
 
 

 
EVOLUTIONARY COST-COGNIZANT REGRESSION TEST CASE 

PRIORITIZATION FOR OBJECT-ORIENTED PROGRAMS 
 

 
 
 
 
 
 
 
 
 

ABDULKARIM BELLO 
 
 
 
 
 
 
 
 
 
 
 
 
 

FSKTM 2019 6 



© C
OPYRIG

HT U
PM

EVOLUTIONARY COST-COGNIZANT REGRESSION TEST CASE 

PRIORITIZATION FOR OBJECT-ORIENTED PROGRAMS  

By 

ABDULKARIM BELLO 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 

Fulfilment of the Requirement for the Degree of Doctor of Philosophy 

April 2019 



© C
OPYRIG

HT U
PM

 

 

COPYRIGHT 

 

All material contained within the thesis, including without limitation text, logos, icons, 

photographs, and all other work is copyright material of Universiti Putra Malaysia unless 

otherwise stated. Use may made of any material contained within the thesis for non-

commercial purposes from the copyright holder. Commercial use of the material may 

only be made with the express, prior, written permission of the Universiti Putra Malaysia. 

 

 

Copyright © Universiti Putra Malaysia. 



© C
OPYRIG

HT U
PM

 

 

DEDICATION 

 

 

To my parents.  

  



© C
OPYRIG

HT U
PM

i 

 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the Degree of Doctor of Philosophy 

 

 

EVOLUTIONARY COST-COGNIZANT REGRESSION TEST CASE 

PRIORITIZATION FOR OBJECT-ORIENTED PROGRAMS 

 

 

By 

 

 

ABDULKARIM BELLO 

 

 

April 2019 

 

 

Chairman: Professor Abu Bakar Md Sultan, PhD 

Faculty:  Computer Science and Information Technology 

 

 

Regression testing is conducted to ensure that changes made to a software satisfy the 

requirements and do not adversely introduce bugs to its existing functionalities. It 

involves the process of re-testing software after modifications. Ideally, to perform 

regression testing is to re-execute all the test cases on the modified software. Re-

execution of all test cases can be expensive as there might be wasting resources, could 

be costly and time consuming. The three regression testing techniques are test cases 

selection (TCS), test suite minimization (TSM) and test cases prioritization (TCP). TCS 

attempts to identify test cases that have the same relevance to some set of changes. This 

technique has the problem of selecting a significant number of test cases even for small 

changes made to a software. TSM removes obsolete test cases from the test suite. The 

drawback in minimizing the test suite is it could reduce the quality of test suite. 

 

 

To overcome the limitations of TCS and TSM, researchers proposed TCP to avoid test 

case discarding. TCP deals with the problem of test discarding and attempts to order test 

cases in an optimized order such that those with highest priority are executed earlier. One 

such criterion, is the rate of fault detection to measures how fast test cases revealed faults. 

Improved rate of faults detection can give developers chance to debug the faulty software 

earlier. To improve the rate of fault detection during  several TCP approaches are 

proposed for regression testing. Reports from literature show that these approaches are 

associated with some limitations. Most of the approaches usually considered test costs 

and fault severity to be uniform. In practice test case cost and fault severity can vary, and 

in such cases the previous metric and approaches designed to improve fault detection of 

a prioritized test cases can produced an unsatisfactory result. 

 

 

The recent trend of software development uses OO paradigm. Therefore, this study 

proposed a cost-cognizant TCP approach for object-oriented software that uses path-

based integration testing to identify the possible execution path extracted from the Java 

System Dependence Graph (JSDG) model of the source code using forward slicing 



© C
OPYRIG

HT U
PM

ii 

 

technique. Afterward evolutionary algorithm (EA) was employed to prioritize test cases 

based on the rate severity of fault detection per unit test cost. The proposed technique is 

named Evolutionary Cost-Cognizant Regression Test Case Prioritization (ECRTP). 

 

 

The experiment   conducted on the proposed approach and the result obtained was 

empirically evaluated and compared with some existing approaches to determine its 

efficiency and effectiveness. The average percentage of fault detection per cost (APFDc) 

metric was employed to measure the average cost per severity detection.   The analysis   

showed significant differences for both the effectiveness, efficiency and APFDc of the 

ECRTP over existing approaches such as RanPrio, RevPrio, NonPrio, JaNaMa and 

EvolRTP, which make ECRTP a promising approach to use for regression testing. 

 

 

In the future, there is a need to extend the scope of this work by incorporating information 

from the latest regression testing, consider addition object-oriented metrics such as 

coupling and cohesion, and incorporate multi-objective evolutionary processes. There is 

also a need to consider implementing this strategy for dynamic object-oriented languages 

such as Python, Lisp, and Smalltalk. 

 

  



© C
OPYRIG

HT U
PM

iii 

 

Abstrak tesis yang dekemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

 

 

KEUTAMAAN KES UJIAN REGRESI KESAN KOS EVOLUSIONER UNTUK 

PROGRAM BERORIENTASIKAN OBJEK 

 

 

Oleh 

 

 

ABDULKARIM BELLO 

 

 

April 2019 

 

 

Pengerusi : Professor Abu Bakar Md Sultan, PhD 

Fakulti  : Sains Komputer dan Teknologi Maklumat 

 

 

Ujian regresi dijalankan untuk memastikan bahawa perubahan kepada perisian 

menjadikannya menepati keperluan dan mengelak peranti pepijat dari menjejaskan 

kefungsiannya yang sedia ada.  Ia melibatkan proses menguji semula perisian selepas ia 

diubahsuai.  Secara ideal, menjalankan ujian regresi bermakna menjalankan semula 

semua kes ujian ke atas perisian yang diubahsuai.  Pengendalian semula semua kes ujian 

boleh menelan belanja yang besar oleh kerana pembaziran sumber boleh berlaku, dan ia 

juga memakan masa.  Ketiga-tiga teknik ujian regresi adalah pilihan kes ujian (TCS), 

minimisasi suit ujian (TSM) dan keutamaan kes ujian (TCP). TCS cuba untuk 

mengenalpasti kes ujian yang sama kerelevanannya dengan beberapa set perubahan.  

Teknik ini mempunyai masalah memilih beberapa kes ujian walaupun untuk perubahan 

yang kecil kepada sesuatu perisian.  TSM menyahkan kes ujian yang sudah luput dari 

suit ujian.  Kelemahan dalam meminima suit ujian ialah ia dapat mengurangkan kualiti 

0suit ujian.    

 

 

Untuk mengatasi kekangan TCS dan TSM, para pengkaji mencadangkan TCP untuk 

mengelak kes ujian dari dibuang.  TCP mengendalikan masalah pembuangan ujian dan 

cuba untuk menyusun kes ujian dalam susunan yang optima dalam keadaan di mana ujian 

yang mempunyai keutamaan tertinggi telah dilaksanakan lebih awal.  Satu kriterion, 

adalah kadar pengesanan ralat untuk mengukur sejauh mana kes ujian pantas 

mendedahkan ralat.  Kadar meningkat pengesanan ralat boleh memberi peluang kepada 

para pembangun untuk menyah-peranti pepijat perisian yang rosak. 

 

 

Trend pembangunan perisian baru-baru ini menggunakan paradigma OO. Laporan dari 

literatur  menunjukkan bahawa pendekatan-pendekatan ini dikaitkan dengan beberapa 

kekangan.  Kebanyakan pendekatan mempertimbangkan kos ujian dan keseriusan 

kerosakan agar ia diseragamkan, tetapi hakikatnya ia berlainan di antara satu sama lain. 

Tambahan pula, dapat diperhatikan bahawa ada kerosakan yang berlaku sebagai hasil 

daripada kerosakan yang lain.  Mengenalpasti dan mengatasi kerosakan yang mempunyai 



© C
OPYRIG

HT U
PM

iv 

 

keseriusan yang lebih tinggi pada peringkat awal memberi peluang kepada pembangun 

untuk menyah-peranti pepijat perisian dengan lebih cepat, dan dengan itu meningkatkan 

lagi masa penyampaian.   

 

 

Tren terkini pembangunan perisian menggunakan paradigma OO. Maka itu, kajian ini 

mencadangkan satu pendekatan TCP yang celik-kos untuk perisian berorientasikan objek 

yang menggunakan ujian integrasi berasaskan laluan. Ujian integrasi ini akan 

mengenalpasti laluan pelaksanaan yang berkemungkinan dan mengestrak laluan-laluan 

ini dari model Java System Dependence Graph (JSDG) kod sumber menggunakan teknik 

potongan ke depan forward slicing technique. Algoritma berevolusi atau EA 

kemudiannya digunakan untuk mengutamakan kes ujian berdasarkan keseriusan 

pengesanan per kos unit untuk setiap satu kerosakan terlibat.  Teknik yang disarankan 

dikenali sebagai Evolutionary Cost-Cognizant Test Case Prioritization (ECRTP) dan ia 

digunakan sebagai alat ujian regresi untuk eksperimen.   

 

 

Eksperimen yang dijalankan ke atas pendekatan yang disarankan dan keputusan yang 

diperolehi telah dinilai secara empirikal dan dibandingkan dengan beberapa pendekatan 

sedia ada untuk menentukan keberkesanan dan kecekapannya.  Purata peratusan 

pengesanan metrik ralat per kos (APFDc) telah digunakan untuk menyukat kos purata 

untuk setiap pengesanan keseriusannya.  Analisis menunjukkan kelainan yang signifikan 

untuk keberkesanan, kecekapan dan APFDc untuk ECRTP berbanding dengan 

pendekatan-pendekatan sedia ada seperti rawak, terbalik, tidak tersusun dan JaNaMa, 

yang menjadikan ECRTP satu alat yang baik untuk pengujian regresi. 

 

 

Untuk masa yang akan datang, terdapat keperluan untuk mengembangkan skop kajian 

ini dengan menggunakan maklumat dari ujian regresi yang terkini, dengan memberi 

pertimbangan kepada metric-metrik tambahan yang berorientasikan objek, seperti 

coupling dan cohesion, dan turut menggunakan proses-proses evolusi objektif.  Terdapat 

juga keperluan untuk melaksanakan strategi ini untuk bahasa-bahasa berorientasikan 

objek seperti Python, Lisp, dan Smalltalk. 

 

 

  



© C
OPYRIG

HT U
PM

v 

AKNOWLEDGEMENT 

First of all, I wish to thank Allah Subhanahu Wa Ta’ala for endowing me with the 

courage, patience, and guidance to complete this study. I will also like to thank several 

people who have contributed in one way or the other towards the successful completion 

of this PhD research work. 

I would like to sincerely acknowledge and appreciate the consistent support, guidance, 

encouragements, contributions and fatherly advice I received from my Supervisor, 

Professor Dr Abu Bakar Md Sultan, who despite his tight schedules, always been very 

committed to the smooth progress of this research work. I greatly appreciate the 

contributions accorded to me by other members of the supervisory team, Professor Dr 

Abdul Azim Abdul Ghani and Associate Professor Hazura Zulzalil. They have been 

incredibly supportive, constructive, and remarkably contributed to the success of this 

study. 

The success of this study would not have been a reality without the everlasting love, 

support, understanding, encouragements, and prayers I received from my parents whom 

I love and cherish dearly. I would also wish to acknowledge the encouragements and 

support I received from brothers, sisters, and friends. I wish to acknowledge the care and 

guidance I received from my mentor, in person of Dr. Abubakar Roko, who always listen 

to  me whenever I have issues regarding my study. To all you, I am highly pleased and 

grateful. 

I wish to acknowledge the management of Usmanu Danfodiyo University Sokoto, 

Nigeria for giving me this opportunity as well as the encouragements I received from 

colleagues in the University 

. 



