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MICROSTRUCTURAL AND MAGNETIC PROPERTIES OF YTTRIUM 

IRON GARNET DERIVED FROM STEEL WASTE PRODUCT 

 

 

By 

 

 

NURAINE MARIANA BINTI MOHD SHAHRANI 

 

 

December 2016 

 

 

Chairman:  Raba’ah Syahidah Azis, PhD 

Institute:  Institute of Advanced Technology 

 

In this research work, the morphology and magnetic properties-evolutions in 
Yttrium Iron Garnet (YIG) were studied in details, focusing on parallel evolving 

relationship with their dependences on sintering temperature. The iron oxide that 

has been used to synthesize YIG was obtained from the steel waste product, mill 

scale. There is less study and no reports published regarding the evolution of 

microstructure and magnetic properties YIG from low sintering temperature to 

high sintering temperature by mill scale waste product. The raw mill scale went 

through the milling and purification process by magnetic and non-magnetic 

separation and curie temperature separation technique to produce high purity iron 

oxide powder as main raw material in preparing YIG and fabricate YIG by high 

energy ball milling process. The obtain iron oxide was characterized by X-ray 

Diffractometer (XRD), X-ray fluorescence (XRF), X-ray photoelectron 

spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and Raman 
spectroscopy for mineralogical composition and chemical analysis. The results of 

XRD indicated that the synthesized iron oxide identified as a α-Fe2O3 (hematite). 

Moreover, XRF, XPS, FTIR and Raman data was found to correspond with pure 

hematite. 

 

Among the characterization procedures, the highlight properties were phase 

identification by XRD, microstructure by FESEM, magnetic permeability by 

impedance material analyzer and saturation magnetization by VSM. The XRD 

pattern of YIG showed an improvement of crystallinity with increasing sintering 

temperature. Full YIG phase was seen for samples sintered at 1100oC and upwards. 
The temperature obtain of YIG fabricate is comparable with high energy milling 

method by commercial iron oxide raw material. FESEM micrographs showed 

larger grains as the sintering temperature increased, and the amounts of porosity 

were decreased, as the some grains grew at the expense of others. The initial 
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permeability,    showed the highest value of 51.70o at 1400oC, and decrement 

values of initial permeability at 700oC to 800oC because of the presence of weak 

ferromagnetic phases. The results of VSM showed an increasing tendency of 

saturation magnetization,    with increased grain sizes, and the decrement value 

for samples sintering at 700oC to 800oC. These results can be associated with the 

formation of weak ferromagnetic behavior of α-Fe2O3 and YFeO3 phases. A 

particular pattern of the magnetic properties with sintering temperature is a 

manifestation of the phase purity level and microstructural factors. Thus, three 

groups of ferromagnetic behavior of YIG can be classified based on those factors. 
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MIKROSTRUKTUR DAN SIFAT-SIFAT MAGNET DALAM YTTRIUM 

IRON GARNET YANG DIPEROLEHI DARIPADA BAHAN BUANGAN 

BESI 

 

 

Oleh 

 

 

NURAINE MARIANA BINTI MOHD SHAHRANI 

 

 

Disember 2016 

 

 

Pengerusi: Raba’ah Syahidah Azis, PhD 

Institut:  Teknologi Maju 

 

 

Dalam kerja-kerja penyelidikan ini, morfologi dan sifat-sifat magnet-evolusi dalam 

Yttrium Iron Garnet (YIG) telah dikaji secara terperinci, memberi tumpuan kepada 

hubungan perkembangan selari mereka dengan suhu pensinteran. Oksida besi yang 

telah digunakan untuk mensintesis YIG diperoleh daripada bahan buangan keluli, 

di kilang. Terdapat kurang kajian dan tiada laporan bercetak mengenai evolusi 

mikrostruktur dan sifat-sifat magnet YIG dari suhu pensinteran rendah kepada suhu 
pembakaran tinggi oleh bahan buangan besi dari kilang. Sisik besi mentah telah 

