

UNIVERSITI PUTRA MALAYSIA

ECONOMIC EFFICIENCY OF MALAYSIAN OLEOCHEMICAL ENTERPRISES

MOHAMED OSMAN AHMED BUSHARA

FEP 2001 5

ECONOMIC EFFICIENCY OF MALAYSIAN OLEOCHEMICAL ENTERPRISES

By

MOHAMED OSMAN AHMED BUSHARA

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Economics and Management Universiti Putra Malaysia

May 2001

Dedicated to,

My Children and their Caring Mother

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Doctor of Philosophy

ECONOMIC EFFICIENCY OF MALAYSIAN OLEOCHEMICAL ENTERPRISES

By

MOHAMED OSMAN AHMED BUSHARA

May 2001

Chairman: Professor Mohd. Ghazali Bin Mohayidin, Ph.D.

Faculty: Economics and Management

This study comprises a rigorous Micro Econometric and Data Envelopment Analysis (DEA) of the performance of the Malaysian oleochemical enterprises over time. The analysis covers the following sectors: coconut oil, palm oil, palm kernel oil and other oils and fats, as well as twelve out of fifteen working oleochemical enterprises.

The micro-economic data were graciously provided by Malaysian National Productivity Corporation (NPC), Malaysian Department of Statistics and some other respected sources. Panel data have been used in this study. The time series data and cross section data have been both pooled together to constitute panel data. Also maximum likelihood estimation has been incorporated for composed error models as well as DEA. Where appropriate, the literature has been updated. This study shows that the major advantage of the systematic application of the two frontier approaches, which are stochastic and deterministic (DEA), with multiple techniques on panel of data containing two levels, enables the comparison of synthesis of the results obtained to

provide a comprehensive, detailed and insightful understanding of the producer behaviour. This approach is superior and informative than single eyed approaches.

The results from all approaches consistently show that scale inefficiency and allocative inefficiency are the main problems in efficiency analysis. The scale inefficiency is mainly due to production operation at increasing returns to scale. This is noted specially in the coconut oil sector, the palm kernel oil sector and oleochemical enterprises. Allocative inefficiency is mainly due to under-utilisation of inputs relative to capital. Labour was under-utilised relative to capital in palm oil and other fat and oil sector. Allocative inefficiency due to underutilisation of inputs relative to capital is proved in this study. It is in consistent with that found by Seale (1990) in Egyptian Tileries, who claimed that Tileries on average were allocatively inefficient, employing too much capital relative to labour. The estimate of Malaysian oil and fat industry's total factor productivity (TFP) change is -3.705% for the period 1985 to 1996. The major contributor to this negative technological change is the palm oil sector and other oil and fat sector. The palm oil sector's negative contribution is at an average annual rate of 6.818% over the period of this study and other oil and fat sector is at an average annual rate of 5.818%. This implies that the palm oil sector is ailing due to technological regress. It could be concluded that allocative efficiency requires first or second best pricing of final products; scale efficiency requires limitation on sub-optimal entry to the industry; technical efficiency requires cost minimisation by the incumbent firms; and finally product choice and dynamic efficiency require innovation by incumbents and new entrants.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KECEKAPAN EKONOMI PERUSAHAAN OLEOKIMIA MALAYSIA

Oleh

MOHAMED OSMAN AHMED BUSHARA

Mei 2001

Pengerusi: Profesor Mohd. Ghazali bin Mohayidin, Ph.D

Fakulti: Ekonomi dan Pengurusan

Kajian ini merangkumi Analisis Mikroekonometrik dan Peliputan Data (Data Envelopment Analysis – DEA) prestasi perusahaan oleokimia Malaysia merentas masa. Analisis tersebut meliputi sektor-sektor berikut: minyak kelapa, minyak sawit, minyak inti sawit dan minyak serta lemak lain, di samping dua belas daripada tujuh belas perusahaan oleokimia. Data mikroekonomi telah dibekalkan dengan ehsan Perbadanan Pengeluaran Nasional (NPC), Jabatan Statistik Malaysia dan sumber lain. Data panel telah digunakan dalam kajian ini. Kedua-dua data siri masa dan data keratan silang telah dikumpul untuk mewujudkan satu data panel.