© C
OPYRIG

HT U
PM

vii 

This thesis was submitted to the senate of the Universiti Putra Malaysia and has been 

accepted as fulfilment for the degree of Doctor of Philosophy. The members of the 

Supervisory Committee were as follows: 

Abu Bakar Md Sultan, PhD 

Professor 

Faculty of Computer Science and Information Technology 

Universiti Putra Malaysia 

(Chairman) 

Abdul Azim Abdul Ghani, PhD 

Professor 

Faculty of Computer Science and Information Technology 

Universiti Putra Malaysia 

(Member) 

Hazura Zulzalil, PhD 

Associate Professor 

Faculty of Computer Science and Information Technology 

Universiti Putra Malaysia 

(Member) 

ROBIAH BINTI YUNUS, PhD 

Professor and Dean 

School of Graduate Study 

Universiti Putra Malaysia 

Date: 



© C
OPYRIG

HT U
PM

viii 

 

Declaration by Graduate Student 

 

 

I hereby confirm that: 

 this thesis is my original work; 

 quotations, illustrations and citations have been duly referenced; 

 this thesis has not been submitted previously or concurrently for any other degree 

at any other institutions; 

 intellectual properties from the thesis and copyright of the thesis  are fully-owned 

by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia 

(Research) Rules 2012; 

 written permission must be obtained from the supervisor and the office of Deputy 

Vice-Chancellor (Research and Innovation) before this thesis is published (in the 

form of written, printed or in electronic form), including books, journals, modules, 

proceedings, popular writings, seminar papers, manuscripts, posters, reports, 

lecture notes, learning modules or any other materials as stated in the Universiti 

Putra Malaysia (Research) Rules 2012; 

 there is no plagiarism or data falsification/ fabrication in the thesis, and scholarly 

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) 

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) 

Rules 2012. The thesis has undergone plagiarism detection software. 

 

 

 

 

Signature:     Date:  

 

 

 

Name and Matric No.: Abdulkarim Bello (GS45175) 

 

  



© C
OPYRIG

HT U
PM

ix 

 

Declaration by Members of the Supervisory Committee 

 

 

This is to confirm that: 

 the research conducted, and the writing of this thesis was under our supervision; 

 supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate 

Studies) Rules 2003 (Revision 2012-2013) are adhered to. 

 

 

 

 

Signature: 

Name of the Chairman of   

Supervisory     

Committee:     

     Professor Dr. Abu Bakar Md Sultan 

 

 

 

 

 

 

Signature: 

Name of the Member of   

Supervisory     

Committee:     

      Professor Dr. Abdul Azim Abdul Ghani 

 

 

 

 

 

Signature: 

Name of the Member of   

Supervisory  

Committee:     

     Associate Professor Dr. Hazura Zulzalil 

  



© C
OPYRIG

HT U
PM

x 

 

TABLE OF CONTENTS 

 

Page 

ABSTRACT i 

ABSTRAK iii 

AKNOWLEDGEMENT v 

APPROVAL vi 

DECLARATION viii 

LIST OF TABLES xiii 

LIST OF FIGURES xiv 

LIST OF ABBREVIATIONS xv 

 

CHAPTER 

 

1 INTRODUCTION 1 
1.1 Background 1 
1.2 Problem Statement 2 
1.3 Research Question 4 
1.4 Objectives of the Study 5 
1.5 Scope of the Study 5 
1.6 Contributions of the Study 6 
1.7 Organization of the Thesis 6 

2 LITERATURE REVIEW 7 
2.1 Introduction 7 
2.2 Overview of Software Maintenance 7 

2.2.1 Definition of Software Maintenance 7 
2.2.2 Software maintenance Approaches 8 

2.3 Software Testing 8 
2.3.1 Software Testing Methods 9 
2.3.2 Static and Dynamic Testing 9 
2.3.3 Manual and Automated Testing 10 

2.4 Object-Oriented Paradigm 10 
2.4.1 The Object-Oriented Programming 11 
2.4.2 Fundamental Concept of OOP 11 
2.4.3 Object-Oriented Testing 14 

2.5 Regression Testing 15 
2.5.1 Test Suite Minimization 16 
2.5.2 Test Case Selection 16 
2.5.3 Test Case Prioritization 16 

2.6 Search Algorithms 18 
2.6.1 Random Search 18 
2.6.2 Local Search Algorithms 19 
2.6.3 Evolutionary Search Algorithms 20 
2.6.4 Evolutionary-based Test Case Prioritization Approaches 21 

2.7 Approaches used for Comparison 31 
2.7.1 No Prioritization (NoPrio) 31 



© C
OPYRIG

HT U
PM

xi 

 

2.7.2 Reversed Prioritization (RevPrio) 31 
2.7.3 Random Prioritization (RanPrio) 31 
2.7.4 JaNaMa 31 
2.7.5 EvolRTP 32 

2.8 Program Representation 33 
2.8.1 Program Slicing 33 
2.8.2 Program Representation for Regression TC P of OOP 34 

2.9 Cost and Severity Estimation 35 
2.9.1 Estimation of Test Case Cost 35 
2.9.2 Estimation of Fault Severity 36 

2.10 Summary 36 

3 RESEARCH METHODOLOGY 37 
3.1 Introduction 37 
3.2 Literature Review 38 
3.3 The Proposed Regression Test Case Prioritization for OOP 38 

3.3.1 Test Case Prioritization Problem 38 
3.3.2 Design Principles and Assumptions 39 
3.3.3 The ECRTP Approach 40 

3.4 Empirical Evaluation 41 
3.4.1 Experimental Setup 42 
3.4.2 Variables and Measures 43 
3.4.3 Experiment Operation 44 
3.4.4 MuJava Tool 45 

3.5 Results Analysis and Discussion 46 
3.6 Summary 47 

4 EVOLUTIONARY COST-COGNIZANT REGRESSION TEST 

CASE PRIORITIZATION (ECRTP) 48 
4.1 Introduction 48 
4.2 Overview of the Proposed Approach 48 

4.2.1 Conceptual Design of ECRTP 50 
4.2.2 ECRTP Algorithm Design 59 

4.3 Illustrative Example 61 
4.3.1 Fitness value computation 63 
4.3.2 Test Case Selection 65 
4.3.3 Crossover 65 
4.3.4 Mutation 65 

4.4 Implementation of ECRTP 67 
4.4.1 Requirements of ECRTP 67 
4.4.2 The Architecture of ECRTP 67 
4.4.3 Execution of the ECRTP 69 

4.5 Summary 71 

5 EMPIRICAL EVALUATION 72 
5.1 Introduction 72 
5.2 Experimental Definitions 73 
5.3 Experimental Planning 74 

5.3.1 Context Selection 74 
5.3.2 Program Objects 74 



© C
OPYRIG

HT U
PM

xii 

5.3.3 Experiment Design 76 
5.3.4 Instrumentation 76 

5.4 Experiment Operations 77 
5.4.1 Experimental Environment 77 
5.4.2 Experiment Execution Process 77 

5.5 Normality Adequacy Checking 79 
5.6 Threats to Validity 80 

5.6.1 Internal Validity 80 
5.6.2 External Validity 80 
5.6.3 Construct Validity 80 
5.6.4 Conclusion Validity 81 

5.7 Summary 81 

6 RESULT ANALYSIS AND DISCUSSION 82 
6.1 Introduction 82 
6.2 The effectiveness of the Cost-Cognizant Approaches 82 

6.2.1 Experimental Data on the Cost-Cognizant Approaches 82 
6.2.2 Analysis of the Cost-cognizant Approaches 85 
6.2.3 Discussion 86 

6.3 Test Effort Efficiency (TEEpa) 87 
6.3.1 Experimental Data on Test Effort Efficiency (TEEpa) 87 
6.3.2 Analysis of Test Effort Efficiency 89 
6.3.3 Hypothesis Testing on Test Effort Efficiency 92 
6.3.4 Discussion 95 

6.4 Effectiveness of Fault Detection 95 
6.4.1 Experimental Data on Fault Detection Effectiveness 96 
6.4.2 Analysis of Fault Detection Effectiveness 98 
6.4.3 Hypothesis Testing on Effectiveness of Fault Detection 100 
6.4.4 Discussion 103 

6.5 APFDc 103 
6.5.1 Experimental Data on APFDc 104 
6.5.2 Analysis of APFDc 106 
6.5.3 Hypothesis Testing of APFDc 108 
6.5.4 Discussion 109 

6.6 Summary 110 

7 CONCLUSION, CONTRIBUTION AND FUTURE WORK 111 
7.1 Conclusion 111 
7.2 Contribution 112 
7.3 Future Work 113 

REFERENCES 114 
BIODATA OF STUDENT 152 
LIST OF PUBLICATIONS 153 



© C
OPYRIG

HT U
PM

xiii 

 

LIST OF TABLES 

 

 

Table          Page 

2.1 Categories of Software maintenance 8 
2.2 Categories of Software Maintenance 8 
2.3 Traditional Software Testing Methods 9 
2.4 Static and Dynamic Testing 10 
2.5 Manual and Automated Testing 10 
2.6 Object-oriented testing 15 
2.7 Evaluation of Some Evolutionary Algorithms 21 
2.8 Summery of the related works 24 
2.9 Graph Models for Program Representation 32 
3.1 Class Level Mutation [(Ma et al., 2006)] 45 
3.2 Traditional Level Mutation [Source: (Ma et al., 2016)] 46 
4.1 Example of Test Cases and Costs 49 
4.2 Example of Faults Exposed and their Severities 49 
4.3 Initial population 63 
4.4 Award Value Computed for Chromosome1 64 
4.5 Initial Population and their Fitness Value 64 
4.6 First generation and Their Fitness values 66 
5.1 Experimental Objects and their Properties 75 
5.2 Experimental Design 76 
5.3 Mutants, Test and Test trial 79 
5.4 Shapiro-Wilk Normality Test at 0.05 Significant Level 80 
6.1 Experimental Data for the Effectiveness of Cost-cognizant Approaches 84 
6.2 Experimental Data of Test Effort Efficiency 88 
6.3 Test Effort Efficiency Data 93 
6.4 ANOVA Test Result for Test Effort Efficiency 93 
6.5 Tukey Multiple Comparisons of Mean for Test Effort Efficiency 94 
6.6 Experimental Data of the Fault Detection Effectiveness 97 
6.7 Effectiveness of Fault Detection Data 101 
6.8 ANOVA Test Result for the Effectiveness of Fault Detection 102 
6.9 Tukey multiple comparisons of means for Effectiveness 102 
6.10 Experimental Data of APFDc 105 
6.11 ANOVA Test Result for APFDc 108 
6.12 Tukey multiple comparisons of mean for APFDc 108 

  



© C
OPYRIG

HT U
PM

xiv 

LIST OF FIGURES 

Figure  Page 

2.1 Example of Inheritance 12 
2.2 Example of Polymorphism 13 
2.3 Example of Encapsulation 14 
2.4 Example of Aggregation relationships 14 
2.5 A Simplified Random Search Algorithm 19 
2.6 A Simplified Local Search Algorithm 20 
2.7 General Structure of an Evolutionary Algorithm 20 
2.8 Program slice 33 
3.1 Overview of the Research Method 37 
4.1 Overview of ECRTP 50 
4.2 Conceptual Design of ECRTP 52 
4.3 Program Slicer 53 
4.4 Algorithm for Test Cases Selection 54 
4.5 Algorithm for test Case Encoder 55 
4.6 Algorithm for Random Population Generation 56 
4.7 Algorithm for Fitness Evaluator 56 
4.8 Algorithm for Crossover 57 
4.9 Single-Point Crossover Demonstration 58 
4.10 Algorithm for Mutation 58 
4.11 Demonstration of Mutation 59 
4.12 Algorithm for ECRTP 60 
4.13 Algorithm for Computing Test Case Award Value 61 
4.14 Diagrammatic Representation of Crossover 65 
4.15 Mutation Operation on Childs’ Chromosomes 66 
4.16 Architecture of ECRTP 68 
4.17 Login Page of ECRTP 70 
4.18 ECRTP Home Page 71 
5.1 Overview of the Empirical Evaluation 72 
5.2 Experiment execution process 78 
6.1 Effectiveness of the Cost-cognizant Approaches 85 
6.2 Percentage Effectiveness of the Cost-cognizant Approaches 86 
6.3 Execution Time the Prioritization Approaches 89 
6.4 Average Execution time of the Prioritization 90 
6.5 Test Effort Efficiency (TEEpa) 91 
6.6 Average Test Effort Efficiency (TEEpa) 92 
6.7 Effectiveness of Fault Detection 98 
6.8 Average Effectiveness of Fault Detection 99 
6.9 APFDc 106 
6.10 Average APFDc 107 



