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Regression testing is conducted to ensure that changes made to a software satisfy the 

requirements and do not adversely introduce bugs to its existing functionalities. It 

involves the process of re-testing software after modifications. Ideally, to perform 

regression testing is to re-execute all the test cases on the modified software. Re-

execution of all test cases can be expensive as there might be wasting resources, could 

be costly and time consuming. The three regression testing techniques are test cases 

selection (TCS), test suite minimization (TSM) and test cases prioritization (TCP). TCS 

attempts to identify test cases that have the same relevance to some set of changes. This 

technique has the problem of selecting a significant number of test cases even for small 

changes made to a software. TSM removes obsolete test cases from the test suite. The 

drawback in minimizing the test suite is it could reduce the quality of test suite. 

 

 

To overcome the limitations of TCS and TSM, researchers proposed TCP to avoid test 

case discarding. TCP deals with the problem of test discarding and attempts to order test 

cases in an optimized order such that those with highest priority are executed earlier. One 

such criterion, is the rate of fault detection to measures how fast test cases revealed faults. 

Improved rate of faults detection can give developers chance to debug the faulty software 

earlier. To improve the rate of fault detection during  several TCP approaches are 

proposed for regression testing. Reports from literature show that these approaches are 

associated with some limitations. Most of the approaches usually considered test costs 

and fault severity to be uniform. In practice test case cost and fault severity can vary, and 

in such cases the previous metric and approaches designed to improve fault detection of 

a prioritized test cases can produced an unsatisfactory result. 

 

 

The recent trend of software development uses OO paradigm. Therefore, this study 

proposed a cost-cognizant TCP approach for object-oriented software that uses path-

based integration testing to identify the possible execution path extracted from the Java 

System Dependence Graph (JSDG) model of the source code using forward slicing 
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technique. Afterward evolutionary algorithm (EA) was employed to prioritize test cases 

based on the rate severity of fault detection per unit test cost. The proposed technique is 

named Evolutionary Cost-Cognizant Regression Test Case Prioritization (ECRTP). 

 

 

The experiment   conducted on the proposed approach and the result obtained was 

empirically evaluated and compared with some existing approaches to determine its 

efficiency and effectiveness. The average percentage of fault detection per cost (APFDc) 

metric was employed to measure the average cost per severity detection.   The analysis   

showed significant differences for both the effectiveness, efficiency and APFDc of the 

ECRTP over existing approaches such as RanPrio, RevPrio, NonPrio, JaNaMa and 

EvolRTP, which make ECRTP a promising approach to use for regression testing. 

 

 

In the future, there is a need to extend the scope of this work by incorporating information 

from the latest regression testing, consider addition object-oriented metrics such as 

coupling and cohesion, and incorporate multi-objective evolutionary processes. There is 

also a need to consider implementing this strategy for dynamic object-oriented languages 

such as Python, Lisp, and Smalltalk. 
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Ujian regresi dijalankan untuk memastikan bahawa perubahan kepada perisian 

menjadikannya menepati keperluan dan mengelak peranti pepijat dari menjejaskan 

kefungsiannya yang sedia ada.  Ia melibatkan proses menguji semula perisian selepas ia 

diubahsuai.  Secara ideal, menjalankan ujian regresi bermakna menjalankan semula 

semua kes ujian ke atas perisian yang diubahsuai.  Pengendalian semula semua kes ujian 

boleh menelan belanja yang besar oleh kerana pembaziran sumber boleh berlaku, dan ia 

juga memakan masa.  Ketiga-tiga teknik ujian regresi adalah pilihan kes ujian (TCS), 

minimisasi suit ujian (TSM) dan keutamaan kes ujian (TCP). TCS cuba untuk 

mengenalpasti kes ujian yang sama kerelevanannya dengan beberapa set perubahan.  

Teknik ini mempunyai masalah memilih beberapa kes ujian walaupun untuk perubahan 

yang kecil kepada sesuatu perisian.  TSM menyahkan kes ujian yang sudah luput dari 

suit ujian.  Kelemahan dalam meminima suit ujian ialah ia dapat mengurangkan kualiti 

0suit ujian.    