Dalam penyelidikan ini penganggaran kebolehjadian maksimum telah digabungkan untuk memperoleh model ralat tergubah dan juga DEA. Rujukan telah dikemaskinikan apabila didapati sesuai dalam disertasi ini. Kajian ini menunjukkan bahawa kelebihan utama aplikasi bersistem dua pendekatan yang bersifat stokastik dan berketentuan (DEA), dengan teknik berbilang pada data panel yang mengandungi dua tahap membolehkan perbandingan sintesis keputusan yang diperoleh untuk memberikan pemahaman yang komprehensif dan terperinci terhadap gelagat pengeluar. Pendekatan ini adalah lebih baik dan informatif daripada pendekatan bermata tunggal.

Keputusan daripada pendekatan secara konsisten menunjukkan bahawa ketakcekapan skala dan ketakcekapan peruntukan adalah masalah utama dalam analisis kecekapan. Ketakcekapan skel ini disebabkan oleh operasi pengeluaran pada pulangan ikut skel yang meningkat. Kes ini diperhatikan bagi sektor minyak kelapa, sektor minyak inti sawit dan perusahaan oleokimia. Ketakcekapan peruntukan berlaku disebabkan kurang penggunaan input berbanding dengan modal. Buruh kurang digunakan berbanding dengan modal dalam semua sektor minyak dan lemak dan industri oleokimia. Dalam industri ini ketakcekapan peruntukan disebabkan kurang penggunaan buruh berbanding dengan modal telah dibuktikan. Ini adalah konsisten dengan apa yang ditemui oleh Seale (1990) dalam perusahaan genting atap di Mesir. Beliau mendapati bahawa pada keseluruhannya perusahaan tersebut adalah tidak cekap secara peruntukannya kerana menggunakan terlalu banyak modal berbanding dengan buruh. Anggaran perubahan TPF bagi industri minyak dan lemak Malaysia adalah – 3.705% dalam jangka masa 1985 – 1996. Penyumbang utama bagi perubahan teknologi yang negatif ini adalah sektor minyak dan sektor minyak serta lemak yang lain. Sumbangan negatif sektor minyak sawit adalah pada kadar purata tahunan 6.818% dalam jangka masa kajian ini dan bagi sektor minyak dan lemak yang lain adalah pada purata tahunan 5.818%. Ini memberi implikasi bahawa sektor minyak sawit adalah bermasalah disebabkan regresi teknologi.

Boleh dirumuskan bahawa kecekapan peruntukan memerlukan letak harga pertama dan kedua terbaik; kecekapan skala memerlukan pembatasan keatas kemasukan sub-optimum ke dalam industri, kecekapan teknikal memerlukan peminimumam kos di kalangan firma yang ada; dan pilihan keluasan dan kecekapan dinamik memerlukan inovasi di kalangan firma yang ada dan yang baru.

ACKNOWLEDGEMENTS

In pursuing and completing this dissertation I have accumulated intellectual insights and debts to many people and institutions. It is beyond my capability to recall exactly what I have gained and from whom; much less to fully acknowledge all of them. Within this caveat, the acknowledgements that follow are, accordingly incomplete.

I would like to record my gratitude to my supervisor Prof. Dr. Mohd. Ghazali Bin Mohayidin for his encouragement, friendship and intellectual discipline throughout the course of preparing this dissertation. If not for his friendly attitude and generous allocation of time for active discussion of my work, this research study would neither have its present depth nor have been completed.

I am also grateful to my supervisory committee members: Dr. Hamirin Kifli (Malaysian Palm Oil Board), Professor Dr. Mad. Nasir Shamsudin and Dr. Suhaila Bt. Abdul Jalil, for their patience to critically examine this study at its different stages.