© C
OPYRIG

HT U
PM

xv 

 

LIST OF ABBREVIATIONS 

 

 

𝐴𝑘  Test case award value 

ACO            Ant Colony Optimization 

ANOVA  Analysis of variance 

APFD  Average Percentage of rate of Fault Detection 

APFDc  Average Percentage of rate of Fault Detection per Cost 

ATRS  Airline Ticket Reservation System 

BAC  Bank Account 

BCO  Bea Colony Optimization 

BST  Binary Search Tree 

CCNA  Cisco Certified Network Associate 

CFG  Control Flow Graph 

ClDG  Class Dependence Graph 

CPU  Central Processing Unit 

DU  Definition-Used 

ECS  Elevator Control System 

EFFpa  Effectiveness of Fault Detection3 

EP  Evolutionary Programming 

ESDG  Extended System Dependence Graph 

GA  Genetic Algorithm 

HCA  Hill Climbing Algorithm 

HCS  Highly Configurable System 

HDD  Hard Disk 

HIR  Historical Information Repository 

IDE  Integrated Development Environment 

InDG  Interface Dependence Graph 

JSDG  Java System Dependence Graph 

LS  Local Search 

mACO  Modified Ant Colony Optimization 

MCSE  Microsoft Certified System Engineer 

MDG  Method Dependence Graph 

MEP  Module Execution Path 

MuJava  Mutation System for Java 

NonPrio  No Prioritization 

NSGA-II  Non-Dominated Sorting Genetic Algorithm II 

NYSC  National Youth Service Corps 

OOM  Object-Oriented Modelling 

OOPs  Object-Oriented Programs 

PaDG  Package Dependence Graph 

PDG  Program Dependence Graph 

PSA  Particle Swarm Algorithm 

RanPrio  Random Prioritization 

RCBD  Randomized Complete Block Design 

RevPrio  Reversed Prioritization 

RQ1  First Research Question 

RQ2  Second Research Question 

RQ3  Third Research Question 

RS  Random Search 



© C
OPYRIG

HT U
PM

xvi 

 

RTP  Regression Test Prioritization 

SA  Simulated Annealing 

SBO  Search Based Optimization 

SBST  Search Based Software Testing 

SC  Single-point Crossover 

SCIA  Software Change Impact Analysis 

SDG  System Dependence Graph 

SIR  Software-artefact Infrastructure Repository 

SLL  Singly Linked List 

SuT  System under Test 

TCP  Test Case Prioritization 

TCR  Test Case Repository 

TEEpa  Test Effort Efficiency 

Tri  Triangle 

TS  Tabu Search 

UcVs  Uniform Costs Varying Severities 

UML  Unified Modeling Language 

VcUs  Varying Costs Uniform Severities 

VcVs  Varying Cost Varying Severity 

 



© C
OPYRIG

HT U
PM

1 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

Software testing is an activity aimed at raising the quality and reliability of software 

product. It is the process of executing software with the aim of finding bugs. Testing 

plays important role in software quality assurance. It demonstrates that software work as 

expected. During the software development process, a software product is tested to 

validate the changes introduced into the already well-functioned software system. The 

process of revalidating software product during maintenance phase is called regression 

testing. 

Regression testing is performed between two different versions of software to provide 

confidence that the newly introduced features of the System under Test (SuT) do not 

interfere with the existing features. It verifies that the software still performs correctly 

after it was changed. Changes may include software enhancements, patches, 

configuration changes, etc. during regression testing, new software bugs or regression 

may be revealed. Therefore, regression testing ensures that modifications to the software 

have not introduced new faults and fulfil their intended purpose by correctly updating 

the software functionality. 

During the software development process, regression testing is performed as part of the 

software maintenance, before the software is released. Being performed multiple times, 

regression testing can have profound effect on the software budget (Malishevsky et al., 

2006). In that instance, regression testing accounts for a large percent of software 

development cost (Elbaum et al., 2001; Huang et al., 2012; Jiang and Chan, 2015; 

Schwartz and Do, 2016; Tulasiraman and Kalimuthu, 2018; Wu et al., 2014), which 

means even small reduction in regression testing cost can have a significant effect on the 

software development cost. In addition to the reduction of the cost of software 

development, reducing regression testing time can speed the process of producing new 

software version earlier than could be possible. 

Software engineers frequently develop test suite for regression testing and reuse it across 

different regression testing session (Harman et al., 2015). However, to test new software 

features, new test cases are added to the existing test suite. As a result, the test suite 

increases in size and consequently the cost of executing the test suite increases. For 

example, it was reported that, to test a software product of about 20,000 line of code, the 

whole test suite required seven weeks to run. 

To reduce the cost of regression testing, several techniques have been proposed (Yoo and 

Harman, 2010). Khan et al. (2014), Miranda and Bertolino (2016), Sethi et al. (2014), 

Velmurugan and Mahapatra (2016), Zhang et al. (2014), Zhang et al. (2015) employed 



© C
OPYRIG

HT U
PM

2 

test suite minimization by reducing the test suite during regression testing. Researchers 

such as Chen and Lau (2001), Grindal et al. (2006), Kazmi et al. (2017), Musa (2014), 

Beena and Sarala (2013), Suppriya and Ilavarasi (2015), Yoo and Harman (2007) 

proposed a regression testing techniques that select a subset of the test suite to test a 

particular software. 

Test case prioritization seeks to find the ideal ordering of test cases for regression testing, 

so that the tester obtain maximum benefit, even if the testing is prematurely halted at 

some arbitrary point (Indumathi and Selvamani, 2015; Kavitha and Sureshkumar, 2010; 

Kayes, 2011; Musa, 2014; Park et al., 2008; Patil et al., 2016; Shameem and Kanagavalli, 

2013; Tulasiraman and Kalimuthu, 2018; Z. H. Zhang et al., 2012). The approach was 

first studied by (Wong et al., 1998). Later, Sinha et al. (1999) proposed the approach in 

a more general context which was evaluated by (Rothermel et al., 1999). 

1.2 Problem Statement 

Regression testing is performed between two different versions of software to provide 

confidence that the newly introduced features of the SuT do not interfere with the existing 

functionalities. Basically, test case prioritization is performed to increase the rate of 

faults detection for regression testing during software maintenance. An improved rate of 

fault detection can provide faster feedback on the SuT, enabling debugging to start earlier 

and increase the likelihood that, if testing is abruptly stopped, those test cases with the 

greatest fault detection in the test suite would have been executed. 

Ideally, to perform regression testing, tester should re-execute all the test cases in the test 

suite on the affected program (Fang et al., 2014). Re-executing all the test cases can be 

pervasive, tedious and expensive especially when the test suite size is big (Do et al., 

2006). Test cases can be chosen randomly to reduce the cost of executing the whole test 

suite (Zhou et al., 2011). However, chosen test cases at random might result in only 

executing small portion of the modified component of the software (Srikanth et al., 

2016). 

Over the years, several test case prioritization approaches have been developed (Rava 

and Wan-Kadir, 2016). These approaches have been explored and their efficacy is 

evaluated in achieving certain criteria. However, most of these approaches focus on 

procedural languages with only few on object-oriented programs (J. Chen et al., 2018), 

lots of features differentiate object-oriented and procedure oriented programming 

concepts (Stefik and Bobrow, 1985; Wiedenbeck et al., 1999). Authors such as  Panda et 

al. (2016) and Sultan et al. (2014) addressed object-oriented programs but have the 

assumption that test case costs and fault severities are uniform. While in real sense, test 

case costs and fault severities vary (Malishevsky et al., 2006). 

Although some of these approaches Tulasiraman and Kalimuthu (2018), Wang et al. 

(2016) used varying costs of test cases and severities of faults, but focused only on 

procedural programs. Moreover, most of these approaches adopted local search strategies 



© C
OPYRIG

HT U
PM

3 

 

to search for an optimized order of test cases for regression testing, meanwhile, these 

strategies mostly terminate at local optima (Sanchez et al., 2014) and (Srivastava and 

Kim, 2009). Consequently, an evolutionary optimization technique based on genetic 

algorithm (GA) Mitchell (1998) and Whitley (2001) has been reported to produce an 

astonishingly better result when applied for propitiating test cases. 

 

 

Previous test case prioritization assumed that all test cases are equally expensive, and all 

fault are equally severe (Bello et al, 2018). While this is appropriate in some cases, in 

other cases is an oversimplification. Some test cases can simply detect an error in an 

input and terminate almost immediately, while other test cases can involve computations 

that requires hour to complete. Similarly, some test cases require resource usage such as 

equipment, expandable materials, or human labor (Malishevsky et al., 2006), while 

different test cases may utilize little or no equipment or human labor (Elbaum et al., 

2001). Under these circumstances, when evaluating the relative worth of test cases, we 

need to account for these differences in costs. Similarly, in many situations, faults differ 

in severity. One fault can be a simple error in an interface which many users would 

tolerate. While another fault can result into inaccurate parameter supply to a device which 

can result in program failure, or even catastrophes such as aircraft control or radiation 

overdose (Huang et al., 2012). Fault severity, too, may be an important component to 

consider. 

 

 

Tulasiraman and Kalimuthu (2018) proposed a cost-cognizant history-based test case 

prioritization approach that uses historical information of test case such as test case costs, 

faults, and severities of fault for prioritization. The approach manually seeds faults to the 

original programs, and there is no clear representation of the internal structure of the 

programs considered during the experimentation. Furthermore, the approach cannot 

guarantee that the affected components, by the changed information, are those detected 

by the test cases. Moreover, the approach considers only procedural programs. Program 

features such as encapsulation, inheritance, polymorphism and dynamic binding are not 

available in procedure-oriented programs, as such approach developed to prioritize 

procedural programs may not be suitable for object-oriented programs. Musa et al., 

(2016) proposed a regression test case prioritization for object-oriented programs. The 

approach developed to prioritize test case for regression testing of object-oriented 

programs using reduced severity of faults used Genetic Algorithm (GA) for computing 

the fitness value of test cases. While developed with Java programming language, the 

approach uses ESDG for representing the internal structure of the program under test 

(PuT). ESDG was developed for C++, which does not support static member functions 

and static member variables, as such ESDG model developed to represent the internal 

structure of Java program may not capture the exact structure of the program intended to 

capture. Moreover, the authors used APFD for measuring the average percentage of fault 

detection of the approach. While the approach uses different fault severities for fitness 

value computation, and APFD was developed on the assumption that all faults across the 

PuT are uniform.  The measure computed by APFD might not to be the exact measure 

intended to measure. 

 

 

Furthermore, Lou et al. (2015) proposed test case prioritization approach for software 

evolution. The approach uses mutation faults on the difference between the early and 

later versions of a software. The approach uses statistical-based and probability-based 



© C
OPYRIG

HT U
PM

4 

 

models to measure the fault detection capability of the approach. Panigrahi and Mall 

(2014) proposed a heuristic-based TCP based on the analysis of dependence model of 

OOP. Their technique builds an intermediate dependence model of a program from the 

source code of the programs. The model is updated to reflect the corresponding changes 

whenever the program is modified. The approach identifies affected nodes by 

constructing the union of forward slices corresponding to each changed element. Test 

case that covers one or more affected nodes are selected for regression testing. The 

weights of test cases are computed by assigning a value that corresponds to the weight 

of the affected nodes. This approach assumed both test costs and faults severities to be 

uniform. 

 

 

Velmurugan and Mahapatra (2016) proposed a GA-based regression TCP approach that 

considers branch coverage DU (Definition-Used) pair coverage for effective 

prioritization of test cases. However, the experimental procedure, experimental objects, 

and procedure used by the approach for representing the program were not clearly 

mentioned. Furthermore, there is no enough analysis to prove the validity of the results 

obtained from the experiment. 