 

 

Untuk mengatasi kekangan TCS dan TSM, para pengkaji mencadangkan TCP untuk 

mengelak kes ujian dari dibuang.  TCP mengendalikan masalah pembuangan ujian dan 

cuba untuk menyusun kes ujian dalam susunan yang optima dalam keadaan di mana ujian 

yang mempunyai keutamaan tertinggi telah dilaksanakan lebih awal.  Satu kriterion, 

adalah kadar pengesanan ralat untuk mengukur sejauh mana kes ujian pantas 

mendedahkan ralat.  Kadar meningkat pengesanan ralat boleh memberi peluang kepada 

para pembangun untuk menyah-peranti pepijat perisian yang rosak. 

 

 

Trend pembangunan perisian baru-baru ini menggunakan paradigma OO. Laporan dari 

literatur  menunjukkan bahawa pendekatan-pendekatan ini dikaitkan dengan beberapa 

kekangan.  Kebanyakan pendekatan mempertimbangkan kos ujian dan keseriusan 

kerosakan agar ia diseragamkan, tetapi hakikatnya ia berlainan di antara satu sama lain. 

Tambahan pula, dapat diperhatikan bahawa ada kerosakan yang berlaku sebagai hasil 

daripada kerosakan yang lain.  Mengenalpasti dan mengatasi kerosakan yang mempunyai 
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keseriusan yang lebih tinggi pada peringkat awal memberi peluang kepada pembangun 

untuk menyah-peranti pepijat perisian dengan lebih cepat, dan dengan itu meningkatkan 

lagi masa penyampaian.   

 

 

Tren terkini pembangunan perisian menggunakan paradigma OO. Maka itu, kajian ini 

mencadangkan satu pendekatan TCP yang celik-kos untuk perisian berorientasikan objek 

yang menggunakan ujian integrasi berasaskan laluan. Ujian integrasi ini akan 

mengenalpasti laluan pelaksanaan yang berkemungkinan dan mengestrak laluan-laluan 

ini dari model Java System Dependence Graph (JSDG) kod sumber menggunakan teknik 

potongan ke depan forward slicing technique. Algoritma berevolusi atau EA 

kemudiannya digunakan untuk mengutamakan kes ujian berdasarkan keseriusan 

pengesanan per kos unit untuk setiap satu kerosakan terlibat.  Teknik yang disarankan 

dikenali sebagai Evolutionary Cost-Cognizant Test Case Prioritization (ECRTP) dan ia 

digunakan sebagai alat ujian regresi untuk eksperimen.   

 

 

Eksperimen yang dijalankan ke atas pendekatan yang disarankan dan keputusan yang 

diperolehi telah dinilai secara empirikal dan dibandingkan dengan beberapa pendekatan 

sedia ada untuk menentukan keberkesanan dan kecekapannya.  Purata peratusan 

pengesanan metrik ralat per kos (APFDc) telah digunakan untuk menyukat kos purata 

untuk setiap pengesanan keseriusannya.  Analisis menunjukkan kelainan yang signifikan 

untuk keberkesanan, kecekapan dan APFDc untuk ECRTP berbanding dengan 

pendekatan-pendekatan sedia ada seperti rawak, terbalik, tidak tersusun dan JaNaMa, 

yang menjadikan ECRTP satu alat yang baik untuk pengujian regresi. 

 

 

Untuk masa yang akan datang, terdapat keperluan untuk mengembangkan skop kajian 

ini dengan menggunakan maklumat dari ujian regresi yang terkini, dengan memberi 

pertimbangan kepada metric-metrik tambahan yang berorientasikan objek, seperti 

coupling dan cohesion, dan turut menggunakan proses-proses evolusi objektif.  Terdapat 

juga keperluan untuk melaksanakan strategi ini untuk bahasa-bahasa berorientasikan 

objek seperti Python, Lisp, dan Smalltalk. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Software testing is an activity aimed at raising the quality and reliability of software 

product. It is the process of executing software with the aim of finding bugs. Testing 

plays important role in software quality assurance. It demonstrates that software work as 

expected. During the software development process, a software product is tested to 

validate the changes introduced into the already well-functioned software system. The 

process of revalidating software product during maintenance phase is called regression 

testing. 

Regression testing is performed between two different versions of software to provide 

confidence that the newly introduced features of the System under Test (SuT) do not 

interfere with the existing features. It verifies that the software still performs correctly 

after it was changed. Changes may include software enhancements, patches, 

configuration changes, etc. during regression testing, new software bugs or regression 

may be revealed. Therefore, regression testing ensures that modifications to the software 

have not introduced new faults and fulfil their intended purpose by correctly updating 

the software functionality. 

