

PERFORMANCE EVALUATION OF STENCIL ON MULTI-CORE

COMPUTER

MUSTAFA SALEH MAHDI AL-KHAFFAF

FSKTM 2019 28

PERFORMANCE EVALUATION OF STENCIL ON MULTI-

CORE COMPUTER

By

MUSTAFA SALEH MAHDI AL-KHAFFAF

Thesis submitted to the School of Graduate Student, Universiti Putra Malaysia,

in Fulfillment of the Requirement for the Degree of Master of Computer Science

2019

© C
OPYRIG

HT U
PM

ii

COPYRIGHT

All materials contained in this thesis, including without limitation text, icons, logos, images

and all other artwork is copyright of University Putra Malaysia unless otherwise mentioned.

Use may be made of any material contained within the thesis for non-commercial purposes

from the copyright holder. Commercial use of material may only be made with the express

prior, written permission of University Putra Malaysia.

Copyright© University Putra Malaysia

© C
OPYRIG

HT U
PM

iii

DEDICATION

This Thesis is dedicated to:

The sake of Allah. My Creator and my Master.

My great teacher and messenger, and beloved supervisor Assoc. Prof. Dr. Nor Asilah Wati

Abdul Hamid (May Allah bless and grant her).

Who taught us the purpose of life.

My beloved Parents,

My Brother and Sisters,

And all my friends,

For

Their Endless Patience and Support

© C
OPYRIG

HT U
PM

iv

ABSTRACT

Abstract of this thesis is presented to the Senate of Universiti Putra Malaysia, in

fulfillment of the requirement for the degree of Master of Computer Science

PERFORMANCE EVALUATION OF STENCIL ON MULTI-CORE COMPUTER

By

MUSTAFA SALEH MAHDI AL-KHAFFAF

Chair: Assoc. Prof. Dr. Nor Asilah Wati Abdul Hamid

Faculty: Computer Science and Information Technology

High Performance Computing (HPC) can be defined as the practice of combining

computing power to attain higher level of performance, aiding one to solve complex tasks in

various sectors, namely engineering, science and business efficiently and faster, compared to

what a normal computer or workstation might offer. As the number of HPC users grows,

various parallel programming models are also developed to fulfil the specific goals and needs

of each user. However, with the availability of multiple parallel programming models to be

chosen from, users will face with another challenge, on how to choose the best model that

meets the specific requirements. Thus, the current work has performed a comparative study on

MPI, OpenMP, Threading Building Blocks (TBB), and POSIX threads (Pthreads) as well a

hybrid paradigms (MPI+OpenMP and MPI+Pthreads) in compute-intensive problem and in

multi-core environment, to provide program developers and potential researchers with the

information on the models that fit their goals best. The performance of the four selected parallel

programming models has been measured through the speedup, execution time and also

© C
OPYRIG

HT U
PM

v

efficiency. Besides that, the current study has applied the stencil computation as a benchmark

application.

© C
OPYRIG

HT U
PM

vi

ABSTRAK

Abstrak tesis yang dikemukakan Senat Universiti Putra Malaysia sebagai memenuhi

Keperluan untuk Ijazah Komputer Sains

PENILAIAN PRESTASI STENCIL KE ATAS KOMPUTER MULTI-CORE

Oleh

MUSTAFA SALEH MAHDI AL-KHAFFAF

Pengerusi: Assoc. Prof. Dr. Nor Asilah Wati Abdul Hamid

Fakulti: Computer Science and Information Technology

High Performance Computing (HPC) ditakrifkan sebagai penggabungan kuasa

pengkomputeran untuk mencapai tahap prestasi yang lebih tinggi, dan bertujuan untuk

membantu seseorang untuk menyelesaikan tugas kompleks dalam pelbagai sektor, seperti

kejuruteraan, sains, dan perniagaan dengan lebih cekap dan pantas, berbanding dengan prestasi

yang ditawarkan oleh komputer biasa atau stesen kerja. Oleh kerana bilangan pengguna HPC

semakin meningkat, pelbagai model parallel programming telah dibina untuk memenuhi

matlamat dan keperluan spesifik setiap pengguna. Walau bagaimanapun, dengan adanya

pelbagai pilihan model parallel programming, pengguna akan berhadapan dengan cabaran

untuk memilih model terbaik yang memenuhi keperluan khusus mereka. Oleh itu, kajian

semasa telah melakukan kajian perbandingan di antara MPI, OpenMP, Threading Building