I am also grateful for valuable suggestions through interaction with both staff and fellow research students overseas and at UPM. I have received assistance from the library, Computer Centre and Faculty of Economics and Management staff. My special thanks go to all of them. Last but not the least, I am indebted to my children and their caring mother, for their forbearance and support in this extended period of neglect.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	ν
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	viii
DECLARATION FORM	x
LIST OF TABLES	xv
LIST OF FIGURES	xviii
LIST OF ABBREVIATION	xix

CHAPTER

1.	INTRODUCTION	1
	 1.1 Development of Palm Oil Industry in Malaysia 1.1.1 Resource Oriented Multipurpose Industry 1.1.2 The Definition of Oleochemicals 	1 11 13
	1.2 The Meaning of Economic Efficiency	15
	 1.3 Measurement of Efficiency Frontier 1.4 Economic Efficiency, Performance Measurement and 	16
	Technical Change	18
2.	THE STRUCTURE OF MALAYSIAN OLEOCHEMICAL	
	INDUSTRY	21
	2.1 Background	21
	2.2 Main Fatty Acids of Palm and Palm Kernel Oil	26
	2.3 Fat Splitting	27
	2.4 Further Down-Stream Processing of Oleochemicals2.5 Working Capital and Management	32 36
	2.6 Current Status	39
	2.7 Problem Statement	41
	2.8 Objectives of the Study	43
	2.9 Scope of the Thesis	44
	2.10 Organisation of the Thesis	45
3.	REVIEW OF LITERATURE	46
	3.1 Introduction	46
	3.2 Non-Frontier Analyses	46
	3.3 Frontier Analyses	58
	3.4 Frontier Applications to Industries and Manufacturing	65
	3.5 Conclusion	69

4.	DATA AND M	ETHODOLOGY	74
	4.1 Introducti	on	74
	4.2 Research	Strategy	75
	4.2.1 I	Data and Information Sources	76
	4.2.2 I	Data Limitation	78
	4.2.3	Variables and Data Analysis	78
		Anecdotal Evidence	82
		Fechnical Efficiency Versus Economic Efficiency	85
		Stochastic Translog Cost Function Model	
	Specificat	•	90
	4.3.1	The Battese and Coelli (1993 & 1995) Inefficiency	
		Effect Model Specification.	92
		The Battese and Coelli (1992) Time-varying	
		Inefficiency Model Specification	96
		SUR: Seemingly Unrelated Regression Estimator	
		Approach System	100
		stic Frontier Approach (DEA)	106
		Fotal Factor Productivity Index	106
	4.4.2	The Model	108
	4.5 Cost Effici	iency and Allocative Efficiency (DEA)	117
	4.6 Conclusion	n and Summary of Methods	127
5.	RESULTS ANI	D DISCUSSION OF ECONOMETRIC STOCHASTIC	
	PARAMETRIC	C FRONTIER ANALYSIS	131
	5.1 Introduction	n	131
	5.2 The Battes	se and Coelli (1993 & 1995) Model of Inefficiency	
	Effects		132
	5.2.1 H	Hypothesis Tests on the Production Structure of	
	Ν	Malaysian Oil and Fat Industry	132
	5.2.2 H	Hypotheses on the Cost Inefficiency Effects	138
	5.2.3 F	Results of Cost Efficiency	140
	5.2.4 (Conclusion	146
	5.3 Frontier 7	Fime-invariant Cost Inefficiency Model (1992)	148
	5.3.1 H	Hypothesis Tests on the Cost Structure of	
		Malaysian Oleochemical Enterprises	148
	5.3.2 (Cost Efficiency of Malaysian Oleochemical Enterprises	155
	5.3.3 (Conclusion	157
	5.4 System of	f Equations Approach	158
	5.4.1	Hypothesis Tests on the Production Structure of	
		Malaysian Oil and Fat Industry	159
	5.4.2	Economic, Technical and Allocative Efficiencies	
		of Malaysian Oil and Fat Industry 1985-1996 System	166
	5.4.3	Conclusions	171
	5.5 Hypothese	s Test on the Production Structure of Malaysian	
	Oleochemi	ical Enterprises (System)	175
	5.5.1	Economic, Technical and Allocative Efficiencies of	
		Malaysian Oleochemical Enterprises (1991-1995)	179
		Conclusion	183