melalui proses pengilangan dan pemurnian oleh pemisahan magnet dan bukan 

magnet dan teknik pemisahan suhu curie untuk menghasilkan serbuk oksida besi 

berketulenan tinggi sebagai bahan mentah utama dalam penyediaan YIG dan 

pembuatan YIG oleh proses pengilangan bola tenaga tinggi. Penghasilan oksida 

besi telah dicirikan oleh pembelauan sinar-X (XRD), pendarfluor sinar-X (XRF), 

spektroskopi fotoelektron sinar-X (XPS), spektroskopi inframerah transform 

Fourier (FTIR) dan spektroskopi Raman untuk komposisi mineralogi dan analisis 

kimia. Keputusan XRD menunjukkan bahawa oksida besi yang disintesis dikenal 

pasti sebagai α-Fe2O3 (bijih besi). Selain itu, data XRF, XPS, FTIR dan Raman 

telah didapati sepadan dengan bijih besi tulen. 

 
 

Di antara prosedur pencirian, sifat-sifat yang diketengahkan adalah pengenalan 

fasa oleh XRD, mikrostruktur oleh FESEM, kebolehtelapan magnet oleh 

penganalisa bahan galangan dan pemagnetan tepu oleh VSM. Pola XRD daripada 

YIG menunjukkan peningkatan penghabluran dengan peningkatan suhu 

pensinteran. Fasa YIG penuh dapat dilihat pada sampel sinter pada 1100oC dan ke 

atas. Suhu ini adalah setanding dengan kaedah pengilangan bola tenaga tinggi 

daripada bahan mentah oksida besi yang komersial. Mikrograf FESEM 
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menunjukkan bijirin lebih besar kerana suhu pembakaran meningkat, dan jumlah 

keliangan telah menurun disebabkan oleh beberapa bijirin berkembang sesama 

sendiri. Kebolehtelapan awal,    menunjukkan nilai tertinggi 51.70o pada suhu 

1400
o
C, dan kebolehtelapan awal susut pada 700

o
C dan 800

o
C kerana kehadiran 

fasa lemah feromagnet. Keputusan VSM menunjukkan pemagnetan tepu,    yang 

semakin meningkat dengan saiz bijirin meningkat, dan nilai susut pada sampel 

pensinteran 700oC dan 800oC. Kesusutan pada suhu ini boleh dikaitkan dengan 

pembentukan tingkah laku fasa lemah feromagnet α-Fe2O3 dan YFeO3. Corak 

tertentu sifat-sifat magnet dengan pensinteran suhu adalah manifestasi daripada 

kesucian tahap fasa dan faktor-faktor mikrostruktur. Maka, tiga kumpulan tingkah 
laku feromagnet daripada YIG boleh dikelaskan berdasarkan faktor-faktor tersebut. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background of study 

 

 

Oxide ceramics which exhibit ferrimagnetic behavior play an important role in the 

electronic industry. They are commonly known as ferrites. Ferrites are the mixed 
metal oxides containing iron oxide as their main component. There are three 

important classes of commercial ferrites, and each of one having a specific crystal 

structure. The first one is soft ferrites with cubic spinel structure, such as NiZn- 

and MnZn ferrites. The second one is the soft ferrites with garnet structure, such as 

the microwave ferrites, for example yttrium iron garnet, and the third one is hard 

ferrites with the hexagonal structure such as Ba and Sr hexaferrites. The industrial 

importance of ferrites becomes obvious when one examines the diversity of their 

applications. Through the years, the demand of ferrites has steadily increased 

together with the specific applications of ferrites, and have changed remarkably 

and kept pace with the development in electronic technologies.  

 
 

Ceramic technology has historically developed from an empirical method of 

fabrication to one which is based more and more on the application of scientific 

knowledge. It has become quite evident that the parameters determining the 

suitability of materials for particular applications are chemical composition, 

crystallographic structure and the so-called microstructure, which comprises such 

important aspects as size of constituent crystallites (grains), their size distributions, 

their boundaries (grain boundaries), their orientation (texture), and the voids 

(pores) between them (Sun, 2007). To control and manipulate these parameters, 

there must be a range of methods available for preparing ceramic powders. There 

are three basic methods, which are mechanical, chemical, and vapor phase 

methods.  
 