Blocks (TBB), dan POSIX thread (Pthreads), serta paradigma hibrid (MPI + OpenMP dan MPI

+ Pthreads), dalam mengira masalah intensif dan di dalam multi-core environments, untuk

menawarkan pemaju program dan penyelidik dengan maklumat mengenai model yang sesuai

© C
OPYRIG

HT U
PM

vii

dengan matlamat dan keperluan khusus mereka. Prestasi empat model parallel programming

yang dipilih telah diukur melalui kelajuan, masa pelaksanaan, dan juga kecekapan setiap

model. Selain itu, kajian semasa telah menggunakan pengiraan stensil sebagai aplikasi penanda

aras.

© C
OPYRIG

HT U
PM

viii

ACKNOWLEDGEMENT

To my Lord Allah Almighty, I am thankful for the blessings and virtues, and for

reconciling, strength, patience, courage, and determination he gave me to complete this

work to the fullest, Alhamdulillah.

I would like to extend my gratitude to Assoc. Prof. Dr. Nor Asilah Wati Abdul

Hamid, for her supervision, advice, and guidance from the very early stage of this project

as well as giving me extraordinary experiences throughout the work. Above all and the

most needed, she provided me with unflinching encouragement and support in various

ways. Moreover, also like to thank my Assessor, Assoc. Prof. Dr. Rohaya Latip for

his suggestions and comments through the whole process of developing my thesis.

My warmest gratitude goes to all of my family members, especially my Father

and my Mother who always believed in me, gave me all the possible support, and being

patient with me for years, providing me with everything, just to make me focus on my

goals. I am also thankful for my friends around me for their support and concern about

my study, and their willingness to provide me with any support I need.

Finally, I must extend my sincere thanks to the Ministry of Higher Education.

Nonetheless, my gratitude to the Malaysian people in general for their perfect

hospitability in their green land during my study period.

© C
OPYRIG

HT U
PM

ix

APPROVAL

This thesis was submitted to the Faculty of Computer Science and Information Technology of

Universiti Putra Malaysia and has been accepted as partial fulfillment of the requirement for

the degree of Master of Computer Science.

The members of the Supervisory Committee were as follows:

Supervisor: Assoc. Prof. Dr. Nor Asilah Wati Abdul Hamid

Department of Communication Technology and Network

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

Date and Signature: ___________________________________

Assessor: Assoc. Prof. Dr. Rohaya Latip

Department of Communication Technology and Network

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

Date and Signature: _____________________________

© C
OPYRIG

HT U
PM

x

DECLARATION

I declare that the thesis is my original work, except for the quotation and citations, which have

been duly, acknowledge. I also declare that it has not been previously, and is not concurrently,

submitted for any other degree at Universiti Putra Malaysia or any other institution.

Signature: _________________________

Name and Matric No: MUSTAFA SALEH MAHDI AL-KHAFFAF (GS48123)