6.	RESULTS AND DISCUSSION OF DETERMINISTIC NON-	
	PARAMETRIC FRONTIER ANALYSIS	185
	6.1 Background	186
	6.2 Input-Saving Malmquist Productivity Index of Malaysian Oil	
	and Fat Industry 1985/1986-1995/1996: the Model	188
	6.2.1 Results and Discussion	192
	6.2.2 Conclusion	205
	6.3 Input-Saving Malmquist Productivity Index of Malaysian	205
	Oleochemical Enterprises (1991\1996-1994/1995)	207
	6.3.1 The Model	207
	6.3.2 Results and Discussion	200
	6.3.3 Conclusion	224
	6.4 Cost Efficiency Linear Programming (DEA) Approach	224
	6.4.1 The Model	229
	6.4.2 Cost Efficiency Results (DEA) of Malaysian Oil	22)
	and Fat Industry	233
	6.4.3 Conclusion	235
	6.5 Cost Efficiency (DEA) of Malaysian	240
	Oleochemical Enterprises	241
	6.5.1 Results and Discussion	241
	6.5.2 Conclusion	248
7.	SUMMARY AND CONCLUSIONS	250
-	7.1 Introduction	250
	7.2 Concepts and Properties of Frontier Methods	251
	7.3 The Battese and Coelli Inefficiency Effect Model (1993 & 1995)	256
	The Battese and Coelli Time Invariant Inefficiency Model (1992)	258
	7.5 System of Equations Approach	259
	7.5.1 Malaysian Oil and Fat Industry	260
	7.5.2 Malaysian Oleochemical Enterprises	261
	7.6 The Input Based Malmquist (TFP) Index (DEA) Approach	262
	7.6.1 Malaysian Oil and Fat Industry	262
	7.6.2 Malaysian Oleochemical Enterprises	264
	7.7 Cost Efficiency (DEA) Approach	266
	7.7.1 Malaysian Oil and Fat Industry	266
	7.7.2 Malaysian Oleochemical Enterprises	267
	7.8 Implications of Empirical Findings	269

BIBLIOGRAPHY

APPENDIX		
Α	Legal Status	300
A2	Ownership by Number of Officials	301
В	Ownership by Share Value	302
B2	Capital Origin (RM)	303
C-1	Second Order Maximum Likelihood Derivatives	304
C-2	First Order Maximum Likelihood Derivatives	306
C-3	Data Pooling and Softwares	308
D	Output and Input Deflators	311
D1	Output from the Program FRONTIER 4.1C	312
D-1	Model Selection (Time Effects) Parameters	318
D 2	Economic, Technical and Allocative Efficiencies of Malaysian Oil and	
	Fat Industry (1985-1996): System Approach	320
E	Technical, Allocative and Cost Efficiencies of Malaysian Oil and Fat	
	Industry (1985-1996): Results from DEAP Version 2.1	323
El	Technical, Allocative and Cost Efficiencies of Malaysian Oleochemical	
	Enterprises (1990-1996): Results from DEAP Version 2.1	326

