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Indium antimonide (InSb) is a promising semiconducting material that has been 
implemented in various electronic applications due to its high carrier mobility and 
carrier density. In particular, studies of InSb nanowire clusters have yet to be 
explored in detail, despite the advantages of wire clusters can bring to the to the 
touch screen technologies and flexible devices. Therefore, the main focus of this 
thesis is to study the electronic transport properties within InSb nanowire clusters 
such as schottky barrier height (SBH), conductivity, carrier density, and carrier 
mobility. According to field emission scanning electron microscope-energy 
dispersive x-ray (FESEM-EDX) analysis, the clusters comprised of agglomerated, 
flowery-shaped nanowires and bulk InSb, with stoichiometric 1:1 ratio. The x-ray 
diffraction (XRD) analysis shows that the wire clusters exhibit polycrystalline 
nature, with several impurities present such as Sb, In2O3, Sb2O3, and Al2O3. In 
order to study the electrical transport behaviours of InSb nanowire clusters, two 
parameters, namely nanowire diameters and contact gap widths were chosen. For 
the effects of nanowire diameters, it was observed that most electronic transport 
properties such as conductivity (0.34 to 3.61 × 10-4 S/m), carrier density (7.41 to 
7.49 × 1010 cm-3), and carrier mobility (0.48 to 4.82 × 10-15 cm2 V-1 s-1) increases 
with increasing diameters (20 to 200 nm). This is due to several reasons such as 
decreased grain boundaries and scattering effects, as well as increased electron 
charge density, thus allowing easier movement of carriers throughout the metal-
semiconductor-metal (MSM) junction. Meanwhile, SBH is shown to be inconsistent 
with increasing diameter, which is possibly because of the presence of InSb bulk 
structure that might have influenced the electronic transport within the wire 
clusters. For the effects of contact gap width, most of the electronic transport 
properties such as conductivity (1.67 to 4.58 × 10-5 S/m), carrier density (7.41 to 
7.45 × 1010 cm-3), and carrier mobility (0.23 to 0.61 × 10-15 cm2 V-1 s-1) were shown 
to increase with decreasing gap size (343.07 to 277.72 µm), while SBH decreases 
(0.68 to 0.66 eV). This is because of the closer distribution within nanowire clusters 
when the gap width decreases, and hence improving the current transport 
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throughout the MSM junction. Due to several factors such as presence of defects 
and less compact distribution compared to particle arrangements within bulk 
structure, thin film and single nanowire, nanowire clusters exhibit lower electronic 
transport properties. Nevertheless, further investigations on the semiconductor 
nanowire clusters will open more opportunities to discover its potentials in a wide 
variety of electronic components in the future. 
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Indium antimonide (InSb) ialah bahan semikonduktor berpotensi, yang telah 
dilaksanakan dalam pelbagai aplikasi elektronik oleh sebab mobiliti pembawa 
dan ketumpatan pembawanya yang tinggi. Khususnya, kajian terhadap kluster 
nanowayar InSb masih belum diterokai secara terperinci, walaupun dengan 
kelebihan kluster nanowayar yang boleh membawa kepada teknologi skrin 
sentuh dan peranti fleksibel. Oleh itu, fokus utama tesis ini adalah untuk 
mengkaji sifat-sifat pengangkutan elektronik dalam kluster nanowayar InSb 
seperti ketinggian halangan Schottky (SBH), kekonduksian, ketumpatan 
pembawa, dan mobiliti pembawa. Menurut analisis perwatakan mikroskop 
elektron pengimbasan pancaran medan-spektroskopi tenaga serakan (FESEM-
EDX), kluster tersebut terdiri daripada nanowayar agglomerasi berbentuk bunga 
dan InSb pukal, dengan nisbah stoikiometrik 1:1. Pembelauan sinar-x (XRD) 
analisis menunjukkan kluster nanowayar mempunyai sifat polihabluran, dengan 
beberapa bendasing seperti Sb, In2O3, Sb2O3, and Al2O3. Bagi mengkaji sifat-
sifat pengangkutan elektronik nanowayar kluster InSb, dua parameter, iaitu 
diameter nanowayar dan keluasan jurang kontak telah dipilih. Untuk kesan 
diameter nanowayar, dapat diperhatikan bahawa kebanyakan sifat 
pengangkutan elektronik seperti kekonduksian (0.34 kepada 3.61 × 10-4 S/m), 
ketumpatan pembawa (7.41 kepada 7.49 × 1010 cm-3), dan mobiliti pembawa 
(0.48 kepada 4.82 × 10-15 cm2 V-1 s-1) meningkat dengan peningkatan diameter 
(20 kepada 200 nm). Ini adalah disebabkan oleh beberapa faktor seperti 
pengurangan sempadan butiran dan kesan-kesan penyerakan, serta 
peningkatan ketumpatan cas elektron, justeru memudahkan pergerakan 
pembawa sepanjang simpangan logam-semikonduktor-logam (MSM). 
Sementara itu, SBH menunjukkan ketidakaturan dengan peningkatan diameter, 
berkemungkinan disebabkan oleh kehadiran struktur pukal InSb yang telah 
mempengaruhi pengangkutan elektronik di dalam kluster-kluster nanowayar 
tersebut. Untuk kesan kelebaran jurang kontak, kebanyakan sifat pengangkutan 
elektronik seperti kekonduksian (1.67 kepada 4.58 × 10-5 S/m), ketumpatan 
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pembawa (7.41 kepada 7.45 × 1010 cm-3), dan mobiliti pembawa (0.23 kepada 
0.61 × 10-15 cm2 V-1 s-1) dilihat meningkat dengan berkurangnya lebar jurang 
(343.07 kepada 277.72 µm), sementara SBH pula berkurang (0.68 kepada 0.66 
eV). Ini adalah disebabkan oleh taburan kluster nanowayar yang makin dekat 
apabila lebar jurang berkurang, justeru memperbaiki pengangkutan arus 
sepanjang simpangan MSM. Oleh kerana beberapa faktor seperti kewujudan 
kecacatan dan kurangnya taburan yang padat dibandingkan dengan susunan 
zarah di dalam struktur pukal, selaput tipis, dan nanowayar tunggal, kluster 
nanowayar mempunyai sifat-sifat pengangkutan elektrik yang lebih rendah. 
Walau bagaimanapun, lebih banyak penyelidikan ke atas kluster nanowayar 
semikonductor akan membuka lebih peluang untuk menerokai potensinya di 
dalam pelbagai jenis komponen elektronik pada masa hadapan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background of the Study 