Date: ---------------------------------

© C
OPYRIG

HT U
PM

xi

TABLE OF CONTENT

Page

ABSTRACT iv

ABSTRAK vi

ACKNOWLEDGEMENT viii

APPROVAL ix

DECLARATION x

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xiv

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem statement 2

1.3 Objectives 4

1.4 Project Scope 4

1.5 Thesis Organization 4

LITERATURE REVIEW 6

2.1 Overview 6

2.1.1 Message Passing Interface (MPI) 6

2.1.2 Open Multi-Processing (OpenMP) 6

2.1.3 POSIX threads (Pthreads) 7

2.1.4 Threading Building Blocks (TBB) 7

2.1.5 Hybrid Programming 7

2.1.6 Stencil code Algorithm 8

2.2 Related Work 11

METHODOLOGY 18
3.1 Introduction 18

3.2 Experiment Framework 18

3.3 Experiment Platform 19

3.4 The benchmark 20

3.5 The parameters 21

3.6 Performance metrics 21

3.6.1 Execution time 22

3.6.2 Speedup 22

3.6.3 Efficiency 23

IMPLEMENTATION 24

4.1 Introduction 24

4.2 Initializations for the implantation 24

4.3 Implementation of execution time 25

2

3

4

© C
OPYRIG

HT U
PM

xii

4.4 Implementation of stencil computation 26

4.5 Implementation of sequential program 27

4.6 Implementation of OpenMP 28

4.7 Implementation of TBB 28

4.8 Implementation of Pthread 29

4.9 Implementation of MPI 31

4.10 Implementation of Hybrid 35

4.11 Conclusion 39

RESULTS AND ANALYSIS 40
5.1 Introduction 40

5.2 Experimental Development 40

5.3 Sequential Implementation results 41

5.4 Parallel implementation results 42

5.4.1 Execution time results 42

5.4.2 Speedup results 49

5.4.3 Efficiency results 55

5.5 Findings 57

5.6 Conclusion 57

CONCLUSION AND FUTURE WORK 63

6.1 Conclusion 63

6.2 Future work 64

REFERENCES 65

APPENDIX A 68

© C
OPYRIG

HT U
PM

xiii

LIST OF FIGURES

Figure 2.1: The idea of stencil computation. 10

Figure 3.1: Methodology Framework 19

Figure 3.2: A pseudocode for the iteration kernel of stencil computation. 21

Figure 4.1: The sample that has been generated. 25

Figure 4.2: The initialization of sample matrix a and results matrix c. 25

Figure 4.3: Calculating the execution time for the stencil computation. 26

Figure 4.4: The implementation of stencil computation 27

Figure 4.5: The directives that have been used in OpenMP models 28

Figure 4.6: The parallelization of TBB. 29

Figure 4.7: The parallelization of Pthread 31

Figure 4.8: The Parallelization of MPI point-to-point 33

Figure 4.9: The Parallelization of MPI collective 34

Figure 4.10: The Parallelization of the hybrid model MPI+OpenMP. 36

Figure 4.11: The Parallelization of the hybrid model MPI+Pthread. 38

Figure 5.1: The execution time of the sequential program against all selected sizes. 41

Figure 5.2: Execution time for matrix size 128. 45

Figure 5.3: Execution time for matrix size 256. 45

Figure 5.4: Execution time for matrix size 512. 46

Figure 5.5: Execution time for matrix size 1024. 46

Figure 5.6: Execution time for matrix size 2048. 47

Figure 5.7: Execution time for matrix size 4096. 47

Figure 5.8: Execution time for matrix size 8192. 48

Figure 5.9: Execution time for matrix size 16384. 48

Figure 5.10: Execution time for matrix size 32768. 49

Figure 5.11: Speedup for matrix size 128. 51

Figure 5.12: Speedup for matrix size 256. 51

Figure 5.13: Speedup for matrix size 512. 52

Figure 5.14: Speedup for matrix size 1024. 52

Figure 5.15: Speedup for matrix size 2048. 53

Figure 5.16: Speedup for matrix size 4096. 53

Figure 5.17: Speedup for matrix size 8196. 54

Figure 5.18: Speedup for matrix size 16384. 54

Figure 5.19: Speedup for matrix size 32768. 55

Figure 2.20: Efficiency for matrix size 128. 58

Figure 5.21: Efficiency for matrix size 256. 58

Figure 5.22: Efficiency for matrix size 512. 59

Figure 5.23: Efficiency for matrix size 1024. 59

Figure 5.24: Efficiency for matrix size 2048. 60

Figure 5.25: Efficiency for matrix size 4096. 60

Figure 5.26: Efficiency for matrix size 8192. 61

Figure 5.27: Efficiency for matrix size 16384. 61

Figure 5.28: Efficiency for matrix size 32768. 62

© C
OPYRIG

HT U
PM

xiv

LIST OF ABBREVIATIONS

HPC

CPU

GPU

MPI(SHM)

Pthread

OpenMP

TBB

API

High Performance Computing

Central Processing Unit

Graphics Processing Unit

Message Passing Interface Shared Memory

POSIX Threads

Open Multi-Processing

Threading Building Blocks

Application Programming Interface

© C
OPYRIG

HT U
PM

CHAPTER 1

INTRODUCTION

1.1 Background

The term High Performance Computing (HPC) carries the meaning of the practice of

accumulating computing power in order to obtain greater level of performance compared to

what a normal computer or workstation could give, especially when it comes to solving

complex tasks in various sectors, namely engineering, science and business (Ashraf, Eassa,