During the software development process, regression testing is performed as part of the 

software maintenance, before the software is released. Being performed multiple times, 

regression testing can have profound effect on the software budget (Malishevsky et al., 

2006). In that instance, regression testing accounts for a large percent of software 

development cost (Elbaum et al., 2001; Huang et al., 2012; Jiang and Chan, 2015; 

Schwartz and Do, 2016; Tulasiraman and Kalimuthu, 2018; Wu et al., 2014), which 

means even small reduction in regression testing cost can have a significant effect on the 

software development cost. In addition to the reduction of the cost of software 

development, reducing regression testing time can speed the process of producing new 

software version earlier than could be possible. 

Software engineers frequently develop test suite for regression testing and reuse it across 

different regression testing session (Harman et al., 2015). However, to test new software 

features, new test cases are added to the existing test suite. As a result, the test suite 

increases in size and consequently the cost of executing the test suite increases. For 

example, it was reported that, to test a software product of about 20,000 line of code, the 

whole test suite required seven weeks to run. 

To reduce the cost of regression testing, several techniques have been proposed (Yoo and 

Harman, 2010). Khan et al. (2014), Miranda and Bertolino (2016), Sethi et al. (2014), 

Velmurugan and Mahapatra (2016), Zhang et al. (2014), Zhang et al. (2015) employed 
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test suite minimization by reducing the test suite during regression testing. Researchers 

such as Chen and Lau (2001), Grindal et al. (2006), Kazmi et al. (2017), Musa (2014), 

Beena and Sarala (2013), Suppriya and Ilavarasi (2015), Yoo and Harman (2007) 

proposed a regression testing techniques that select a subset of the test suite to test a 

particular software. 

Test case prioritization seeks to find the ideal ordering of test cases for regression testing, 

so that the tester obtain maximum benefit, even if the testing is prematurely halted at 

some arbitrary point (Indumathi and Selvamani, 2015; Kavitha and Sureshkumar, 2010; 

Kayes, 2011; Musa, 2014; Park et al., 2008; Patil et al., 2016; Shameem and Kanagavalli, 

2013; Tulasiraman and Kalimuthu, 2018; Z. H. Zhang et al., 2012). The approach was 

first studied by (Wong et al., 1998). Later, Sinha et al. (1999) proposed the approach in 

a more general context which was evaluated by (Rothermel et al., 1999). 

1.2 Problem Statement 

Regression testing is performed between two different versions of software to provide 

confidence that the newly introduced features of the SuT do not interfere with the existing 

functionalities. Basically, test case prioritization is performed to increase the rate of 

faults detection for regression testing during software maintenance. An improved rate of 

fault detection can provide faster feedback on the SuT, enabling debugging to start earlier 

and increase the likelihood that, if testing is abruptly stopped, those test cases with the 

greatest fault detection in the test suite would have been executed. 

Ideally, to perform regression testing, tester should re-execute all the test cases in the test 

suite on the affected program (Fang et al., 2014). Re-executing all the test cases can be 

pervasive, tedious and expensive especially when the test suite size is big (Do et al., 

2006). Test cases can be chosen randomly to reduce the cost of executing the whole test 

suite (Zhou et al., 2011). However, chosen test cases at random might result in only 

executing small portion of the modified component of the software (Srikanth et al., 

2016). 

Over the years, several test case prioritization approaches have been developed (Rava 

and Wan-Kadir, 2016). These approaches have been explored and their efficacy is 

evaluated in achieving certain criteria. However, most of these approaches focus on 

procedural languages with only few on object-oriented programs (J. Chen et al., 2018), 

lots of features differentiate object-oriented and procedure oriented programming 

concepts (Stefik and Bobrow, 1985; Wiedenbeck et al., 1999). Authors such as  Panda et 

al. (2016) and Sultan et al. (2014) addressed object-oriented programs but have the 

assumption that test case costs and fault severities are uniform. While in real sense, test 

case costs and fault severities vary (Malishevsky et al., 2006). 

Although some of these approaches Tulasiraman and Kalimuthu (2018), Wang et al. 