VITA

330

LIST OF TABLES

TABLES		PAGE
1.1 1.2	World Production of Palm Kernel Oil. 1984 - 1998 ('000 Tonnes) Production of Palm Oil, 1960-2010 (Tonnes)	3 4
1.3 1.4	Oil Palm Planted Area, 1960-2010 (Hectares) Comparison of Oil Production & Gross Revenue per Hectare for Major	5
1.5	Vegetable Oil Commodities Malaysian Oleochemical Producers and Their Installed Capacities, 1995	6
1.6	(Tonnes/Year) Oleochemical Companies Processing and Exporting Oleochemicals,	9
1.7	Distillates and Derivatives Anticipated Production of Basic Oleochemicals in Malaysia and Potential	10
2.1	Value, 2000 Annual Production, Import-Export of CPO and PKO Oleochemical,	15
2.2 2.3	1980 - 1998 World Production of Oils and Fats, 1984 - 2000 ('000 tonnes) Export of Processed Palm Products, 1989 - 1998	22 23 25
2.4	Main Fatty Acid Constituents of Palm and Palm Kernel Oils and their Characteristics	26
2.5	Export of Oleochemicals, 1989 - 1998	28
2.6	Average Prices of Palm Oils and Oleochemicals (RM/Tonne)	29
2.7 2.8	Estimation of Oil Processing Value Added, 1995 Premium/Discount (%) of Refined Oils and Oleochemicals vs. CPO and	31
2.0	PKO, 1988 - 1998	33
2.9	Malaysian Exports of Oleochemicals, 1990 - 1998 ('000 Tonnes)	34
2.10	Palm Oil and Palm Kernel Oil Received by Malaysian Oleochemical Industry, 1985 - 1995	36
2.11	World Production of Basic Oleochemicals, 1995 - 2010 ('000 Tonnes)	38
2.12	Asean Oleochemical Production Capacity, 1994 ('000 Tonnes)	39
2.13	World Production of Basic Oleochemicals, 1990 - 2000 (Tonnes)	41
3.1 3.2	Average Productivity of Various Major Oil Crops (192/1993) Oleochemicals in Malaysia: Production and Capacities, 1990 - 2000	48
3.3	('000 Tonnes) Projected Local Production, Consumption and Export of Oleochemicals	50
3.4	and Glycerine, 1986 – 1995 ('000 Tonnes) Malaysia Oleochemical Producers and Capacities, 1995	51
3.5	('000 Tonnes/Annum) Productivity Indicators in Value Levels (RM) and Percentage Growth of	52
26	Malaysian Oil and Fat Industries, 1987 - 1996	56
3.6 4.1	Studies of Frontier Functions in Manufacturing Sectors Summary of the Properties of Five Principal Methods	66
5.1	Maximum-Likelihood Estimates for Parameters of the Translog	129
5.1	Stochastic Frontier Cost Function for Malaysian Oil and Fat Industry,	
5 7	1985 - 1996 Ukrathania Tanta	137
5.2	Hypothesis Tests	139

5.3	Mean Cost Efficiency of Malaysian Oil and Fat Industry by Sectors (Cost Efficiency Effect Model (Battese & Coelli, 1995): Results)	144
5.4	Maximum-Likelihood Estimates for Parameters of the Cobb-Douglas Stochastic Frontier Cost Function for Malaysian Oleochemical	
5.5	Enterprises, 1990 - 1996 Hypothesis Tests for Parameters of Distribution for Time Varying Inefficiency Firm Effect Model for Oleochemical	153
5.6	Enterprises Predicted Mean Cost Efficiency of 12 Malaysian Oleochemical	154
5.0	Enterprises (Time - invariant Cost Efficiency Firm Effects Model (Battese and Coelli, 1992)), 1990-1996	156
5.7	Hypothesis Tests for Parameters of Restrictions on the System Equations	163
5.8	Seemingly Unrelated Regression (SUR): Estimates of Translog Cost function and Frontier Share Equations with Panel Data for Malaysian Oil	
5.9	and Fat Industry. 1985-1996 Economic, Technical and Allocative Efficiencies of Malaysian Oil and	164
6 10	Fat Industry (1985-1996): System Approach	169
5.10	Mean Economic Efficiencies of Malaysian Oil and Fat Industry (1985-1996): System Approach	170
5.11	Hypothesis Tests for Parameters of Restrictions on the System of Equations Malaysian Oleochemical Enterprises (1991-1995)	170
5.12	Seemingly Unrelated Regression (SUR) Estimates of Translog Cost	
	Function and Frontier Share Equations with Panel Data for Malaysian Oleochemical Enterprises (1991-1995)	178
5.13	Economic, Technical and Allocative Efficiencies of Malaysian	170
6.1	Oleochemical Enterprises (1991-1995): System Approach with Panel Data Malmquist Component Results for Malaysian Oil and Fat Industry	179
6.2	(1985 - 1996): On Front 1 Malmquist Index Change, Efficiency Change and Technical Change:	191
0.2	Summary of Annual Means of Malaysian Oil and Fat Industry (1985-1996): On Front 1	105
6.3	Malmquist Index Change, Efficiency Change and Technical Change: Summary Means of Sectors of Malaysian Oil and Fat Industry	195
	(1985-1996): On Front 1	196
6.4	Results of Total Factor Productivity Index Components of Malaysian Oil and Fat Industry (1985 - 1996): DEAP 2.1	197
6.5	Malmquist Index Components: Summary Means of Malaysian Oil and Fat Industry (1985 - 1996): DEAP 2.1	199
6.6	Malmquist Index Components: Summary of Annual Means of Malaysian	201
6.7	Oil and Fat Industry (1985 - 1996): DEAP 2.1 Malaysian Oil and Fat Industry Efficiency Levels and Scale Returns	201
()	(1985 - 1996): On Front 1.0	204
6.8	Results of Total Factor Productivity Index of Malaysian Oleochemical Enterprises (1991-1995): On Front 1.0	212
6.9	Mean of Total Factor Productivity Index Components of Malaysian	212
	Oleochemical Enterprises (1991 - 1995): On Front 1.0	213
6.10	Malmquist Index Components: Summary of Annual Means of Malaysian Oleochemical Enterprises (1991-1994): DEAP 2.1	215