Albeshri, & Algarni, 2018). In addition, HPC is also referred in two other terms, namely

supercomputing and parallel computing. The chief concept in HPC is that, rather than

employing a single compute which will take 100 hours to complete a task, the same task could

be solved in 1 hour by employing 100 computers at the same time. While a single node in

supercomputer might not be more powerful in comparison to a single compute, but it will when

all the resources are connected with each other (Ashraf et al., 2018). HPC systems enable high

communication bandwidth, but with low level of message intermission and failure rates on

computer nodes. In the recent years, HPC has been extensively employed due to its powerful

computational performance compared to machines with single-processing. This is due to the

homogeneity of its multi-core engineering, that consists of a number of interchangeable

processor cooperating to complete complex jobs (Albalawi, Thulasiraman, & Thulasiram,

2013). The idea of parallel engineering was first discovered around 1960 together with

transistors, which was used instead of tubes and other restricted machineries. These transistors

help the processors to become smaller and easier to manage. The first generation of

microprocessors were later introduced in the early 70s.

© C
OPYRIG

HT U
PM

2

The main aim of parallel computing is to improve the performance and efficiency;

thus every step of parallelization process, namely assignment, decomposition, mapping and

synchronization have significant roles in achieving this (Culler, Singh, & Gupta, 1999). The

development of parallel computing includes both data centers and supercomputers, and also

any devices which operate through CPU or GPU processing unit. As the need for parallel

computing grows, the number of processors also increase steadily to meet the demands

(Navarro, Hitschfeld-Kahler, & Mateu, 2014). There are various parallel programming models

that have been introduced to aid the developers, programmers and researchers, but, the most

widely used models are MPI, OpenMP, Threading Building Blocks (TBB),hybrid

(MPI/OpenMP and MPI/Pthreads), and POSIX threads (Pthreads). However, with the huge

number of selections on parallel programming models comes another obstacle, namely on

which model is best to fulfil the specific goal or tasks based on their level of performance. This

problem will be discussed further in the following section.

1.2 Problem statement

After the discovery of the correlation between the wall of the chip dissipations with

the increase of clock speed in the semiconductor industry technology, the Moore’s law was

introduced into the add processor cores. In parallel to this discovery, the number of processor

cores mounted on a single chip has been increased by the manufacturers. While these multi-

core processors are fundamental for many program developers, the question on how to

maximize the performance of the multi-core platforms in HPC has been constantly discussed

(Chou & Chen, 2016). To produce efficient parallel programs, the program developers need to

firstly understand the basis of multi-core platforms, particularly on the characteristics of the

hardware. In response to that, a number of parallel programming models were introduced

(Diaz, Munoz-Caro, & Nino, 2012; Kasim, March, Zhang, & See, 2008).

© C
OPYRIG

HT U
PM

3

The main goals of parallel programming are to firstly acquire high performance from

the application, and secondly, to solve complex problems which require heavy load of

processing and immense resources. It also aims to reduce the execution time which could be

achieved through either increasing the system speed-up, or maximizing the parallel application

development, or both. As the memory to process data are accessible by a huge number of

threads, synchronization is also the key element in parallel programming to prevent starvation.

In the programming effort, but also hides the details of the hardware. Through the advancement

of software technology, the distributed and parallel applications continues to progress, thus

heighten the ability to reach the hardware’s theoretical performance peak (Kang, Lee, & Lee,

2015; Noaje, Krajecki, & Jaillet, 2010).

However, in line with the growing number of parallel programming models and their

various distinctive features, developers and programmers will face with the question of which

parallel programming model is the most suitable for the implementation of computation-

intensive on multi-core system with the most efficient performance (Michailidis & Margaritis,

2016; Salehian, Liu, & Yan, 2017)). Thus, the current research will examine four parallel

programming models namely (MPI Shared Memory, OpenMP, POSIX threads (Pthreads), and

Threading Building Blocks (TBB) plus hybrid models (MPI+OpenMP and MPI+Pthreads). In

order to provide the developers, programmers and potential researchers with a clearer picture

of the most suitable parallel programming model to be implemented, a comparative study has

been done on the selected five models.

© C
OPYRIG

HT U
PM

4

1.3 Objectives

The objective of this research is:

To analyze the performance of four parallel programming models which includes

OpenMP, MPI SHM, TBB and Pthreads with stencil as the benchmark application on a multi-

core shared memory system.