(2016) used varying costs of test cases and severities of faults, but focused only on 

procedural programs. Moreover, most of these approaches adopted local search strategies 
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to search for an optimized order of test cases for regression testing, meanwhile, these 

strategies mostly terminate at local optima (Sanchez et al., 2014) and (Srivastava and 

Kim, 2009). Consequently, an evolutionary optimization technique based on genetic 

algorithm (GA) Mitchell (1998) and Whitley (2001) has been reported to produce an 

astonishingly better result when applied for propitiating test cases. 

 

 

Previous test case prioritization assumed that all test cases are equally expensive, and all 

fault are equally severe (Bello et al, 2018). While this is appropriate in some cases, in 

other cases is an oversimplification. Some test cases can simply detect an error in an 

input and terminate almost immediately, while other test cases can involve computations 

that requires hour to complete. Similarly, some test cases require resource usage such as 

equipment, expandable materials, or human labor (Malishevsky et al., 2006), while 

different test cases may utilize little or no equipment or human labor (Elbaum et al., 

2001). Under these circumstances, when evaluating the relative worth of test cases, we 

need to account for these differences in costs. Similarly, in many situations, faults differ 

in severity. One fault can be a simple error in an interface which many users would 

tolerate. While another fault can result into inaccurate parameter supply to a device which 

can result in program failure, or even catastrophes such as aircraft control or radiation 

overdose (Huang et al., 2012). Fault severity, too, may be an important component to 

consider. 

 

 

Tulasiraman and Kalimuthu (2018) proposed a cost-cognizant history-based test case 

prioritization approach that uses historical information of test case such as test case costs, 

faults, and severities of fault for prioritization. The approach manually seeds faults to the 

original programs, and there is no clear representation of the internal structure of the 

programs considered during the experimentation. Furthermore, the approach cannot 

guarantee that the affected components, by the changed information, are those detected 

by the test cases. Moreover, the approach considers only procedural programs. Program 

features such as encapsulation, inheritance, polymorphism and dynamic binding are not 

available in procedure-oriented programs, as such approach developed to prioritize 

procedural programs may not be suitable for object-oriented programs. Musa et al., 

(2016) proposed a regression test case prioritization for object-oriented programs. The 

approach developed to prioritize test case for regression testing of object-oriented 

programs using reduced severity of faults used Genetic Algorithm (GA) for computing 

the fitness value of test cases. While developed with Java programming language, the 

approach uses ESDG for representing the internal structure of the program under test 

(PuT). ESDG was developed for C++, which does not support static member functions 

and static member variables, as such ESDG model developed to represent the internal 

structure of Java program may not capture the exact structure of the program intended to 

capture. Moreover, the authors used APFD for measuring the average percentage of fault 

detection of the approach. While the approach uses different fault severities for fitness 

value computation, and APFD was developed on the assumption that all faults across the 

PuT are uniform.  The measure computed by APFD might not to be the exact measure 

intended to measure. 

 

 

Furthermore, Lou et al. (2015) proposed test case prioritization approach for software 

evolution. The approach uses mutation faults on the difference between the early and 

later versions of a software. The approach uses statistical-based and probability-based 
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models to measure the fault detection capability of the approach. Panigrahi and Mall 

(2014) proposed a heuristic-based TCP based on the analysis of dependence model of 

OOP. Their technique builds an intermediate dependence model of a program from the 

source code of the programs. The model is updated to reflect the corresponding changes 

whenever the program is modified. The approach identifies affected nodes by 

constructing the union of forward slices corresponding to each changed element. Test 

case that covers one or more affected nodes are selected for regression testing. The 

weights of test cases are computed by assigning a value that corresponds to the weight 

of the affected nodes. This approach assumed both test costs and faults severities to be 

uniform. 

 

 

Velmurugan and Mahapatra (2016) proposed a GA-based regression TCP approach that 

considers branch coverage DU (Definition-Used) pair coverage for effective 

prioritization of test cases. However, the experimental procedure, experimental objects, 

and procedure used by the approach for representing the program were not clearly 

mentioned. Furthermore, there is no enough analysis to prove the validity of the results 

obtained from the experiment. 

 

 

Consequently, this study proposes an evolutionary cost-cognizant regression TCP 

approach for OOP based on the use of the previous test case execution record and a GA. 

Tests costs, faults severities, and faults detected by each test case from the latest  

regression testing are gathered and then use a GA to find an order with the greatest rate 

of units of fault severity detected per unit test cost. 