 

 

Consequently, this study proposes an evolutionary cost-cognizant regression TCP 

approach for OOP based on the use of the previous test case execution record and a GA. 

Tests costs, faults severities, and faults detected by each test case from the latest  

regression testing are gathered and then use a GA to find an order with the greatest rate 

of units of fault severity detected per unit test cost. 

 

 

1.3 Research Question 

This section presents the research questions for the study. The questions serve as the 

focal point of the investigation that will be addressed by the empirical study for this 

research. The questions addressed are as followed. 

 

 

RQ1- How efficient is the GA-based Evolutionary Cost-cognizant Regression Test 

Prioritization (ECRTP) approach for OOP in terms of faults detection when compared 

with other approaches? In other words, does GA-based ECRTP approach for OOP 

increases the efficiency of the prioritize test cases for fault detection as compare to other 

approaches? 

 

 

RQ2- How effective is GA-based Evolutionary Cost-cognizant Regression Test 

Prioritization (ECRTP) approach for OOP in terms of fault detection as compared with 

other approaches? In other words, does GA-based ECRTP approach for OOP increases 

the effectiveness of prioritized test cases to detect faults as compared with other 

approaches? 

 

  



© C
OPYRIG

HT U
PM

5 

 

RQ3- Does GA-based Evolutionary Cost-cognizant Regression Test Prioritization 

(ECRTP) for OOP increases the average percentage of faults detection per cost (APFDc) 

as compared with other approaches? In other words, to what extent GA-based 

Evolutionary Cost-cognizant Regression Test Prioritization (ECRTP) performs in terms 

of APFDc as compared with other approaches? 

 

 

1.4 Objectives of the Study 

Regression test case prioritization and Object-oriented Programming (OOP) are active 

fields of research, integration of both concepts is an important activity in software 

maintenance, as it can improve software quality in general. Thus, the main objective of 

this research is to combine evolutionary algorithms, Genetic Algorithm (GA) specific, 

with OOP to develop automated test case prioritization for regression testing. In order to 

achieve the main objective, the list below outline the specific objectives of the research: 

 

 To propose a GA-based evolutionary cost-cognizant regression testing 

approach for OOP that considers varying tests costs and faults severities. 

 

 To develop a prototype tool that uses GA to implement a cost-cognizant 

regression test case prioritization for object-oriented programs. 

 

 To empirically evaluate the efficiency of testing effort, effectiveness of fault 

detection and average percentage of fault detection per cost (APFDc) of the 

proposed approach. 

 

 

1.5 Scope of the Study 

This research has the following scopes: 

 

1. This study is limited to test case prioritization of object-oriented programs and 

the coverage information generated from the source code using path-based 

integration testing. The mutants considered are generated at both class and 

method levels of the source code. The initial source codes were assumed to be 

tested and worked as designed. JUnit framework is the testing framework from 

which test cases would be developed. 

 

 

2. This study focuses on object-oriented programs written in Java programming 

language that is the widely used programming language in implementing the 

OO technology. Therefore, this study does not consider programs created with 

other languages, like C++, C#. 

 

 

3. The study did not use APFD metric for measuring the percentage  of rate of 

fault detection for the prioritization approaches as a result of the limitations 

identified by the literature review that are associated to the metric. 

 

  



© C
OPYRIG

HT U
PM

6 

 

1.6 Contributions of the Study 

This is study is expected to make the following contributions: 

 Contributes to the software testing community by providing an effective and 

efficient technique for faults detection with GA-based evolutionary cost-

cognizant regression test case prioritization technique. 

 Provide an efficient and effective test case prioritization technique to software 

development community which will make their development work faster at 

meeting the time scheduled time for the project. 

 Increase into the body of knowledge of software testing and software 

engineering in general by adding another finding available literature. 

 

 

1.7 Organization of the Thesis 

This thesis is reported in seven chapters organized in chronological order from the 

introduction to the conclusion and future work. The first chapter gives an introduction of 

the thesis. It presents the background, problem statement, research question, research 

objectives, scope of the study and research contributions of the thesis. Chapter two 

presents the literature review of the thesis. It presents the detail review of the key areas 

that lay foundation for this research work and highlights gaps in the related literature. It 

also presents existing techniques for regression test case prioritization. Chapter three 

presents the general overview of the research methodology and the materials used for the 

research objectives to be achieved, and to implement the prototype support for the 

proposed regression testing technique. Chapter four presents the new regression testing 

technique, which an evolutionary regression testing approach for object-oriented 

programs. In chapter five, experiments were presented and trials to answer the research 

question were also demonstrated. Experimental results, analysis, and discussion were 

presented in chapter six. While seven covers the conclusion and feature work. 

  



© C
OPYRIG

HT U
PM

114 

 

REFERENCES 

 

 

Abhinandan, H. P., Goveas, N., & Rangarajan, K. (2016). Regression Test Suite 

Prioritization using Residual Test Coverage Algorithm and Statistical Techniques. 

International Journal of Education and Management Engineering, 6(5), 32–39. 

https://doi.org/10.5815/ijeme.2016.05.04 

Acharya, A. A., Mahali, P., & Mohapatra, D. P. (2015). Computational Intelligence in 

Data Mining - Volume 3. Computational Intelligence in Data Mining Smart 

Innovation, Systems and Technologies, 33, 429–440. https://doi.org/10.1007/978-

81-322-2202-6 

Afzal, W., Torkar, R., & Feldt, R. (2009). A systematic review of search-based testing 

for non-functional system properties. Information and Software Technology, 

51(6), 957–976. https://doi.org/10.1016/j.infsof.2008.12.005 

Ahmed, A. A., Shaheen, M., & Kosba, E. (2012). Software Testing Suite Prioritization 

Using Multi-Criteria Fitness Function. Iccta, (c), 160–166. 

Alakeel, A. M. (2012). A Fuzzy Test Cases Prioritization Technique for Regression 

Testing Programs with Assertions. In ADVCOMP 2012 : The Sixth International 

Conference on Advanced Engineering Computing and Applications in Sciences 

(pp. 78–82). 

Ansari, A., Khan, A., Khan, A., & Mukadam, K. (2016). Optimized Regression Test 

Using Test Case Prioritization. In 7th International Conference on 

Communication, Computing and Virtualization (pp. 152–160). Elsevier Masson 

SAS. 

Arafeen, M. J., & Do, H. (2013). Test case prioritization using requirements-based 

clustering. In Proceedings - IEEE 6th International Conference on Software 

Testing, Verification and Validation, ICST 2013 (pp. 312–321). 

https://doi.org/10.1109/ICST.2013.12 

Arora, Vinay, Rajesh Kumar Bhatia, M. S. (2012). Evaluation of Flow Graph and 

Dependence Graphs for Program Representation. International Journal of 

Computer Applications (0975 – 8887), 56(14), 18–23. 

https://doi.org/10.5120/8959-3161 

Ashraf, E., Rauf, A., & Mahmood, K. (2012). Value based Regression Test Case 

Prioritization. In World Congress on Engineering and Computer Science 2012 Vol 

I WCECS 2012, October 24-26, 2012, San Francisco, USA (Vol. I, pp. 978–988). 

Avritzer, A., & Weyuker, E. J. (1995). The Automatic Generation of Load Test Suites 

and the Assessment of the Resulting Software. IEEE Transactions on Software 

Engineering, 21(9), 705–716. https://doi.org/10.1109/32.464549 

 



© C
OPYRIG

HT U
PM

115 

 

Bannon, T. J., Ford, S. J., Joseph, V. J., Perez, E. R., Peterson, R. W., Sparacin, D. M., 

… others. (1994). System and method for database management supporting object-

oriented programming. Google Patents. 

Barillari, F., Gorga, I., & Piccinini, S. (2018). Collaborative maintenance of software 

programs. Google Patents. 

Beena, R., & Sarala, S. (2013). Code Coverage Based Test Case Selection. International 

Journal of Software Engineering & Applications (IJSEA), 4(6), 39–49. 

https://doi.org/10.5121/ijsea.2013.4604 

Bello, A., Sultan, A., Abdul Ghani, A. A., & Zulzalil, H. (2018). Evolutionary Cost 

Cognizant Regression Test Prioritization for Object-Oriented Programs Based on 

Fault Dependency. International Journal of Engineering and Technology, 7(4.1), 

28–32. 

Bennett, K. H. (1997). Software maintenance: A tutorial. Software Engineering, IEEE 

Computer Society, 289–303. 

Bergeretti, J.-F., & Carré, B. A. (1985). Information-flow and data-flow analysis of 

while-programs. ACM Transactions on Programming Languages and Systems, 

7(1), 37–61. https://doi.org/10.1145/2363.2366 

Bhojasia, M. K. (2011a). Java Program to Implement a Binary Search Tree using Linked 

Lists. Retrieved from https://www.sanfoundry.com/java-program-implement-

binary-search-tree-using-linked-list/ 

Bhojasia, M. K. (2011b). Java Program to Implement Singly Linked List. Retrieved from 

https://www.sanfoundry.com/java-program-implement-singly-linked-list/ 

Bhojasia, M. K., & Sanfoundry. (2011). Java Program to Implement Binary Search Tree. 

Retrieved July 11, 2017, from https://www.sanfoundry.com/java-program-

implement-binary-search-tree/ 

Biswal, B. N., Nanda, P., & Mohapatra, D. P. (2008). A novel approach for scenario-

based test case generation. Proceedings - 11th International Conference on 

Information Technology, ICIT 2008, 244–247. 

https://doi.org/10.1109/ICIT.2008.43 

Booch, G. (1982). Object-oriented design. ACM SIGAda Ada Letters, 1(3), 64–76. 

Brucker, A. D., & Julliand, J. (2014). Testing the Untestable. Software Testing 

Verification and Reliability, 24(8), 591–592. https://doi.org/10.1002/stvr 

Candea, G., Bucur, S., & Zamfir, C. (2010). Automated software testing as a service. 

Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, 155–

160. 

 



© C
OPYRIG

HT U
PM

116 

 

Cao, Y., Zhou, Z. Q., & Chen, T. Y. (2013). On the correlation between the effectiveness 

of metamorphic relations and dissimilarities of test case executions. In 2013 13th 

International Conference on Quality Software (pp. 153–162). 

Chandra, A., Singhal, A., & Bansal, A. (2015). A Study of Program Slicing Techniques 

for Software Development Approaches. In 1st International Conference on Next 

Generation Computing Technologies (NGCT-2015) (pp. 4–5). 

Chantarangsi, W., Liu, W., Bretz, F., Kiatsupaibul, S., & Hayter, A. J. (2016). Normal 

probability plots with confidence for the residuals in linear regression. 

Communications in Statistics: Simulation and Computation, 47(2), 367–379. 

https://doi.org/10.1080/03610918.2016.1165840 

Chauhan, N. (2019). A Multi-factored Cost-and Code Coverage-Based Test Case 

Prioritization Technique for Object-Oriented Software. In Software Engineering 

(pp. 27–36). Springer. 

Chen, J., Zhu, L., Chen, T. Y., Towey, D., Kuo, F. C., Huang, R., & Guo, Y. (2018). Test 

case prioritization for object-oriented software: An adaptive random sequence 

approach based on clustering. Journal of Systems and Software, 135, 107–125. 

https://doi.org/10.1016/j.jss.2017.09.031 

Chen, T. Y., & Lau, M. F. (2001). Test case selection strategies based on Boolean 

specifications. Software Testing Verification and Reliability, 11(3), 165–180. 

https://doi.org/10.1002/stvr.221 

Chen, Z., Chen, L., Zhou, Y., Xu, Z., Chu, W. C., & Xu, B. (2014). Dynamic slicing of 

python programs. Proceedings - International Computer Software and 

Applications Conference, 219–228. https://doi.org/10.1109/COMPSAC.2014.30 

De Lucia, A. (2001). Program slicing: methods and applications. Proceedings First IEEE 

International Workshop on Source Code Analysis and Manipulation, 142–149. 

https://doi.org/10.1109/SCAM.2001.972675 

De Lucia, Andrea, Pompella, E., & Stefanucci, S. (2002). Effort estimation for corrective 

software maintenance. In Proceedings of the 14th international conference on 

Software engineering and knowledge engineering (pp. 409–416). 

de S. Campos Junior, H., Araújo, M. A. P., David, J. M. N., Braga, R., Campos, F., & 

Ströele, V. (2017). Test case prioritization: a systematic review and mapping of the 

literature. In Proceedings of the 31st Brazilian Symposium on Software 

Engineering - SBES’17 (pp. 34–43). https://doi.org/10.1145/3131151.3131170 

Di Nardo, D., Alshahwan, N., Briand, L., & Labiche, Y. (2015). Coverage-based 

regression test case selection, minimization and prioritization: a case study on an 

industrial system. Software Testing, Verification and Reliability, 25, 371–396. 