1.4 Project Scope

The current research will be limited based on the following aspects:

1. A critical review of the four selected parallel programming models which includes

OpenMP, MPI SHM, TBB, and Pthreads on multi-core shared memory systems.

2. The experiment for each model will be implemented using stencil computation to

measure and analyze the performance of the five selected models.

1.5 Thesis Organization

The thesis is divided into six chapters, a brief description for each as follows: Chapter

1, description for in an appropriate manner Research area, problem statement, objective, project

scope, and thesis organization. Chapter 2, introduces an overview of the selected four parallel

programming models, the benchmark that has been employed in this study, literature review of

the research and related works. Chapter 3, describes the methodology research that has been

conducted, parameters, algorithm and performance, and metrics that have been exploited in the

experiment. Chapter 4, provides the implementation of stencil computation using the four

selected parallel programming models. Chapter 5, discusses the results of performance

analysis, shows the behavior of each parallel programming model that is picked by this study,

© C
OPYRIG

HT U
PM

5

and provides the core findings that are observed during the analysis. Chapter 6, supplies a

conclusion of the study and the future work.

© C
OPYRIG

HT U
PM

65

REFERENCES

Albalawi, E., Thulasiraman, P., & Thulasiram, R. (2013). Task Level Parallelization of All Pair

Shortest Path Algorithm in OpenMP 3.0. In 2nd International Conference on Advances

in Computer Science and Engineering (CSE 2013) (pp. 1–2).

Asaadi, H., Khaldi, D., & Chapman, B. (2016). A Comparative Survey of the HPC and Big

Data Paradigms: Analysis and Experiments. In 2016 IEEE International Conference on

Cluster Computing (pp. 423–432). IEEE. https://doi.org/10.1109/CLUSTER.2016.21

Asaduzzaman, A., Sibai, F. N., & El-Sayed, H. (2013). Performance and power comparisons

of MPI Vs Pthread implementations on multicore systems. In 2013 9th International

Conference on Innovations in Information Technology (IIT) (pp. 1–6). IEEE.

https://doi.org/10.1109/Innovations.2013.6544384

Ashraf, M. U., Eassa, F. A., Albeshri, A. A., & Algarni, A. (2018). Performance and Power

Efficient Massive Parallel Computational model for HPC Heterogeneous Exascale

Systems. IEEE Access, 6, 1–1. https://doi.org/10.1109/ACCESS.2018.2823299

Brickner, R. G., Kennedy, K., Mellor-Crummey, J., & Roth, G. H. (1997). Compiling Stencils

in High Performance Fortran.

Chou, C.-Y., & Chen, K.-T. (2016). Performance Evaluations of Different Parallel

Programming Paradigms for Pennes Bioheat Equations and Navier-Stokes Equations.

In 2016 International Computer Symposium (ICS) (pp. 503–508). Chiayi, Taiwan:

IEEE.

Christgau, S., Spazier, J., & Schnor, B. (2015). A Performance and Scalability Analysis of the

Tsunami Simulation EasyWave for Different Multi-Core Architectures and

Programming Models. University Potsdam, Institute of Computer Science, Potsdam,

Germany, Tech. Rep. TR-2015-01.

Christgau, S., Spazier, J., Schnor, B., Hammitzsch, M., Babeyko, A., & Waechter, J. (2014). A

comparison of CUDA and OpenACC: accelerating the tsunami simulation easywave.

In Architecture of Computing Systems (ARCS), 2014 Workshop Proceedings (pp. 1–5).

VDE.

Coulouris, J. D. G. (2015). Distributed Systems: Concepts and Design (5th ed.). New York,

NY, USA: Addison Wesley.

Culler, D. E., Singh, J. P., & Gupta, A. (1999). Parallel computer architecture: a

hardware/software approach. San Francisco: Morgan Kaufmann Publishers.

