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ABSTRACT 

Abstract of this thesis is presented to the Senate of Universiti Putra Malaysia, in 

fulfillment of the requirement for the degree of Master of Computer Science 

 

PERFORMANCE EVALUATION OF STENCIL ON MULTI-CORE COMPUTER 

By 

MUSTAFA SALEH MAHDI AL-KHAFFAF 

Chair: Assoc. Prof. Dr. Nor Asilah Wati Abdul Hamid 

Faculty: Computer Science and Information Technology 

 

High Performance Computing (HPC) can be defined as the practice of combining 

computing power to attain higher level of performance, aiding one to solve complex tasks in 

various sectors, namely engineering, science and business efficiently and faster, compared to 

what a normal computer or workstation might offer. As the number of HPC users grows, 

various parallel programming models are also developed to fulfil the specific goals and needs 

of each user. However, with the availability of multiple parallel programming models to be 

chosen from, users will face with another challenge, on how to choose the best model that 

meets the specific requirements. Thus, the current work has performed a comparative study on 

MPI, OpenMP, Threading Building Blocks (TBB), and POSIX threads (Pthreads) as well a 

hybrid paradigms (MPI+OpenMP and MPI+Pthreads) in compute-intensive problem and in 

multi-core environment, to provide program developers and potential researchers with the 

information on the models that fit their goals best. The performance of the four selected parallel 

programming models has been measured through the speedup, execution time and also 
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efficiency. Besides that, the current study has applied the stencil computation as a benchmark 

application.  
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ABSTRAK 

Abstrak tesis yang dikemukakan Senat Universiti Putra Malaysia sebagai memenuhi 

Keperluan untuk Ijazah Komputer Sains 

PENILAIAN PRESTASI STENCIL KE ATAS KOMPUTER MULTI-CORE 

Oleh  

MUSTAFA SALEH MAHDI AL-KHAFFAF 

Pengerusi: Assoc. Prof. Dr. Nor Asilah Wati Abdul Hamid 

Fakulti: Computer Science and Information Technology 

 

High Performance Computing (HPC) ditakrifkan sebagai penggabungan kuasa 

pengkomputeran untuk mencapai tahap prestasi yang lebih tinggi, dan bertujuan untuk 

membantu seseorang untuk menyelesaikan tugas kompleks dalam pelbagai sektor, seperti 

kejuruteraan, sains, dan perniagaan dengan lebih cekap dan pantas, berbanding dengan prestasi 

yang ditawarkan oleh komputer biasa atau stesen kerja. Oleh kerana bilangan pengguna HPC 

semakin meningkat, pelbagai model parallel programming telah dibina untuk memenuhi 

matlamat dan keperluan spesifik setiap pengguna. Walau bagaimanapun, dengan adanya 

pelbagai pilihan model parallel programming, pengguna akan berhadapan dengan cabaran 

untuk memilih model terbaik yang memenuhi keperluan khusus mereka. Oleh itu, kajian 

semasa telah melakukan kajian perbandingan di antara MPI, OpenMP, Threading Building 

Blocks (TBB), dan POSIX thread (Pthreads), serta paradigma hibrid (MPI + OpenMP dan MPI 

+ Pthreads), dalam mengira masalah intensif dan di dalam multi-core environments, untuk 

menawarkan pemaju program dan penyelidik dengan maklumat mengenai model yang sesuai 
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dengan matlamat dan keperluan khusus mereka.  Prestasi empat model parallel programming 

yang dipilih telah diukur melalui kelajuan, masa pelaksanaan, dan juga kecekapan setiap 

model. Selain itu, kajian semasa telah menggunakan pengiraan stensil sebagai aplikasi penanda 

aras.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

The term High Performance Computing (HPC) carries the meaning of the practice of 

accumulating computing power in order to obtain greater level of performance compared to 

what a normal computer or workstation could give, especially when it comes to solving 

complex tasks in various sectors, namely engineering, science and business (Ashraf, Eassa, 

Albeshri, & Algarni, 2018). In addition, HPC is also referred in two other terms, namely 

supercomputing and parallel computing. The chief concept in HPC is that, rather than 

employing a single compute which will take 100 hours to complete a task, the same task could 

be solved in 1 hour by employing 100 computers at the same time. While a single node in 

supercomputer might not be more powerful in comparison to a single compute, but it will when 

all the resources are connected with each other (Ashraf et al., 2018). HPC systems enable high 

communication bandwidth, but with low level of message intermission and failure rates on 

computer nodes. In the recent years, HPC has been extensively employed due to its powerful 

computational performance compared to machines with single-processing. This is due to the 

homogeneity of its multi-core engineering, that consists of a number of interchangeable 

processor cooperating to complete complex jobs (Albalawi, Thulasiraman, & Thulasiram, 