 

Mechanical methods use coarse-grained materials which is often necessary to 

eliminate aggregates and to reduce particle size. They are subjected to a series of 

processes called as comminution. The steps involved crushing, grinding, and 

milling. Mechanical methods of powder production are widely used in the industry 

due to ability for high mass production of the product. Chemical methods such as 

sol-gel processing offer several advantages over mechanical methods. This method 

allows exceptional control over particle morphology and purity at lower 

temperatures. Chemical processes are widely used in the production of advanced 

ceramic materials such as fibers, coatings, etc. (Cheng et al., 2007). The other 
method is vapor-phase processes. Vapor-phase processes offer many advantages, 

such as the ability to produce particles of non-oxides and nanoparticles, as they can 

give high purity powders, discrete and non-aggregated particles, and nanoparticles 

with narrow size distributions (Guo et al., 2005).  
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In this chapter, the general information on ferrite magnetic garnets is introduced. 

An introduction on raw steel waste (well-known as mill scale) and its potential in 

producing iron oxide powder will be highlighted. In the thesis, we will discuss the 

previous work on the synthesis compound within the Fe2O3-Y2O3 system by 

mechanical alloying method and the statistical analysis data by this method. 

Theories that are related with the results are also discussed. The materials used and 

the procedure of the research will be compile followed with the results and 

discussion. Based on the results, we will summarize and conclude the research 

findings, in addition to some suggested recommendations for future work. 

 

 

1.2 Magnetic ceramics  

 

 

In recent years, ferrimagnetic garnet have attracted much attention as microwave 

device materials, circulators, isolators, phase shifters, etc. due to its excellent 

electromagnetic properties, including low dielectric loss, narrow ferromagnetic 

resonance linewidth in microwave region and tailorable saturation magnetization 

(Yu et al., 2011). Thus, research has been committed to the investigations of YIG 

and doped-YIG by controlling the preparation conditions to tailor their 

microstructure in addition to the design of chemical composition. 

 
 

1.3 Introduction of Garnets 

 

 

Generally, the chemical formula for garnet system is written as 3M2O3.5Fe2O3 or 

M3Fe5O12. M represents yttrium (Y) or one of the rare earth ions. The rare earth 

ions are large, so that they occupy the largest cation sites in the garnet structure, 

which are dodecahedral sites. Note that in the magnetic garnet, the metal ions are 

all trivalent. There are 24 dodecahedral, 16 octahedral, and 24 tetrahedral sites in a 

unit cell containing 8 formula units. The prototype for ferrimagnetic iron garnet is 

yttrium iron garnet (YIG). Garnets provide superior performance in microwave 

devices because they have narrow resonance line width, one of the most important 
parameters from application point of view besides wide range of magnetization and 

very low dielectric loss (Soleimani et al., 2012). 

 

 

1.4 Mill scale as a potential of raw materials 

 

 

The processes of manufacturing steel product from industry produce two times 

more waste materials than the final product obtained. These results in the 

formation of large amounts of waste materials in the form of slags, scale and dusts 

(Martin et al., 2012). Currently, most of the waste is utilized in the same steelworks 
and passed to external customers or it is reused as a feeds for other technological 

processes. In the case of Malaysia’s steel Industry, Malaysia’s consumption on 

steel is expected to trend up along with on-going construction and mass transit 

projects. The demand of steel is expected to rise up by 12.6% year-of-year (Export-
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Import Bank of Malaysia, 2015). In 2013, 11.69% million tons of steels are 

produced and increased to 12.5% million tons in 2014 (“World Steel Association,” 

2014). This trend is expected to increase up in year 2020. The steel industry in 

Malaysia can be categorically subdivided into two main segments, namely long 

products and flat products. Long products include billets, bars, wire rods, sections, 

nails, wire mesh, nuts, bolts, etc. which are predominantly used in the construction 

industry. Flat products are the products consumed mostly by the manufacturing, 

construction and oil & gas sectors like hot-rolled plates and sheets, cold-rolled 

coils, tubes, pipes, boiler and pressure vessels, etc. Irrespective of the products, 

during processing of steel to yield long or flat product, mill scale is generated and 

considered as a waste (Bagatini et al., 2011). 
 