 
In recent years, nanoscale science and technology have become a significant 
aspect in producing components for optoelectronic and microelectronic devices. 
This is because current device fabrication aims for miniaturization of designs with 
better performance, making them easier to carry and store. For example, 
transistors, the basic switches that enable all modern computing, have been 
demonstrated capable of performing at the nanoscale size, comparable to the 
bulk transistors (Amuru, Ragini, & Reddy, 2016). Furthermore, these nanoscale 
materials possess a significant advantage than their bulk counterparts, in which 
their optical, electronic, and magnetic properties can be tailored by changing 
their sizes accordingly. This is because of the quantum confinement effects that 
often dominate the materials once their sizes reach nano-scale level (Suresh, 
2013).  

 

Among the nanostructures, nanowires have attracted much interest among 
researchers. A nanowire is defined as one-dimensional, cylindrical-shaped 
nanostructure, with the diameter of the order of a nanometer (10-9 m) and the 
length of the order of a micrometer (10-6 m). Unlike other low-dimensional 
systems, nanowires have two quantum-confined directions but one unconfined 
direction available for electrical conduction (Dresselhaus et al., 2010). This 
allows nanowires to be used in devices that require electrical conduction instead 
of tunnelling transport. There are several types of nanowires, with the most 
commonly investigated materials being metal and semiconductor nanowires. 
Semiconductors in general have the ability to alter their conductivity either by 
doping or various stimulations such as electric current, electromagnetic field, and 
even light. Thus, it is possible to create various devices from semiconducting 
nanowires that can amplify, switch, or convert sunlight into electricity, or produce 
light from electricity (Dasgupta & Yang, 2014).    
 

In particular, indium antimonide (InSb) is one of the semiconductors that exhibits 
outstanding electronic characteristics. This material is comprised of group III (In) 
and group V (Sb) elements, and has been reported to possess one of the highest 
carrier mobility (7.7 × 104 cm2 V−1 s−1) and carrier density (2.0 × 1016 cm-3) among 
III-V semiconductor group (Rode, 1971). Thus, InSb nanowires make for an 
excellent candidate for electronic applications that aim for low power and high-
speed performance (Hnida et al., 2015). 
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1.2  Motivation and Problem Statement 
 

As nanotechnology developed, significant advancement has been made in the 
past two decades where various types of nanowire assemblies can be 
incorporated into devices depending on their specific functions and performance 
(Liu, Liang, and Yu, 2012). Nanowire assemblies can be in the form of nanowire 
arrays, single nanowire or nanowire clusters, as can be seen in Figure 1.1. 
Nowadays, nanowire clusters or networks have found its importance in various 
photoelectronic and thermoelectronic devices (Rojo et al., 2013; Xue et al., 
2017). For example, flat panel displays and touch screen technologies have 
implemented nanowire clusters into their devices. This is because they require 
large amount of nanowires that are electrically connected in close vicinity (Rojo 
et al., 2013). Despite the growing interest of these technologies, the electronic 
transport properties of nanowire clusters has yet to be much understood, in 
comparison to the single nanowire or nanowire arrays. The previous studies may 
have mentioned about electrical conductivity, but rarely go deeper into other 
electrical coefficients such as carrier density and mobility (Nilsson et al., 2011; 
Fang et al., 2015).  
                                                                               

 
 
 

 
 
 
 
 

Figure 1.1: Types of nanowire assembly. (a) Single nanowire (Qi et al., 
2014), (b) Nanowire arrays (Fang et al., 2015), and (c) Nanowire clusters 