2013). The idea of parallel engineering was first discovered around 1960 together with 

transistors, which was used instead of tubes and other restricted machineries. These transistors 

help the processors to become smaller and easier to manage. The first generation of 

microprocessors were later introduced in the early 70s.  
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The main aim of parallel computing is to improve the performance and efficiency; 

thus every step of parallelization process, namely assignment, decomposition, mapping and 

synchronization have significant roles in achieving this (Culler, Singh, & Gupta, 1999). The 

development of parallel computing includes both data centers and supercomputers, and also 

any devices which operate through CPU or GPU processing unit. As the need for parallel 

computing grows, the number of processors also increase steadily to meet the demands  

(Navarro, Hitschfeld-Kahler, & Mateu, 2014). There are various parallel programming models 

that have been introduced to aid the developers, programmers and researchers, but, the most 

widely used models are MPI, OpenMP, Threading Building Blocks (TBB),hybrid 

(MPI/OpenMP and MPI/Pthreads), and POSIX threads (Pthreads). However, with the huge 

number of selections on parallel programming models comes another obstacle, namely on 

which model is best to fulfil the specific goal or tasks based on their level of performance. This 

problem will be discussed further in the following section. 

 

1.2 Problem statement 

After the discovery of the correlation between the wall of the chip dissipations with 

the increase of clock speed in the semiconductor industry technology, the Moore’s law was 

introduced into the add processor cores. In parallel to this discovery, the number of processor 

cores mounted on a single chip has been increased by the manufacturers. While these multi-

core processors are fundamental for many program developers, the question on how to 

maximize the performance of the multi-core platforms in HPC has been constantly discussed 

(Chou & Chen, 2016). To produce efficient parallel programs, the program developers need to 

firstly understand the basis of multi-core platforms, particularly on the characteristics of the 

hardware. In response to that, a number of parallel programming models were introduced 

(Diaz, Munoz-Caro, & Nino, 2012; Kasim, March, Zhang, & See, 2008).  
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The main goals of parallel programming are to firstly acquire high performance from 

the application, and secondly, to solve complex problems which require heavy load of 

processing and immense resources. It also aims to reduce the execution time which could be 

achieved through either increasing the system speed-up, or maximizing the parallel application 

development, or both. As the memory to process data are accessible by a huge number of 

threads, synchronization is also the key element in parallel programming to prevent starvation. 

In the programming effort, but also hides the details of the hardware. Through the advancement 

of software technology, the distributed and parallel applications continues to progress, thus 

heighten the ability to reach the hardware’s theoretical performance peak (Kang, Lee, & Lee, 

2015; Noaje, Krajecki, & Jaillet, 2010).  

 

However, in line with the growing number of parallel programming models and their 

various distinctive features, developers and programmers will face with the question of which 

parallel programming model is the most suitable for the implementation of computation-

intensive on multi-core system with the most efficient performance (Michailidis & Margaritis, 

2016; Salehian, Liu, & Yan, 2017)). Thus, the current research will examine four parallel 

programming models namely (MPI Shared Memory, OpenMP, POSIX threads (Pthreads), and 

Threading Building Blocks (TBB) plus hybrid models (MPI+OpenMP and MPI+Pthreads). In 

order to provide the developers, programmers and potential researchers with a clearer picture 

of the most suitable parallel programming model to be implemented, a comparative study has 

been done on the selected five models. 
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1.3 Objectives 

The objective of this research is: 

To analyze the performance of four parallel programming models which includes 

OpenMP, MPI SHM, TBB and Pthreads with stencil as the benchmark application on  a multi-

core shared memory system. 

 

1.4 Project Scope 

The current research will be limited based on the following aspects: 

1. A critical review of the four selected parallel programming models which includes 

OpenMP, MPI SHM, TBB, and Pthreads on multi-core shared memory systems. 

2. The experiment for each model will be implemented using stencil computation to 

measure and analyze the performance of the five selected models.  

 

1.5 Thesis Organization 

The thesis is divided into six chapters, a brief description for each as follows: Chapter 

1, description for in an appropriate manner Research area, problem statement, objective, project 

scope, and thesis organization. Chapter 2, introduces an overview of the selected four parallel 

programming models, the benchmark that has been employed in this study, literature review of 

the research and related works. Chapter 3, describes the methodology research that has been 

conducted, parameters, algorithm and performance, and metrics that have been exploited in the 

experiment. Chapter 4, provides the implementation of stencil computation using the four 

selected parallel programming models. Chapter 5, discusses the results of performance 

analysis, shows the behavior of each parallel programming model that is picked by this study, 

© C
OPYRIG

HT U
PM



5 

 

and provides the core findings that are observed during the analysis. Chapter 6, supplies a 

conclusion of the study and the future work. 
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