Do, H., Rothermel, G., & Kinneer, A. (2006). Prioritizing JUnit test cases: An empirical 

assessment and cost-benefits analysis. Empirical Software Engineering, 11(1), 33–

70. https://doi.org/10.1007/s10664-006-5965-8 



© C
OPYRIG

HT U
PM

117 

 

Donglin, L., & Harrold, M. J. (1998). Slicing objects using system dependence graphs. 

Software Maintenance, 1998. Proceedings. International Conference On, 

(November), 358–367. https://doi.org/10.1109/ICSM.1998.738527 

Duran, J. W., & Ntafos, S. C. (1984). An Evaluation of Random Testing. IEEE 

Transactions on Software Engineering, SE-10(4), 438–444. 

https://doi.org/10.1109/TSE.1984.5010257 

Elbaum, S., Kallakuri, P., Malishevsky, A., Rothermel, G., & Kanduri, S. (2003). 

Understanding the effects of changes on the cost-effectiveness of regression testing 

techniques. Software Testing, Verification and Reliability, 13(2), 65–83. 

https://doi.org/10.1002/stvr.263 

Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002). Test case prioritization: a 

family of empirical studies. IEEE Transactions on Software Engineering, 28(2), 

159–182. 

Elbaum, S., Malishevsky, A., & Rothermel, G. (2001). Incorporating varying test costs 

and fault severities into test case prioritization. In Proceedings - International 

Conference on Software Engineering (pp. 329–338). 

https://doi.org/10.1109/ICSE.2001.919106 

Elodie, V. (2011). White Box Coverage and Control Flow Graphs. 

Ermakov, S., Schmidt, B. J., Musante, C. J., & Thalhauser, C. J. (2019). A survey of 

software tool utilization and capabilities for quantitative systems pharmacology: 

what we have and what we need. CPT: Pharmacometrics & Systems 

Pharmacology, 8(2), 62–76. 

Fairley, R. (1978). Tutorial: Static Analysis and Dynamic Testing of Computer Software. 

Computer, 11(4), 14–23. 

Fang, C., Chen, Z., Wu, K., & Zhao, Z. (2014). Similarity-based test case prioritization 

using ordered sequences of program entities. Software Quality Journal, 22(2), 

335–361. https://doi.org/10.1007/s11219-013-9224-0 

Fazlalizadeh, Y., Khalilian, A., & Azgomi, A. (n.d.). M., & Parsa, S. (2009). 

Incorporating historical test case performance data and resource constraints into 

test case prioritization. Lecture Notes in Computer Science (Including Subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5668, 

43–57. Retrieved from https://doi.org/10.1007/978-3-642-02949-3_5 

Feldt, R., Poulding, S., Clark, D., & Yoo, S. (2016). Test Set Diameter: Quantifying the 

Diversity of Sets of Test Cases. Proceedings - 2016 IEEE International 

Conference on Software Testing, Verification and Validation, ICST 2016, 223–

233. https://doi.org/10.1109/ICST.2016.33 

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through 

simulated evolution. Willey-IEEE Press. John Wiley. 



© C
OPYRIG

HT U
PM

118 

 

Fraser, G., & Science, C. (2014). A Large Scale Evaluation of Automated Unit Test 

Generation Using EvoSuite. In ACM Transactions on Software Engineering and 

Methodology (TOSEM) (Vol. 24, p. 8). 

Garg, D., & Datta, A. (2012). Test case prioritization due to database changes in web 

applications. In Proceedings - IEEE 5th International Conference on Software 

Testing, Verification and Validation, ICST 2012 (pp. 726–730). 

https://doi.org/10.1109/ICST.2012.163 

Ghasemi, A., & Zahediasl, S. (2012). Normality tests for statistical analysis: A guide for 

non-statisticians. International Journal of Endocrinology and Metabolism, 10(2), 

486–489. https://doi.org/10.5812/ijem.3505 

GITHub. (2018). Java Program to Implement Coffea Vending Machine. Retrieved from 

https://github.com/8thlight/CoffeeMaker/tree/master/src/main/java 

Goel, N., & Sharma, M. (2015). Prioritization of Test Cases and Its Techniques. 

International Journal of Computer Application, 5(4), 85–89. 

Grindal, M., Lindström, B., Offutt, J., & Andler, S. F. (2006). An evaluation of 

combination strategies for test case selection. Empirical Software Engineering, 

11(4), 583–611. https://doi.org/10.1007/s10664-006-9024-2 

Gupta, N. K., & Rohil, M. K. (2008). Using Genetic Algorithm for Unit Testing of Object 

Oriented Software. In First International Conference on Emerging Trends in 

Engineering and Technology (Vol. 10, pp. 308–313). 

Gupta, N., Sharma, A., & Pachariya, M. K. (2019). An Insight Into Test Case 

Optimization: Ideas and Trends With Future Perspectives. IEEE Access, 7, 22310–

22327. 

Haidry, S.-Z., & Miller, T. (2013). Using Dependency Structures for Prioritisation of 

Functional Test Suites. IEEE Transactions on Software Engineering, 39(2), 258–

275. https://doi.org/10.1109/TSE.2012.26 

Hao, D., Zhang, L., & Mei, H. (2016). Test-case prioritization: achievements and 

challenges. Frontiers of Computer Science, 1–9. https://doi.org/10.1007/s11704-

016-6112-3 

Hao, D., Zhang, L., Zang, L., Wang, Y., Wu, X., Xie, T., & Member, S. (2016). To Be 

Optimal or Not in Test-Case Prioritization, 42(5), 490–504. 

Hao, D., Zhao, X., & Zhang, L. (2013). Adaptive test-case prioritization guided by output 

inspection. In Proceedings - International Computer Software and Applications 

Conference (pp. 169–179). https://doi.org/10.1109/COMPSAC.2013.31 

Harle, R. (1988). Object Oriented Programming. In Computer Software and Applications 

Conference (Vol. 4, pp. 51–57). 

 



© C
OPYRIG

HT U
PM

119 

 

Harman, M., Jia, Y., & Zhang, Y. (2015). Achievements, Open Problems and Challenges 

for Search Based Software Testing. In 8th International Conference on Software 

Testing, Verification and Validation (ICST), 2015 IEEE (pp. 1–12). 

https://doi.org/10.1109/ICST.2015.7102580 

Harman, M., & Jones, B. F. (2001). Search-based software engineering. Information and 

Software Technology, 43(14), 833–839. https://doi.org/10.1016/S0950-

5849(01)00189-6 

Harman, M., & McMinn, P. (2010). A theoretical and empirical study of search-based 

testing: Local, global, and hybrid search. IEEE Transactions on Software 

Engineering, 36(2), 226–247. https://doi.org/10.1109/TSE.2009.71 

Henard, C., Papadakis, M., Harman, M., Jia, Y., Traon, Y. Le, & Le Traon, Y. (2016). 

Comparing White-box and Black-box Test Prioritization. In ICSE ’16 Proceedings 

of the 38th International Conference on Software Engineering (pp. 523–534). 

https://doi.org/10.1145/2884781.2884791 

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory 

analysis with applications to biology, control, and artificial intelligence. Ann 

Arbor: University of Michigan Press. 

Horwitz, S., Reps, T., & Binkley, D. (1988). Interprocedural slicing using dependence 

graphs. Proceedings of the ACM SIGPLAN 1988 Conference on Programming 

Language Design and Implementation  - PLDI ’88, 12(1), 35–46. 

https://doi.org/10.1145/53990.53994 

Huang, Y. C., Huang, C. Y., Chang, J. R., & Chen, T. Y. (2010). Design and analysis of 

cost-cognizant test case prioritization using genetic algorithm with test history. 

Proceedings - International Computer Software and Applications Conference, 

413–418. https://doi.org/10.1109/COMPSAC.2010.66 

Huang, Y. C., Peng, K. L., & Huang, C. Y. (2012). A history-based cost-cognizant test 

case prioritization technique in regression testing. Journal of Systems and 

Software, 85(3), 626–637. 

IEEE. (1998). IEEE Std 1219-1998: IEEE Standard for Software Maintenance. IEEE. 

Retrieved from https://books.google.com.my/books?id=TxRlAQAACAAJ 

Iftikhar, A., Musa, S., Alam, M., Su’ud, M. M., & Ali, S. M. (2018). A survey of soft 

computing applications in global software development. In 2018 IEEE 

International Conference on Innovative Research and Development (ICIRD) (pp. 

1–4). 

Indumathi, C. P. P., & Selvamani, K. (2015). Test Cases Prioritization Using Open 

Dependency Structure Algorithm. Procedia Computer Science, 48(Iccc), 250–255. 

  



© C
OPYRIG

HT U
PM

120 

 

Islam, M. M., Marchetto, A., Susi, A., & Scanniello, G. (2012). A multi-objective 

technique to prioritize test cases based on Latent Semantic Indexing. In 

Proceedings of the European Conference on Software Maintenance and 

Reengineering, CSMR (pp. 21–30). https://doi.org/10.1109/CSMR.2012.13 

ISO/IEC. (2006). ISO/IEC 14764:2006 (E) IEEE Std 14764-2006 Revision of IEEE Std 

1219-1998). IEEE. Retrieved from 

https://books.google.com.my/books?id=y0tizgAACAAJ 

ISO/IEC. (2011). ISO/IEC 25010:2011- Systems and Software Engineering. 

Jackson, K., & Hunter, A. (1998). CSC108 Tutorials Java Program to Implement to 

Implement Triangle Program. Retrieved July 20, 2018, from 

http://www.cs.toronto.edu/~andria/csc/108s98/programs/tut4/Triangle.java 

Jafrin, S., Nandi, D., & Mahmood, S. (2016). Test Case Prioritization based on Fault 

Dependency. International Journal of Modern Education and Computer Science, 

8(4), 33–45. https://doi.org/10.5815/ijmecs.2016.04.05 

Jefferey, D., & Gupta, N. (2006). Test Case Prioritization using Clustering. In 30th 

Annual International Computer Software and Applications Conference 

(COMPSAC’06). 

Jiang, B., & Chan, W. K. (2013). Bypassing code coverage approximation limitations 

via effective input-based randomized test case prioritization. In Proceedings - 

International Computer Software and Applications Conference (pp. 190–199). 

https://doi.org/10.1109/COMPSAC.2013.33 

Jiang, B., & Chan, W. K. (2015). Input-based adaptive randomized test case 

prioritization: A local beam search approach. Journal of Systems and Software, 

105, 91–106. 

Jovanovic, I. (2009). Software Testing Methods and Techniques. The IPSI BgD 

Transactions on Internet Research, 5(1), 30–41. 

Kajko-Mattsson, M., Glassbrook, A. G., & Nordin, M. (2001). Evaluating the predelivery 

phase of ISO/IEC FDIS 14764 in the Swedish context. In Software Maintenance, 

2001. Proceedings. IEEE International Conference on (pp. 431–440). 

Kanewala, U., & Bieman, J. M. (2014). Testing Scientific Software: A Systematic 

Literature Review. Information and Software Technology, 56(10), 1219–1232. 

https://doi.org/10.1016/j.infsof.2014.05.006 

Kavitha, R., & Sureshkumar, N. (2010). Test Case Prioritization for Regression Testing 

based on Severity of Fault. International Journal on Computer Science and 

Engineering, 02(05), 1462–1466. 