6.11	Malmquist Index Components: Summary of Firms Means of Malaysian Oleochemical Enterprises (1991-1995): On Front 1.0	216
6.12	Results of Total factor Productivity Index Components of Malaysian	
	Oleochemical Enterprises (1991-1994): DEAP 2.1	218
6.13	Malmquist Index Components Summary of Firms Means of Malaysian Oleochemical Enterprises (1991-1994): DEAP 2.1	219
6.14	Malaysian Oleochemical Enterprises Efficiency Levels and Scale Returns	
	(1990 - 1996)	223
6.15	Cost Efficiency Components: Summary of Annual Means of Malaysian	
	Oil and Fat Industry (1985-1996): Results from DEAP 2.1	233
6.16	Cost Efficiency Components (DEA) of Malaysian Oil and Fat Industry	
	(1985-1996): Results from DEAP 2.1	234
6.17	Technical, Allocative and Cost Efficiencies: Summary of Annual Means	
	of Malaysian Oil and Fat Industry (1985-1996): DEAP 2.1	237
6.18	Cost Efficiency Components (DEA) of Malaysian Oleochemical	
	Enterprises (1990-1996): Results from DEAP 2.1	242
6.19	Technical, Allocative and Cost Efficiencies: Summary of Annual Means	
	of Malaysian Oleochemical Enterprises (1990-1996): DEAP 2.1	244
6.20	Technical, Allocative and Cost Efficiencies Summary of Firm Means of	
	Malaysian Oleochemical Enterprises (1990-1996): DEAP 2.1	245

LIST OF FIGURES

FIGURE		PAGE
1.1 1.2 2.1	Non-Food Applications of Palm Oil and Palm Kernel Oil Utilization Chart of Oil Palm Products and Oleochemicals Average Prices of CPO, PKO, Refined Oils and Oleochemicals, 1988 - 1996 (RM/Tonne)	12 14 30
4.1	Identifying Technical and Allocative Efficiency	89
4.2	The Input Distance Function	111
4.3	The Input-based Malmquist productivity index	116
4.4	The DEA Unit Output Isoquant	119
4.5	Measuring Input Scale Inefficiency	125
4.6	Measuring Input Congestion	126
5.1	Cost Efficiencies of Malaysian Oil and Fat Industry (1985-1996)	145
5.2	Cost Efficiency of Oleochemical Enterprises (1990 - 1996): Frontier Approach	157
5.3	Mean Economic Efficiencies of Malaysian Oil and Fat Industry (1985- 1996): System Approach	173
5.4	Mean Economic Efficiency of Malaysian Oil and Fat Industry (1985- 1996): System Approach	174
5.5	Mean Economic Efficiency of 10 Malaysian Oleochemical Enterprises (1991-1995): SUR Approach	182
5.6	Mean Economic Efficiency of Malaysian Oleochemical Enterprises (1991-1995): SUR Approach	183
6.1	Productivity Changes of Malaysian Oil and Fat Industry (1985/1986 - 1995/1996): On Front 1.0	194
6.2	Total Factor Productivity Changes of Malaysian Oil and Fat Industry (1985-1996): DEAP	202
6.3	Productivity Changes of Malaysian Oleochemical Enterprises (1991 - 1995): On Front 1.0	214
6.4	Productivity Components of Malaysian Oleochemical Enterprises (1991-1994): DEAP	220
6.5	Mean Productivity of Malaysian Oleochemical Enterprises (1991-1994): DEAP	221
6.6	Mean Cost Efficiency Components of Malaysian Oil and Fat Industry (1985-1996): DEAP	238
6.7	Cost Efficiency of Malaysian Oil and Fat Industry (1985 - 1996): DEAP	239
6.8	Mean Cost Efficiency of Malaysian Oleochemical Enterprises (1990 - 1996): DEAP	247
6.9	Mean Cost Efficiency Components of Malaysian Oleochemical Enterprises (1990 - 1996): DEAP	248