(Langley, 2014) 
 

Furthermore, only limited number of materials are being employed in the devices 
that implement nanowire clusters, such as metal or indium tin oxide (ITO). This 
is due to their capability of being synthesized in abundance with good structural, 
optical, and electronic transport properties (Hecht, Hu, and Irvin, 2011; Hu, Wu, 
and Cui, 2011). Nanowire-based thin film transistors (NW-TFT) is one of the 
applications that aim to utilize nanowire clusters with high carrier mobilities and 
densities as a mean to produce flexible and wearable device in the future (Duan, 
2007). However, such device is still limited to silicon and metal nanowires due to 
difficulty in assembling the compound semiconductors onto the device substrate 
(Duan, 2007). Therefore, it is great opportunity to explore compound 
semiconductors such as InSb in the form of nanowire clusters in order to realize 
its potential in future electronic applications. 
  

As a mean to understand the electronic behaviour of InSb nanowire clusters, two 
parameters are chosen in this study, which are nanowire diameter and contact 
gap width. The two parameters have been reported to have significant influence 

(a) (b) (c) 
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on the electronic transport properties of nanowires (Ford et al., 2009; Averine 
and Kuznetzov, 2008). Due to the enhanced surface-to-volume ratio, the 
properties of nanostructures in general are highly dependent on its size (Shin et 
al., 2016). For nanowires, reducing its diameter will cause the contribution of 
surface electrons to increase while also increasing the scattering effects (Dayeh, 
2010). However, these observations have mainly been reported on the single 
nanowire measurements. With bundles of nanowires distributed closely together 
as well as its different configuration from single nanowire, it is expected that the 
nanowire clusters will exhibit different electronic transport behaviours.  
 

Another parameter to be studied is contact gap width. For this parameter, several 
studies have reported on the decrease of transit time of the carriers and detector 
response when the gap fingers of interdigitated electrodes are reduced (Averine 
and Kuznetzov, 2008). However, it is to be noted that distribution of nanowire 
clusters can also be affected as a result from having narrower wedge, or contact 
gap width (Basu and Cross, 2015). This is especially evident for the samples that 
are dispersed using conventional dropcasting method, which fluid viscosity and 
surface tension of the distilled water heavily influence the distribution of nanowire 
clusters after dried (Baek et al., 2018). Although these studies have verified that 
different gap widths will affect distribution of wire clusters, they have yet to 
explore further on its optical or electronic transport properties. Hence, the study 
on the electronic behaviours of nanowire clusters under different gap widths is 
important in order to benefit various applications that use large-area of 
substrates for placing the randomly distributed nanowire clusters (Rojo et al., 
2013). 
 
 
1.3  Scope of the Study 
 
 
This study aim to explore the electronic transport properties of InSb nanowire 
clusters which are synthesized via template-assisted electrodeposition method. 
The growth method is a technique that utilizes a porous anodic alumina oxide 
(AAO) template as a working electrode, enabling the In and Sb ions from 
electrolyte solution to gather and form into nanowires in the pores of the 
template. The template is then removed, leaving only the freely-aligned 
nanowires stored inside the distilled water and later dispersed on a substrate 
when needed for characterizations. The nanowires will be synthesized according 
to the optimized growth parameters (Kharudin, 2017) in hope of obtaining good 
structural properties. Simple, fast, and cost-efficient electronic measurement 
technique is considered in order to create the electrical contact for the InSb 
nanowire clusters. Therefore, basic electrical contact pads via typical 
photolithography steps are fabricated. The electrical characterization is carried 
out using two aluminium (Al) metal contact pads that connect to the dropcasted 
nanowires, forming an MSM junction. The current-voltage (I-V) plot obtained 
from two-point probe measurements determines the electronic behaviour of the 
nanowire clusters. Schottky barrier height (SBH), conductivity carrier density, 
and carrier mobility are all important electrical coefficients, and can be extracted 
from the I-V measurements. Diameter of the AAO pore template (which 
influences the diameter of the nanowires) and gap width of the contact pads are 
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chosen as parameters in this study in order to investigate their influences on the 
electronic transport properties of InSb nanowire clusters.  
 

1.4  Research Objectives 
 
 
This study focuses on the following objectives: 
 

1. To synthesize InSb nanowires using anodic alumina oxide (AAO) 
template with 20 nm, 100 nm, and 200 nm pore diameters via 
electrodeposition method, and then fabricate the aluminium contact 
pads with different width of gaps ranging from 100 to 400 µm using 
photolithography method. 

2. To determine the structural properties of the deposited InSb nanowires 
using Field Emission Scanning Electron Microscope (FESEM), Energy 
Dispersive X-Ray Analysis (EDX), and X-Ray Diffraction Pattern (XRD). 

3. To investigate the schottky barrier height (SBH), electrical conductivity, 
carrier density, and carrier mobility of InSb nanowire clusters with 
different nanowire diameters and width of gaps using two-point probe 
measurement.      
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