Kayes, M. (2011). Test case prioritization for regression testing based on fault 

dependency. (ICECT). (ICECT), 2011 3rd International Conference On, 2011(3), 

48–52. 



© C
OPYRIG

HT U
PM

121 

 

Kazmi, R., Jawawi, D. N. A., Mohamad, R., & Ghani, I. (2017). Effective Regression 

Test Case Selection. ACM Computing Surveys, 50(2), 1–32. 

https://doi.org/10.1145/3057269 

Khalilian, A., Abdollahi Azgomi, M., & Fazlalizadeh, Y. (2012). An improved method 

for test case prioritization by incorporating historical test case data. Science of 

Computer Programming, 78(1), 93–116. 

https://doi.org/10.1016/j.scico.2012.01.006 

Khan, S. U. R., Lee, S. P., Parizi, R. M., & Elahi, M. (2014). A code coverage-based test 

suite reduction and prioritization framework. 2014 4th World Congress on 

Information and Communication Technologies, WICT 2014, 229–234. 

https://doi.org/10.1109/WICT.2014.7076910 

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. 

(2009). Systematic literature reviews in software engineering - A systematic 

literature review. Information and Software Technology, 51(1), 7–15. 

https://doi.org/10.1016/j.infsof.2008.09.009 

Konsaard, P., & Ramingwong, L. (2015). Total Coverage Based Regression Test Case 

Prioritization using Genetic Algorithm. In 12th International Conference on 

Electrical/Electronics Engineering, Computer, Telecommunications and 

Information Technology (ECTI-CON) (pp. 1–6). 

Kovács, G., Magyar, F., & Gyimóthy, T. (1996). Static slicing of java programs. 

Research Group on Artificial Intelligence, Hungarian Academy of Science, Joseph 

Attila University. Retrieved from 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.8438 

Koza, J. R. (1992). Genetic programming: On the programming of computers by means 

of natural selection. MA. MIT Press, Cambridge. 

Krüger, J., Berger, T., & Leich, T. (2018). Features and How to Find Them: A Survey of 

Manual Feature Location. Software Engineering for Variability Intensive Systems: 

Foundations and Applications, 32(6), 153–172. 

Kushwah, J. S. (2014). Testing for object oriented software. Indian Journal of Computer 

Science and Engineering (IJCSE), 2(1), 90–93. 

Kwon, J.-H., Ko, I.-Y., Rothermel, G., & Staats, M. (2014). Test Case Prioritization 

Based on Information Retrieval Concepts. In 2014 21st Asia-Pacific Software 

Engineering Conference (pp. 19–26). https://doi.org/10.1109/APSEC.2014.12 

Ledru, Y., Petrenko, A., Boroday, S., & Mandran, N. (2012). Prioritizing test cases with 

string distances. Automated Software Engineering, 19(1), 65–95. 

https://doi.org/10.1007/s10515-011-0093-0 

Lehman, M. M. (1996). Laws of software evolution revisited. In European Workshop on 

Software Process Technology (pp. 108–124). 



© C
OPYRIG

HT U
PM

122 

 

Leitner, A., Ciupa, H., Meyer, B., & Howard, M. (2007). Reconciling manual and 

automated testing: The AutoTest experience. Proceedings of the Annual Hawaii 

International Conference on System Sciences, 1–10. 

Li, Z., Bian, Y., Zhao, R., & Cheng, J. (2013). A fine-grained parallel multi-objective 

test case prioritization on GPU. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 8084 LNCS, 111–125. https://doi.org/10.1007/978-3-642-39742-

4_10 

Li, Z., Harman, M., & Hierons, R. M. (2007). Search algorithms for regression test case 

prioritization. IEEE Transactions on Software Engineering, 33(4), 225–237. 

https://doi.org/10.1109/TSE.2007.38 

Lin, C. T., Chen, C. D., Tsai, C. S., & Kapfhammer, G. M. (2013). History-based test 

case prioritization with software version awareness. Proceedings of the IEEE 

International Conference on Engineering of Complex Computer Systems, ICECCS, 

171–172. https://doi.org/10.1109/ICECCS.2013.33 

Link, D., Behnam, P., Moazeni, R., & Boehm, B. (2019). The Value of Software 

Architecture Recovery for Maintenance. ArXiv Preprint ArXiv:1901.07700. 

Losavio, F., Matteo, A., & Camejo, I. P. (2014). Unified Process for Domain Analysis 

integrating Quality , Aspects and Goals. Clei Electronic Journal, 17(2), 1–21. 

Lou, Y., Hao, D., & Zhang, L. (2015). Mutation-based test-case prioritization in software 

evolution. 2015 IEEE 26th International Symposium on Software Reliability 

Engineering, ISSRE 2015, 46–57. https://doi.org/10.1109/ISSRE.2015.7381798 

Ma, Y.-S., Offutt, J., & Kwon, Y.-R. (2006). MuJava: a mutation system for Java. 

Proceeding of the 28th International Conference on Software Engineering - ICSE 

’06, 827. https://doi.org/10.1145/1134285.1134425 

Maheswari, R. U., & Jeya Mala, D. (2013). A novel approach for test case prioritization. 

In 2013 IEEE International Conference on Computational Intelligence and 

Computing Research (pp. 1–5). https://doi.org/10.1109/ICCIC.2013.6724209 

Malhotra, R. (2016). Empirical Research in Software Engineering. CRC Press. 

Newyork: Taylor & Francis Group, LLC. https://doi.org/10.1039/c2lc90006h 

Malishevsky, A. G., Ruthruff, J. R., Rothermel, G., & Elbaum, S. (2006). Cost-cognizant 

Test Case Prioritization. Department of Computer Science and Engineering 

University of NebraskaLincoln Techical Report. Department of Computer Science 

and Engineering University of NebraskaLincoln Techical Report. Retrieved from 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6542&amp;rep=re

p1&amp;type=pdf 

  



© C
OPYRIG

HT U
PM

123 

 

Malz, C., Jazdi, N., & Göhner, P. (2012). Prioritization of Test Cases using Software 

Agents and Fuzzy Logic. In 2012 IEEE Fifth International Conference on Software 

Testing, Verification and Validation (pp. 483–486). 

https://doi.org/10.1109/ICST.2012.63 

Marchetto, A., Islam, M., Asghar, W., Susi, A., & Scanniello, G. (2015). A Multi-

Objective Technique to Prioritize Test Cases. IEEE Transactions on Software 

Engineering, 5589(c), 1–22. https://doi.org/10.1109/TSE.2015.2510633 

Marchetto, A., Tonella, P., & Ricca, F. (2008). State-based testing of Ajax Web 

applications. Proceedings of the 1st International Conference on Software Testing, 

Verification and Validation, ICST 2008, (June 2014), 121–130. 

https://doi.org/10.1109/ICST.2008.22 

Marijan, D., Gotlieb, A., & Sen, S. (2013). Test case prioritization for continuous 

regression testing: An industrial case study. In IEEE International Conference on 

Software Maintenance, ICSM (pp. 540–543). 

https://doi.org/10.1109/ICSM.2013.91 

Mary, L., Harrold, M. J., Larsen, L., & Harrold, M. J. (1996). Slicing Object-Oriented 

Software *. In 18th International Conference on Software Engineering (pp. 495–

505). https://doi.org/10.1109/ICSE.1996.493444 

Mei, H., Hao, D., Zhang, L., Zhang, L., Zhou, J., & Rothermel, G. (2012). A static 

approach to prioritizing JUnit test cases. In IEEE Transactions on Software 

Engineering (Vol. 38, pp. 1258–1275). 

Mendenhall, M., Beaver, R. J., & Beaver, B. M. (2007). INTRODUCTION TO 

PROBANILITY & STATISTICS (13th ed.). Canada: Nelson Education, Ltd. 

Mikhajlova, A., & Sekerinski, E. (1997). Class refinement and interface refinement in 

object-oriented programs. In International Symposium of Formal Methods Europe 

(pp. 82–101). 

Mills, C., Escobar-Avila, J., & Haiduc, S. (2018). Automatic Traceability Maintenance 

via Machine Learning Classification. In 2018 IEEE International Conference on 

Software Maintenance and Evolution (ICSME) (pp. 369–380). 

Miranda, B., & Bertolino, A. (2016). Scope-aided Test Prioritization, Selection and 

Minimization for Software Reuse. Journal of Systems and Software, 0, 1–22. 

https://doi.org/10.1016/j.jss.2016.06.058 

Mitchell, M. (1998). An Introduction to Genetic Algorithms (Complex Adaptive 

Systems). The MIT Press (Fifth Edit). The MIT Press (Fifth Edit). Cambridge, 

Massachusetts • London, England: Bradford Book The MIT Press. 

https://doi.org/10.1016/S0898-1221(96)90227-8 

  



© C
OPYRIG

HT U
PM

124 

 

Mohapatra, S. K., & Prasad, S. (2013). Evolutionary search algorithm for Test Case 

Prioritization. 2013 International Conference on Machine Intelligence and 

Research Advancement (Icmira 2013), 115–119. 

https://doi.org/10.1109/ICMIRA.2013.29 

Moubayed, N. Al, & Windisch, A. (2009). Temporal White-Box Testing Using 

Evolutionary Algorithms. International Conference on Software Testing, 

Verification and Validation Workshops, 150–151. 

Musa, S. (2014). A Regression Test Case Selection and Prioritization for Object- 

Oriented Programs using Dependency Graph and Genetic Algorithm. International 

Journal of Engineering And Science, 4(7), 54–64. 

Musa, S., Sultan, A. B. M., Abdul Ghani, A. A. Bin, & Baharom, S. (2014). Regression 

Test Case Selection &PrioritizationUsing Dependence Graph and Genetic 

Algorithm. IOSR Journal of Computer Engineering (IOSR-JCE), IV(3), 2278–

2661. 

Musa, S., Sultan, A. B. M., Abdul Ghani, A. A. Bin, & Baharom, S. (2016). Regression 

Test Cases Prioritization for Object-Oriented Programs Using Genetic Algorithm 

with Reduced Value of Fault Severity. International Journal of Soft Computing, 

11(4), 247–254. 

Muthusamy, T., & K., S. (2013). A Test Case Prioritization Method with Weight Factors 

in Regression Testing Based on Measurement Metrics. International Journal of 

Advanced Research in Computer Science and Software Engineering, 03(12), 390–

396. 

Muthusamy, T., & Seetharaman K. (2014). A New Effective Test Case Prioritization for 

Regression Testing based on Prioritization Algorithm. International Journal of 

Applied Information Systems, 6(7), 21–26. 

Myers, J. G., Badget, T., & Sandler, C. (2012). The Art of Software Testing (Third Edit). 

New Jessy, Canada: John Wiley & Sons, Inc.,. 

Nah, F. F.-H., Faja, S., & Cata, T. (2001). Characteristics of ERP software maintenance: 

a multiple case study. Journal of Software Maintenance and Evolution: Research 

and Practice, 13(6), 399–414. 

Najumudheen, E., Mall, R., & Samanta, D. (2009). A dependence graph-based 

representation for test coverage analysis of object-oriented programs. ACM 

SIGSOFT Software Engineering Notes, 34(2), 1. 

https://doi.org/10.1145/1507195.1507208 

Narula, S., Prioritization, C., Minimisation, T. C., & Case, T. (2016). Review Paper on 

Test Case Selection, 6(4), 126–128. 

Nayak, S., Kumar, C., & Tripathi, S. (2016). Effectiveness of Prioritization of Test Cases 

Based on Faults. In 3rd Int’l Conf. on Recent Advances in Information Technology 

(pp. 1–6). https://doi.org/10.1109/RAIT.2016.7507977 



© C
OPYRIG

HT U
PM

125 

 

Nidhra, S., & Dondeti, J. (2012). Black Box and White Box Testing Techniques - A 

Literature Review. International Journal of Embedded Systems and Applications, 

2(2), 29–50. https://doi.org/10.5121/ijesa.2012.2204 

Nirpal, P. B., & Kale, K. V. (2011). Using Genetic Algorithm for Automated Efficient 

Software Test Case Generation for Path Testing. International Journal of 

Advanced Networking and Applications, 915(6), 911–915. 