Diaz, J., Munoz-Caro, C., & Nino, A. (2012). A Survey of Parallel Programming Models and

Tools in the Multi and Many-Core Era. IEEE Transactions on Parallel and Distributed

Systems, 23(8), 1369–1386. https://doi.org/10.1109/TPDS.2011.308

© C
OPYRIG

HT U
PM

66

Ajkunic, E., Fatkic, H., Omerovic, E., Talic, K., & Nosovic, N. (2012). A Comparison of Five

Parallel Programming Models for C++. In MIPRO, 2012 Proceedings of the 35th

International Convention (pp. 1780–1784). Retrieved from

https://www.researchgate.net/profile/Hana_Fatkic/publication/261424700_A_compari

son_of_five_parallel_programming_models_for_C/links/5607df6808ae5e8e3f3a3a1d.

pdf

Guerrera, D., Maffia, A., & Burkhart, H. (2018). Reproducible stencil compiler benchmarks

using prova! Future Generation Computer Systems.

https://doi.org/10.1016/j.future.2018.05.023

Holewinski, J., Pouchet, L.-N., & Sadayappan, P. (2012). High-performance code generation

for stencil computations on GPU architectures. In Proceedings of the 26th ACM

international conference on Supercomputing (pp. 311–320). ACM.

Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., & Chapman, B. (2011). High

performance computing using MPI and OpenMP on multi-core parallel systems.

Parallel Computing, 37(9), 562–575. https://doi.org/10.1016/j.parco.2011.02.002

Kang, S. J., Lee, S. Y., & Lee, K. M. (2015). Performance Comparison of OpenMP, MPI, and

MapReduce in Practical Problems. Advances in Multimedia, 2015, 1–9.

https://doi.org/10.1155/2015/575687

Kim, C. G., & Seo, Y.-H. (2016). Parallel JPEG Color Conversion on Multi-Core Processor.

International Journal of Multimedia and Ubiquitous Engineering, 11, 9–16.

http://dx.doi.org/1014257/ijmue.2016.11.2.02

Krpic, Z., Martinovic, G., & Crnkovic, I. (2012). Green HPC: MPI vs. OpenMP on a shared

memory system. In MIPRO, 2012 Proceedings of the 35th International Convention

(pp. 246–250). IEEE.

Leist, A., & Gilman, A. (2014). Comparative Analysis of Parallel Programming Models for

C++. In The Ninth International Multi-Conference on Computing in the Global

Information Technology.

Luecke, G., Weiss, O., Kraeva, M., & Hoekstra, J. C. J. (2010). Performance Analysis of Pure

MPI Versus MPI+OpenMP for Jacobi Iteration and a 3D FFT on the Cray XT5.

Memeti, S., Li, L., Pllana, S., Kołodziej, J., & Kessler, C. (2017). Benchmarking OpenCL,

OpenACC, OpenMP, and CUDA: Programming Productivity, Performance, and

Energy Consumption (pp. 1–6). ACM Press. https://doi.org/10.1145/3110355.3110356

Michailidis, P. D., & Margaritis, K. G. (2016). Scientific computations on multi-core systems

using different programming frameworks. Applied Numerical Mathematics, 104, 62–

80. https://doi.org/10.1016/j.apnum.2014.12.008

© C
OPYRIG

HT U
PM

67

Navarro, C. A., Hitschfeld-Kahler, N., & Mateu, L. (2014). A Survey on Parallel Computing

and its Applications in Data-Parallel Problems Using GPU Architectures.

Communications in Computational Physics, 15(2), 285–329.

https://doi.org/10.4208/cicp.110113.010813a

Noaje, G., Krajecki, M., & Jaillet, C. (2010). MultiGPU computing using MPI or OpenMP. In

Proceedings of the 2010 IEEE 6th International Conference on Intelligent Computer

Communication and Processing (pp. 347–354).

https://doi.org/10.1109/ICCP.2010.5606414

Salehian, S., Liu, J., & Yan, Y. (2017). Comparison of Threading Programming Models. In

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW) (pp. 766–774). IEEE. https://doi.org/10.1109/IPDPSW.2017.141

Schäfer, A., & Fey, D. (2011). High performance stencil code algorithms for GPGPUs.

Procedia Computer Science, 4, 2027–2036.

Sharma, M., & Soni, P. (2014). Comparative Study of Parallel Programming Models to

Compute Complex Algorithm. International Journal of Computer Applications,

96(19), 9–12. https://doi.org/10.5120/16900-6961

Silven, M. (2014). Evaluation and Comparison of Programming Frameworks for Shared

Memory Multicore Systems.

Tousimojarad, A., & Vanderbauwhede, W. (2014). Comparison of Three Popular Parallel

Programming Models on the Intel Xeon Phi. In Euro-Par 2014: Parallel Processing

Workshops (pp. 314–325). Springer, Cham. https://doi.org/10.1007/978-3-319-14313-

2_27

© C
OPYRIG

HT U
PM

