which is tedious and time consuming.
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1.2 Problem statements

Unit testing usually considered as an approach for white box testing which is one of the

strategy in software testing. Other software testing strategy are integration testing,

system testing and acceptance test. Unit testing is a way of running a module in isolation

away is a usage of the test cases prepared and hence comparing the predicted result from

module designing and the actual result. This testing is done by the developer and the

proper knowledge of core program designing is required. It is the first level of testing

which helps to make whole picture of software testing as a complete system [5].

To enhance testing effectiveness, the developed artifacts (requirements, code)

must be designed to be testable [4]. By examining the internal logic of the code, white

box testing is basically a process of providing input values and monitoring how the

system processes in order to provide desires output. An isolated module without input

values make it impossible to test. However, module with input values may contain

untestable code’s characteristic such as poisoning the code base with non-deterministic

factors and side effect. To improve testability, bad practices in writing code must be

avoid to ensure the generated code are less troublesome, more robust and easy to

maintain.

Therefore, it would be useful to identify whether developed code are too

complex and poorly design. To determine that the code is testable, code’s characteristics

need to be assess by the software developer in the early stage of software development.
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In this paper we proposed a tool to detect testable code in object oriented programming

for novice programmer. The proposed tool is based on the object oriented programming

language because it is widely applicable in software development industry.

1.3 Research objectives

The main objective of this research is to propose a testing tool that can detect the non-

deterministic characteristics in software program in which be able to increase the

software testability during the testing phase. Other objectives as below:

i) To study the criteria of non-deterministic characteristics in object oriented

programming.

ii) To develop a testing tool that able to detect the non-deterministic characteristics

in object oriented programming.

iii) To compare and evaluate the effectiveness of testing tool on the software

program.

1.4 Scope of the study

The scope of this study is specifically to help the novice programmer in writing a

testable code in object oriented programming language during software development

process by detecting non-deterministic characteristics in software program.
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1.5 Dissertation organization

The remaining chapters of this research are ordered as follows:

CHAPTER 2 discusses general overview about software testing and its activities. It

also discusses on external software quality metrics that affecting testability such

controllability, and observability. In addition to that, it also explanation on how

controllability relate to the non-deterministic characteristic of software program. This

chapter also covered the sources of non deterministic characteristic in software program

based on the related work of the study.

CHAPTER 3 presents the overall methodology used to conduct this research in order to

achieve the main goal of the research. There are two parts: first part provides the general

overview of the methodology and divided into five phases by providing short

explanations of each phase. On the second parts, it discusses in detail the components

and how covered each phase.

CHAPTER 4 contains two main sections: the first section explain the framework of the

proposed tool in this study while second section explain implementation section of the

framework of the proposed tool.

CHAPTER 5 explains the evaluation of the study or research. An evaluation

framework provided to give an overview followed by detail explanation of evaluation

process. Then, result from manual detection compared to the result generated by the

developed tool.
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CHAPTER 6 gives explanation about the conclusion. It discussed the achievements of

the study based on the objectives and research questions. Then, it discussed

contributions, limitation as well as future works.
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