Noble, J., & Grundy, J. (1995). Explicit Relationships in Object-Oriented Development. 

Proceedings of the 18^{th} Conference on the Technology of Object-Oriented 

Languages and Systems, 211–226. Retrieved from 

http://citeseer.nj.nec.com/noble95explicit.html 

Nucci, D. Di, Panichella, A., Zaidman, A., & Lucia, A. De. (2015). Hypervolume-Based 

Search for Test Case Prioritization. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 9275, 157–172. https://doi.org/10.1007/978-3-319-22183-0 

Offutt, J., & Untch, R. H. (2000). Mutation 2000: Uniting the Orthogonal. Proc. of the 

Mutation 2000: Mutation Testing in the Twentieth and the Twenty First Centuries, 

45–55. https://doi.org/10.1007/978-1-4757-5939-6_7 

Ogasawara, T. (2014). Workload characterization of server-side JavaScript. In IISWC 

2014 - IEEE International Symposium on Workload Characterization (pp. 13–21). 

https://doi.org/10.1109/IISWC.2014.6983035 

Ottenstein, K. J., & Ottenstein, L. M. (1984). The program dependence graph in a 

software development environment. ACM SIGPLAN Notices, 19(5), 177–184. 

https://doi.org/10.1145/390011.808263 

Ouriques, J. F. S., Cartaxo, E. G., & Machado, P. D. L. (2013). On the Influence of Model 

Structure and Test Case Profile on the Prioritization of Test Cases in the Context 

of Model-Based Testing. In 2013 27th Brazilian Symposium on Software 

Engineering (pp. 119–128). https://doi.org/10.1109/SBES.2013.4 

Panda, S., Munjal, D., & Mohapatra, D. P. (2016). A Slice-Based Change Impact 

Analysis for Regression Test Case Prioritization of Object-Oriented Programs, 

2016, 1–25. https://doi.org/10.1155/2016/7132404 

Panigrahi, C. R., & Mall, M. (2013). An approach to prioritize the regression test cases 

of object-oriented programs, 1(June), 159–173. 

Panigrahi, C. R., & Mall, R. (2014). A heuristic-based regression test case prioritization 

approach for object-oriented programs. Innovations in Systems and Software 

Engineering, 10(3), 155–163. https://doi.org/10.1007/s11334-013-0221-z 

Parashar, P., Kalia, A., & Bhatia, R. (2012). Pair-Wise Time-Aware Test Case 

Prioritization for Regression Testing. In ICISTM (pp. 176–186). 

 



© C
OPYRIG

HT U
PM

126 

 

Parejo, J. A., Sánchez, A. B., Segura, S., Ruiz-Cortés, A., Lopez-Herrejon, R. E., & 

Egyed, A. (2016). Multi-Objective Test Case Prioritization in Highly Configurable 

Systems: A Case Study. Journal of Systems and Software, Accepted f. 

https://doi.org/10.1016/j.jss.2016.09.045 

Park, H., Ryu, H., & Baik, J. (2008). Historical value-based approach for cost-cognizant 

test case prioritization to improve the effectiveness of regression testing. 

Proceedings - The 2nd IEEE International Conference on Secure System 

Integration and Reliability Improvement, 39–46. 

https://doi.org/10.1109/SSIRI.2008.52 

Pavithra, L., & Sandhya, S. (2019). Survey on Software Testing. Journal of Network 

Communications and Emerging Technologies (JNCET) Www. Jncet. Org, 9(3). 

Pigoski, T. M. (2001). Software Maintenance. In Swebok (pp. 1–16). 

Pirlot, M. (1996). General local search methods. European Journal of Operational 

Research, 92(3), 493–511. https://doi.org/10.1016/0377-2217(96)00007-0 

Prakash, N., & Gomathi, K. (2014). Improving Test Efficiency through Multiple Criteria 

Coverage Based Test Case Prioritization. International Journal of Scientific & 

Engineering Research, 5(4), 420–424. 

Raheman, S. R., Rath, A. K., & Bindu, M. H. (2013). An Overview of Program Slicing 

and its Different Approaches. Research Forum: International Journal of Social 

Sciences, 1(1), 1–8. 

Raju, S., & Uma, G. V. (2012a). An efficient method to achieve effective test case 

prioritization in regression testing using prioritization factors. Asian Journal of 

Information Technology, 11(5), 169–180. 

https://doi.org/10.3923/ajit.2012.169.180 

Raju, S., & Uma, G. V. (2012b). Factors oriented test case prioritization technique in 

regression testing using genetic algorithm. European Journal of Scientific 

Research, 74(3), 389–402. Retrieved from 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84860316467&partnerID=40&md5=a43634427579913af48e406f72717c7c 

Raman, B., & Subramani, S. (2015). An Efficient Specific Update Search Domain based 

Glowworm Swarm Optimization for Test Case Prioritization. The International 

Arab Journal of Information Technology, 12(6), 748–754. 

Rava, M., & Wan-Kadir, W. M. N. (2016). A Review on Automated Regression Testing. 

International Journal of Software Engineering and Its Applications, 10(1), 221–

232. 

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk , Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling 

and Analytics, 2(1), 21–33. https://doi.org/doi:10.1515/bile-2015-0008 



© C
OPYRIG

HT U
PM

127 

 

Rechenberg, I. (1973). Evolutionary Strategy: Optimization of Technical Syetems by 

means of Biological Evolution. Fromman-Holzboog, Stuttgart, 104, 15–16. 

Repository, S. I. (2018a). Java Program to Implement Airline Ticket Reservation System. 

Retrieved from https://sir.csc.ncsu.edu/content/bios/airline.php 

Repository, S. I. (2018b). Java Program to Implement Elevator Control System. 

Retrieved from https://sir.csc.ncsu.edu/content/bios/elevator.php 

Reps, T., & Bricker, T. (1989). Illustrating interference in interfering versions of 

programs. {ACM} {SIGSOFT} Software Engineering Notes, 46–55. 

https://doi.org/http://doi.acm.org.myaccess.library.utoronto.ca/10.1145/72910.73

347 

Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (1999). Test Case Prioritization: 

an Empirical Study. Proceedings of the IEEE International Conference on 

Software Maintenance, 179. https://doi.org/10.1109/ICSM.1999.792604 

Rothermel, G., Untch, R. H., Chu, C., Harrold, M. J., & Society, I. C. (2001). Prioritizing 

Test Cases For Regression Testing Prioritizing Test Cases For Regression Testing. 

IEEE Transactions on Software Engineering, 27(10), 929–948. 

https://doi.org/10.1145/347324.348910 

Ryan, T. P., & Morgan, J. P. (2007). Modern experimental design. Journal of Statistical 

Theory and Practice, 1(3–4), 31–51. 

Sabharwal, S., Sibal, R., & Sharma, C. (2011). Applying Genetic Algorithm for 

Prioritization of Test Case Scenarios Derived from UML Diagrams. International 

Journal of Computer Science Issues, 8(2), 433–444. 

https://doi.org/http://dx.doi.org/10.1109/ICCCT.2011.6075160 

Saha, R. K., Zhang, L., Khurshid, S., & Perry, D. E. (2015). An information retrieval 

approach for regression test prioritization based on program changes. Proceedings 

- International Conference on Software Engineering, 1, 268–279. 

https://doi.org/10.1109/ICSE.2015.47 

Salehie, M., & Tahvildari, L. (2009). Self-adaptive software: Landscape and research 

challenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 

4(2), 14. 

Sanchez, A. B., Segura, S., & Ruiz-Cortes, A. (2014). A Comparison of Test Case 

Prioritization Criteria for Software Product Lines. In 2014 IEEE Seventh 

International Conference on Software Testing, Verification and Validation (pp. 

41–50). https://doi.org/10.1109/ICST.2014.15 

Sawant, A. a, Bari, P. H., & Chawan, P. M. (2012). Software Testing Techniques and 

Strategies. Journal of Engineering Research & Applications, 2(3), 980–986. 

 



© C
OPYRIG

HT U
PM

128 

 

Schwartz, A., & Do, H. (2016). Cost-effective regression testing through Adaptive Test 

Prioritization strategies. Journal of Systems and Software, 115, 61–81. 

https://doi.org/10.1016/j.jss.2016.01.018 

Sethi, N., Rani, S., & Singh, P. (2014). Ants Optimization for Minimal Test Case 

Selection and Prioritization as to Reduce the Cost of Regression Testing. 

International Journal of Computer Applications, 100(17), 48–54. 

Shahid, Muhammad, & Ibrahim, S. (2014). A New Code Based Test Case Prioritization 

Technique. International Journal of Software Engineering and Its Applications, 

8(6), 31–38. 

Shahid, Muhmmad, & Ibrahim, S. (2016). Change impact analysis with a software 

traceability approach to support software maintenance. In 13th International 

COnference on Applied Sciences and Technology (pp. 391–396). 

Shameem, A. M., & Kanagavalli, N. (2013). Dependency Detection for Regression 

Testing using Test Case Prioritization Techniques. International Journal of 

Computer Applications, 65(14), 20–25. 

Shamsiri, S., Rojas, J. M., Gazzola, L., Fraser, G., McMinn, P., Mariani, L., & Arcuri, 

A. (2017). Random or Evolutionary Search for Object-Oriented Test Suite 

Generation. Software Testing, Verification and Reliability, 22(2), 1–29. 

https://doi.org/10.1002/stvr 

Shapiro, S. S., Wilk, M. B., & Chen, H. J. (1968). A Comparative Study of Various Tests 

for Normality. Journal of the American Statistical Association, 63(324), 1343–

1372. https://doi.org/10.1080/01621459.1968.10480932 

Sharma, C., Sabharwal, S., & Sibal, R. (2013). A Survey on Software Testing Techniques 

using Genetic Algorithm. International Journal of Computer Science Issues, 10(1), 

381–393. 

Sharma, N., Sujata, & Purohit, G. N. (2015). Test case prioritization techniques “an 

empirical study.” 2014 International Conference on High Performance Computing 

and Applications, ICHPCA 2014. https://doi.org/10.1109/ICHPCA.2014.7045344 

Sharma, P. (2014). Automated Software Testing Using Metahurestic Technique Based 

on an Ant Colony Optimization. International Journal on Recent and Innovation 

Trends in Computing and Communication, 2(11), 3505–3510. 

Sharma, S. (2012). A Genetic Algorithm for Regression Test Sequence Optimization. 

International Journal of Advanced Research in Computer and Communication 

Engineering, 1(7), 478–481. Retrieved from www.ijarcce.com 

Sharma, S., & Gera, P. (2014). Test Case Prioritization in Regression Testing using 

Various Metrics. International Journal of Latest Trends in Engineering and 

Technology (IJLTET), 4(2), 166–173. 

  



© C
OPYRIG

HT U
PM

129 

 

Sharma, T., & Spinellis, D. (2018). A survey on software smells. Journal of Systems and 

Software, 138, 158–173. 

Shu, G., Sun, B., Henderson, T. A. D., & Podgurski, A. (2013). JavaPDG: A new 

platform for program dependence analysis. Proceedings - IEEE 6th International 

Conference on Software Testing, Verification and Validation, ICST 2013, 408–

415. https://doi.org/10.1109/ICST.2013.57 

Singh, Y., & Goel, B. (2007). A Step Towards Software Preventive Maintenance. ACM 

SIGSOFT Software Engineering Notes, 32(4), 1–5. 