 

 

1.3 Research Question 

This section presents the research questions for the study. The questions serve as the 

focal point of the investigation that will be addressed by the empirical study for this 

research. The questions addressed are as followed. 

 

 

RQ1- How efficient is the GA-based Evolutionary Cost-cognizant Regression Test 

Prioritization (ECRTP) approach for OOP in terms of faults detection when compared 

with other approaches? In other words, does GA-based ECRTP approach for OOP 

increases the efficiency of the prioritize test cases for fault detection as compare to other 

approaches? 

 

 

RQ2- How effective is GA-based Evolutionary Cost-cognizant Regression Test 

Prioritization (ECRTP) approach for OOP in terms of fault detection as compared with 

other approaches? In other words, does GA-based ECRTP approach for OOP increases 

the effectiveness of prioritized test cases to detect faults as compared with other 

approaches? 
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RQ3- Does GA-based Evolutionary Cost-cognizant Regression Test Prioritization 

(ECRTP) for OOP increases the average percentage of faults detection per cost (APFDc) 

as compared with other approaches? In other words, to what extent GA-based 

Evolutionary Cost-cognizant Regression Test Prioritization (ECRTP) performs in terms 

of APFDc as compared with other approaches? 

 

 

1.4 Objectives of the Study 

Regression test case prioritization and Object-oriented Programming (OOP) are active 

fields of research, integration of both concepts is an important activity in software 

maintenance, as it can improve software quality in general. Thus, the main objective of 

this research is to combine evolutionary algorithms, Genetic Algorithm (GA) specific, 

with OOP to develop automated test case prioritization for regression testing. In order to 

achieve the main objective, the list below outline the specific objectives of the research: 

 

 To propose a GA-based evolutionary cost-cognizant regression testing 

approach for OOP that considers varying tests costs and faults severities. 

 

 To develop a prototype tool that uses GA to implement a cost-cognizant 

regression test case prioritization for object-oriented programs. 

 

 To empirically evaluate the efficiency of testing effort, effectiveness of fault 

detection and average percentage of fault detection per cost (APFDc) of the 

proposed approach. 

 

 

1.5 Scope of the Study 

This research has the following scopes: 

 

1. This study is limited to test case prioritization of object-oriented programs and 

the coverage information generated from the source code using path-based 

integration testing. The mutants considered are generated at both class and 

method levels of the source code. The initial source codes were assumed to be 

tested and worked as designed. JUnit framework is the testing framework from 

which test cases would be developed. 

 

 

2. This study focuses on object-oriented programs written in Java programming 

language that is the widely used programming language in implementing the 

OO technology. Therefore, this study does not consider programs created with 

other languages, like C++, C#. 

 

 

3. The study did not use APFD metric for measuring the percentage  of rate of 

fault detection for the prioritization approaches as a result of the limitations 

identified by the literature review that are associated to the metric. 
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1.6 Contributions of the Study 

This is study is expected to make the following contributions: 

 Contributes to the software testing community by providing an effective and 

efficient technique for faults detection with GA-based evolutionary cost-

cognizant regression test case prioritization technique. 

 Provide an efficient and effective test case prioritization technique to software 

development community which will make their development work faster at 

meeting the time scheduled time for the project. 

 Increase into the body of knowledge of software testing and software 

engineering in general by adding another finding available literature. 

 

 

1.7 Organization of the Thesis 

This thesis is reported in seven chapters organized in chronological order from the 

introduction to the conclusion and future work. The first chapter gives an introduction of 

the thesis. It presents the background, problem statement, research question, research 

objectives, scope of the study and research contributions of the thesis. Chapter two 

presents the literature review of the thesis. It presents the detail review of the key areas 

that lay foundation for this research work and highlights gaps in the related literature. It 

also presents existing techniques for regression test case prioritization. Chapter three 

presents the general overview of the research methodology and the materials used for the 

research objectives to be achieved, and to implement the prototype support for the 

proposed regression testing technique. Chapter four presents the new regression testing 

technique, which an evolutionary regression testing approach for object-oriented 

programs. In chapter five, experiments were presented and trials to answer the research 

question were also demonstrated. Experimental results, analysis, and discussion were 

presented in chapter six. While seven covers the conclusion and feature work. 
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