LIST OF ABBREVIATIONS

AE	Allocative Efficiency
CPO	Crude Palm Oil
CRS	Constant Reruns to Scale
DEA	Data Envelopment Analysis
DEAP	Data Envelopment Analysis Program
DFA	Deterministic Frontier Analysis
DRS	Decreasing Returns to Scale
EC	Efficiency Change
ECE	Economic Efficiency
EFFCH	Efficiency Change
OECD	Organisation for Economic Cooperation and
	Development
FELDA	Federal Land Development Authority
IMP	Industrial Master Plan
GLY	Glycerine
IRS	Increasing Returns to Scale
LS	Least Squares
MIDA	Malaysia Industrial Development Agency
MLE	Maximum Likelihood Estimator
NPC	National Productivity Corporation
OLS	Ordinary Least Squares
PEFFCH	Pure Efficiency Change
PORIM	Palm Oil Research Institute of Malaysia
PORLA	Palm Oil Registration and Licensing Agency
РРО	Processed Palm Oil
RBD	Refined Bleached and Deodorised
RISDA	Rubber Industry Small Holders Development Authority
SECH	Scale Efficiency Change
SFA	Stochastic Frontier Analysis
SUR	Seemingly Unrelated Regression
ТС	Technological Change
TE	Technical Efficiency
TECHCH	Technical Change
TFP	Total Factor Productivity
TFPCH	Total Factor Productivity Change
VRS	Variable Return to Scale

CHAPTER 1

INTRODUCTON

This chapter is organised in four sections. After this introduction, the palm oil industry is described in perspective in section one, with two sub-sections: one elaborates on the resource oriented and multipurpose industry; the second defines the concept of oleochemicals. Section two takes care of the meaning of economic efficiency. Section three explains the measurement of efficiency frontier. Section four discusses economic efficiency and performance measurement, and technical change.

1.1 Development of the Palm Oil Industry in Malaysia

Four seedlings of Dura palm (Elaeis guineensis) from West Africa were established in the Botanical Gardens, Basar in Java in 1848, and latter distributed between 1853-1856 to Sumatra.

In Malaya, around 1911 and 1912, palms of Deli origin were planted in Rantau Panjang, Kuala Selangor. The planting of 1911 and 1912 came into bearing in 1917 and seedlings of those palms were planted at Tennemaran Elmina Estates. Commercial introduction and planting were made in Malaya only in 1917 and most of the planting materials came from Sumatra as Deli dura. By 1925, Malaya had 383 hectares of oil palm, and the oil palm industry gained full momentum only after 1930. By 1940 the area in oil palms reached 31,000 hectares. It was only during the 1960s that Malaysia took on oil palm cultivation as a major crop to diversify the economic base in order to reduce the heavy dependence on the traditional exports of rubber and tin.

Oil palm plantations replaced about 2.2 million hectares of old rubber estates and virgin jungle land, thanks to Federal Land Development Authority (FELDA), Rubber Industry Smallholders Development Authority (RISDA) and other organisations, successfully created by the Malaysian Government. In 1996 Malaysia emerged as the world's largest producer of palm kernel oil with approximately 55.8% of the total world production of palm kernel oil (Table1.1). Out of the total production of palm kernel oil, 70% was being consumed by the oleochemical industry. Furthermore the palm oil industry has been providing employment for more than 250,000 people, while it together with palm kernel oil and palm kernel meal, it produced close to 6 billion ringgit, contributing 7% of the total Malaysian exports value (Bek-Nelsen, 1996).