Singh, Y., Kaur, A., & Malhotra, R. (2009). Empirical validation of object-oriented 

metrics for predicting fault proneness models. Software Quality Journal, 18(1), 3–

35. https://doi.org/10.1007/s11219-009-9079-6 

Sinha, S., Harrold, M. J., & Rothermel, G. (1999). System-dependence-graph-based 

slicing of programs with arbitrary interprocedural control flow. Software 

Engineering, 1999. Proceedings of the 1999 International Conference On, 

1999(May 1999), 432–441. https://doi.org/10.1145/302405.302675 

Solanki, K., Singh, Y. V, & Dalal, S. (2016). A comparative evaluation of “m-ACO” 

technique for test suite prioritization. Indian Journal of Science and Technology, 

9(30), 1–10. https://doi.org/10.17485/ijst/2016/v9i30/86423 

Srikanth, H., & Banerjee, S. (2012). Controversy Corner Improving test efficiency 

through system test prioritization. Journal of Systems and Software, 85(5), 1176–

1187. https://doi.org/10.1016/j.jss.2012.01.007 

Srikanth, H., Hettiarachchi, C., & Do, H. (2016). Requirements based test prioritization 

using risk factors: An industrial study. Information and Software Technology, 69, 

71–83. https://doi.org/10.1016/j.infsof.2015.09.002 

Srivastava, P. R., & Kim, T. (2009). Application of Genetic Algorithm in Software 

Testing. Intenational Journal of Software Engineering and Its Applications, 3(4), 

87–96. https://doi.org/10.1007/978-3-642-14306-9_54 

Srividhya, J., & Gunasundari, R. (2016). Gravitational Bee Search Algorithm with Fuzzy 

Logic for Effective Test Suite Minimization and Prioritization. Indian Journal of 

Science and Technology, 9(40). https://doi.org/10.17485/ijst/2016/v9i40/99314 

Staats, M., Loyola, P., & Rothermel, G. (2012). Oracle-centric test case prioritization. In 

Proceedings - International Symposium on Software Reliability Engineering, 

ISSRE (pp. 311–320). https://doi.org/10.1109/ISSRE.2012.13 

Steel, T., & Dickson. (1996). Principles and procedures of statistics a biometrical 

approach (Third Edit). Department of Ststistics, the Ohio State University, USA: 

Jason C. Hsu Chapman Hall. 

 



© C
OPYRIG

HT U
PM

130 

 

Stefik, M., & Bobrow, D. G. (1985). Object-Oriented Programming: Themes and 

Variations. The AI MagazineAI Magazine, 6(4), 40–62. 

https://doi.org/10.1609/aimag.v6i4.508 

Stevenson, J., & Wood, M. (2018). Recognising object-oriented software design quality: 

a practitioner-based questionnaire survey. Software Quality Journal, 26(2), 321–

365. 017-9364-8 

Sultan, A. B. M., Abdul Ghani, A. A. Bin, Baharom, S., & Musa, S. (2014). An 

Evolutionary Regression Test Case Prioritization based on Dependence Graph and 

Genetic Algorithm for Object-Oriented Programs. In International Conference on 

Emerging Trends in Engineering and Technology (ICETET, 2014) (pp. 22–26). 

London, UK. 

Suppriya, M., & Ilavarasi, A. K. (2015). Test Case Selection and Prioritization Using 

Multiple Criteria. International Journal of Advanced Research in Computer 

Science and Software Engineering, 3(10), 280–283. 

Szabo, C. (2015). Novice Code Understanding Strategies during a Software Maintenance 

Assignment. Proceedings - International Conference on Software Engineering, 2, 

276–284. https://doi.org/10.1109/ICSE.2015.341 

Tahat, L., Korel, B., Harman, M., & Ural, H. (2012). Regression test suite prioritization 

using system models. Software Testing Verification and Reliability, 24(8), 591–

592. https://doi.org/10.1002/stvr 

Tahvili, S., Afzal, W., Saadatmand, M., Bohlin, M., Sundmark, D., & Larsson, S. (2016). 

Towards Earlier Fault Detection by Value-Driven Prioritization of Test Cases 

Using Fuzzy TOPSISs. Advances in Intelligent Systems and Computing, 448, 

1135–1144. 

Tulasiraman, M., & Kalimuthu, V. (2018). Cost Cognizant History Based Prioritization 

of Test Case for Regression Testing Using Immune Algorithm. Journal of 

Intelligent Engineering and Systems, 11(1), 221–228. 

https://doi.org/10.22266/ijies2018.0228.23 

Tyagi, M., & Malhotra, S. (2015). An Approach for Test Case Prioritization Based on 

Three Factors. International Journal of Information Technology and Computer 

Science, 7(4), 79–86. https://doi.org/10.5815/ijitcs.2015.04.09 

Utting, M., Pretschner, A., & Legeard, B. (2006). A Taxonomy of Model-Based Testing. 

Department of Computer Science, the Univ. of Waikato Working paper series. 

https://doi.org/10.1.1.100.7032 

Velmurugan, P., & Mahapatra, R. P. (2016). Effective Branch and DU Coverage Testing 

through Test Case Prioritization using Genetic Algorithm. Journal of Theoretical 

and Applied Information Technology, 90(1). 

 



© C
OPYRIG

HT U
PM

131 

 

Walcott, K. R., Soffa, M. Lou, Kapfhammer, G. M., & Roos, R. S. (2006). TimeAware 

test suite prioritization. Proceedings of the 2006 International Symposium on 

Software Testing and Analysis  - ISSTA’06, 1. 

https://doi.org/10.1145/1146238.1146240 

Walkinshaw, N., Roper, M., & Wood, M. (2003). The Java system dependence graph. 

Proceedings - 3rd IEEE International Workshop on Source Code Analysis and 

Manipulation, SCAM 2003, 55–64.  

Wang, H., Xing, J., Yang, Q., Han, D., & Zhang, X. (2015). Modification Impact 

Analysis Based Test Case Prioritization for Regression Testing of Service-

Oriented Workflow Applications. In 2015 IEEE 39th Annual Computer Software 

and Applications Conference (pp. 288–297).  

Wang, H., Xing, J., Yang, Q., Wang, P., Zhang, X., & Han, D. (2017). Optimal control 

based regression test selection for service-oriented workflow applications. Journal 

of Systems and Software, 124, 274–288.  

Wang, R., Lu, Y., Qu, B., & Zhang, Y. (2016). Empirical study of the effects of different 

profiles on regression test case reduction. Mathematical Problems in Engineering, 

9(2), 29–38. https://doi.org/10.1049/iet-sen.2014.0008 

Wang, Shuai, Ali, S., Gotlieb, A., & Liaaen, M. (2016). A systematic test case selection 

methodology for product lines: results and insights from an industrial case study. 

Empirical Software Engineering, 21(4), 1586–1622. 

https://doi.org/10.1007/s10664-014-9345-5 

Wang, Song, Nam, J., & Tan, L. (2017). QTEP: quality-aware test case prioritization. In 

Proceedings of the 2017 11th Joint Meeting on Foundations of Software 

Engineering - ESEC/FSE 2017 (pp. 523–534).  

Weiser, M. (1984). Program Slicing. IEEE Transactions on Software Engineering, SE-

10(4), 352–357. 

Whitley, D. (2001). An overview of evolutionary algorithms: Practical issues and 

common pitfalls. Information and Software Technology, 43(14), 817–831. 

https://doi.org/10.1016/S0950-5849(01)00188-4 

Whitley, Darrell. (2001). An overview of evolutionary algorithm: practical Issues and 

common pitfalls. Information and Software Technology, 43, 817–831. 

https://doi.org/10.1016/S0950-5849(01)00188-4 

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L. (1999). A 

Comparison of the comprehension of object-oriented and procedural programs by 

novice programmers. Interacting with Computers, 11(3), 255–282. 

https://doi.org/10.1016/S0953-5438(98)00029-0 

  



© C
OPYRIG

HT U
PM

132 

 

Wohlin, C., Runeson, P., H¨ost, M., Ohlsson, M. C., Regnell, B., & Wessl´en, A. (2012). 

Experimentation in SOftware Engineering. London: Springer Heidelberg New 

York Dordrecht. https://doi.org/10.15713/ins.mmj.3 

Wong, W. E., Horgan, J. R., London, S., & Mathur, A. P. (1998). Effect of Test Set 

Minimization on Fault Detection Effectiveness. Software Practice and Experience, 

28(July 1996), 347–369.  

Wong, W. E., Mathur, A. P., & Maldonado, J. C. (2013). Mutation versus All-uses: An 

Empirical Evaluation of Cost, Strength and Effectiveness. Software Quality and 

Productivity, 3(1), 258–265.  

Wu, C. T. (2006). An Introduction to object-oriented programming with Java TM. 

McGraw-Hill Incorporated. 

Wu, H., Nie, C., & Kuo, F. C. (2014). Test suite prioritization by switching cost. In 

Proceedings - IEEE 7th International Conference on Software Testing, 

Verification and Validation Workshops, ICSTW 2014 (pp. 133–142). 

https://doi.org/10.1109/ICSTW.2014.15 

Wu, K., Fang, C., Chen, Z., & Zhao, Z. (2012). Test Case Prioritization Incorporating 

Orederd Sequence of Program Elements. In AST ’12 Proceedings of the 7th 

International Workshop on Automation of Software Test (pp. 124–130). 

Xu, B., Qian, J., Zhang, X., Wu, Z., & Chen, L. (2005). A brief survey of program slicing. 

SIGSOFT Softw. Eng. Notes, 30(2), 1–36. 

https://doi.org/http://doi.acm.org/10.1145/1050849.1050865 

Yahaya, N. A., Al-Fawareh, H. J., & Abdul, A. A. (2001). Concepts for slicing object-

oriented programs. Malaysian Journal of Computer Science, 14(2), 106–115. 

Yoo, S., & Harman, M. (2010). Regression testingminimization, selection and 

prioritization: asurvey. Software Testing Verification and Reliability, 22, 67–120. 

https://doi.org/10.1002/stvr 

Yoo, Shin, & Harman, M. (2007). Pareto efficient multi-objective test case selection. 

Proceedings of the 2007 International Symposium on Software Testing and 

Analysis - ISSTA ’07, 140. https://doi.org/10.1145/1273463.1273483 

Yu, Y. T., & Lau, M. F. (2012). Fault-based test suite prioritization for specification-

based testing. Information and Software Technology, 54(2), 179–202. 

https://doi.org/10.1016/j.infsof.2011.09.005 

Zabinsky, Z. (2011). Random Search Algorithms. Wiley Encyclopedia of Operations 

Research and Management Science, 1–16. 

https://doi.org/10.1002/9780470400531.eorms0704 

  



© C
OPYRIG

HT U
PM

133 

 

Zhang, C., Groce, A., & Alipour, M. A. (2014). Using test case reduction and 

prioritization to improve symbolic execution. Proceedings of the 2014 

International Symposium on Software Testing and Analysis - ISSTA 2014, 160–

170. https://doi.org/10.1145/2610384.2610392 

Zhang, L., Hao, D., Zhang, L., Rothermel, G., & Mei, H. (2013). Bridging the gap 

between the total and additional test-case prioritization strategies. In Proceedings 

- International Conference on Software Engineering (pp. 192–201). 

https://doi.org/10.1109/ICSE.2013.6606565 

Zhang, X, Xie, X., & Chen, T. Y. (2016). Test Case Prioritization Using Adaptive 

Random Sequence with Category-Partition-Based Distance. In 2016 IEEE 

International Conference on Software Quality, Reliability and Security (QRS) (pp. 

374–385). https://doi.org/10.1109/QRS.2016.49 

Zhang, Xiaohong, Wang, Z., Zhang, W., Ding, H., & Chen, L. (2015). Spectrum-Based 

Fault Localization Method with Test Case Reduction. 2015 IEEE 39th Annual 

Computer Software and Applications Conference, 548–549. 

https://doi.org/10.1109/COMPSAC.2015.272 

Zhang, Z. H., Mu, Y. M., & Tian, Y. A. (2012). Test case prioritization for regression 

testing based on function call path. In Proceedings - 4th International Conference 

on Computational and Information Sciences, ICCIS 2012 (pp. 1372–1375). ICCIS 

2012. https://doi.org/10.1109/ICCIS.2012.312 

Zhou, Z. Q., Sinaga, A., & Susilo, W. (2012). On the fault-detection capabilities of 

adaptive random test case prioritization: Case studies with large test suites. In 

Proceedings of the Annual Hawaii International Conference on System Sciences 

(pp. 5584–5593). https://doi.org/10.1109/HICSS.2012.454 

 


	Blank Page
	Blank Page