 

Mill scale is flaky that can be found on metals that have been rolled. Mill scale 

forms an exterior surface of sheets and plates as they are being manufactured 

through rolling steel billets and hot iron into rolling mills. Mill scale which 

represents 2% of steel produced contains iron in elemental form and three types of 

iron oxides: wustite (FeO), hematite (α-Fe2O3) and magnetite (Fe3O4) (Legodi and 

de Waal, 2007). The chemical composition of mill scale depends on the type of 

steel produced and the process used. The iron content in the mill scale is normally 

around 72% Fe with small amounts of non-ferrous metals. Mill scale is 

contaminated with remains of lubricants and other oils and greases from the 
equipment associated with rolling operations (Martin et al., 2012). The oil content 

usually ranges between 0.1 % and 2.0%, and can reach up to 10.0%. In steelworks 

plants, almost 85% of the mill scale generated is recycled within the steelmaking 

industry and small amounts are used for ferroalloys, in cement plants and in the 

petrochemicals industry. The balance part of the mill scale with particle size less 

than 0.5 mm (finer mill scale or mill scale sludge), which is more heavily 

contaminated with oils, ends up in landfills. Mill scale sludge cannot be recycled 

via sintering since its fine particles contains a high oil level which is 5.0-20.0% and 

is normally treated as a landfill waste. Mill scale with oil content more than 3.0% 

is recycled after extracting the oil in a pre-treatment stage. Mill scale with oil 

content less than 1.0% with the particle size between 0.5-5.0 mm can be returned 

without any pre-treatment (Legodi and de Waal, 2007). Thus, the allowable limit 
for oil content in the mill scale is less than 1% for all usage. 

 

 

Although most of the mill scales are consumed after recycling, and only small 

amounts are used in ferroalloys, cement and petrochemicals industry, there is a 

potential for production of steel increase up to 1.0 million tons with the increase in 

construction activities, current economic needs in emerging markets and growing 

concern over the use of steel in heavy industries. All the above gives an initiative 

to find suitable means for effective utilization of mill scale and a low cost by-

product in the steelmaking industry. In the present research, we have employed the 

mill scale waste product from the Malaysian steel factories. The steel are collected 
from Perwaja Steel Terengganu. The immense amount of steel waste give a 

challenge for us to extract the iron oxide contained in the mill scale by a 

purification technique and producing iron oxide for magnetic materials.    
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1.5 Aim of study 

 

 

In several past decades, studies on YIG by pure materials are reported in ferrite 

literature. Instead, fabrication of YIG ferrite by using recycled steel waste product 

(mill scale) is still investigated. There are no reports from literature on this work. 

Steel waste products are collected from steel industry in Malaysia. It has high 

content of iron (Fe) and gives us a challenge to purify and recycled the powder to 

produce YIG ferrites. This project will highlight the low cost ferrite fabrication 

from the waste material.   

 
 

Ferrite magnetic materials are known very rely to their microstructure. Nowadays, 

the fundamental on scientific enquiry of the microstructure-property evolution has 

been neglected. Therefore, in this work, the evolutions of the microstructure-

magnetic properties relationship at various sintering temperature on the 

morphology and material properties will be investigated. 

 

 

1.6 Objectives 

 

 
The interest of this research is to track down the parallel evolution of 

microstructural and magnetic properties from lower sintering temperature (500oC) 

to higher temperature (1400oC) of YIG. Hence, the study embarks on the following 

objectives: 

 

 

I. To purify recycled mill scale waste product by magnetic and non-

magnetic separation (MNM) and Curie temperature separation technique 

(CTS) collected from steel industries in Malaysia to produce high purity 

Fe2O3 as main raw materials in fabrication YIG ferrite by using 

mechanical alloying technique. 

II. To elucidate the parallel evolution of the magnetic properties with 
microstructural changes and their relationship in nano-micro yttrium iron 

garnet ferrites at various sintering temperatures. 
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