Country/Year	1984	1987	1992	1996	1998
Total	766.6	1006.4	1533	1950	2055
Malaysia	430	583.0	812	1088	1127
Indonesia	90.5	145.8	277	481	543
Others	71.0	44.3	133	75	79
Nigeria	60	104	171	178	1 7 9.1
Eu-15	46.9	36	3	2	0.1
Zaire	20.3	18.9	23	-	-
Cameron	13.1	20	24	25	26
Ivory Coast	13.0	23.2	30	29	26.4
Colombia	11	14.5	29	31	33
Thailand	6.3	12.3	25	35	35.1
Philippines	4.5	4.4	6	6.4	6.1

Table 1.1: World Production of Palm Kernel Oil, 1984 -1998 ('000 Tonnes)

Source: Oil World Annual, 1989-1999

Lim (1995) stated that the Government of Malaysia has adopted the threepronged strategy to ensure that the multi-billion ringgit palm oil sector continues to chart robust growth in the coming years. Under the new strategy the palm oil industry would: (1) Be striving for a higher level of productivity through the use of better clones and agronomic practices; (2) Place a stronger emphasis on off-shore oil palm plantation to counter shrinking agricultural land hectarage at home; and (3) Step up and relocation of refining, processing and packaging activities to consumer countries to further tighten market footholds. By year 2000, oil palm industry attained crude palm oil (CPO) production level of 10.8 million tonnes and was expected to attain 12.1 million tonnes by year 2020 (Table 1.2).

Year	Peninsular	Sabah	Sarawak	Total	% Change
				01 500	
1960	91,793	-	-	91,793	
1965	148,682	1,729	-	150,411	22.4
1970	402,307	28,762	-	431,069	22.4
1975	1,136,796	116,248	4,529	1,257,573	20.2
1980	2,396,733	156,471	22,378	2,575,582	17.7
1985	3,799,289	285,044	49,061	4,133,394	11.2
1990	5,307,979	678,995	107,651	6,094,622	0.6
1995	6,094,560	1,493,623	222,363	7,810,546	8.2
1996	6,407,234	n.a	n.a	8,385,8860	7.4
2000	6,776,000	n.a	n.a	10,800,000	12.5
2005*	7,602,000	n.a	n.a	10,619,000	20.5
2010*	7,592,000	n.a	n.a	11,609,000	9.3

Table 1.2: Production of Palm Oil, 1960-2010 (Tonnes)

Source: Oil World Annual, 1989-1999; and PORLA, 2000. Note: * Forecast by PORIM, 1996-2010. na = not available

In order to achieve these production targets, another 2 million hectares of new oil palm plantings must be added to the current 2.53 million hectares. Beyond the year 2020 there will be no substantial expansion in hectarage. The increase in the output beyond 2020 will come purely from production increases through improved planting materials, better agronomic practices, mechanisation and improvement in mills efficiency (Table 1. 3).

Year	Peninsular	Sabah	Sarawak	Total	% Change
1960	54,634	• 8 • 6	-	54,634	4.6
1965	96,947			96,947	6.6
1970	261,199	28,947	1,117	291,263	12.9
1975	568,561	59,139	14,091	641,791	11.3
1980	906,590	93,967	22,749	1,023,306	8.3
1985	1,292,399	161,500	28,500	1,482,399	7.9
1990	1,698,498	276,171	54,795	2,029,464	3.2
1995	1,906,910	491,073	117,859	2,515,842	4.8
1996	1,926,378	626,008	139,900	2,692,286	7.0
2000	2,196,000	n.a	n.a	3,500,000	10.2
2005*	2,268,000	n.a	n.a	3,223,000	10.9
2010*	2,303,000	n.a	n.a	3,550,000	10.1

Table 1.3: Oil Palm Planted Area, 1960-2010 (Hectares)

Source: Oil World Annual, 1999; and PORLA, 2000;

Note: * Forecast by PORIM, 1996-2010;

na = not available

Rapid expansion of Malaysian palm oil was primarily due to higher returns per hectare of palm oil as compared to other vegetable oils (PORIM, 1996). The expansion was attributed to the economic and technical advantage palm oil over other sources of vegetable oils. Table 1.4 shows the vegetable oil and meal components for a tonne of soyabean, rapeseed, and sunflower seed and fresh fruit bunch (FFB). The December (Rotterdam) prices for each of these products were used to calculate the value of a tonne of the beans, seeds, or FFB. Each was, in turn,

