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Uncovering the relationship between microstructure and dielectric properties is 
beneficial knowledge for finding high dielectric constant materials with low loss 
for technological purposes. Thus this research work attempts to understand the 
evolving relationship over sintering temperature between permittivity and 
microstructure properties in barium strontium titanate (BST), magnesium titanate 
(MT) and magnesium titanate doped barium strontium titanate (BST-MT). BST, 
MT and BST-MT samples were mechanically crush activated using a high energy 
ball mill for 10, 12 and 2 hours respectively. Pellets were formed followed by a 
sintering process from 500 oC up to 1300 oC with 100 oC increment. The phase 
analysis carried out using X-ray diffraction (XRD) showed a highly crystalline 
BST, MT or BST-MT ceramic could not be formed during milling alone. At          
500 oC, the major reflection (Ba0.5Sr0.5TiO3, MgTiO3 or Ba0.5Sr0.5TiO3/MgTiO3) 
grew from a broad peak into a sharp peak as it reached 1300 oC. In BST-MT 
system, there was no trace of dopant, MgTiO3 observed in XRD for all sintering 
temperatures. However, the energy dispersive X-ray (EDX) images confirmed 
the presence of Mg ion in BST-MT system. Sintering activity showed an 
improvement in the density where it increased from 3.67 g/cm3 to 4.88 g/cm3 for 
BST samples, 3.08 g/cm3 to 3.56 g/cm3 for MT samples and from 3.914 g/cm3 to 
5.318 g/cm3  BST-MT sample. Field emission scanning electron microscope 
(FESEM) presented the average starting particle sizes were 39 nm, 89 nm and 
78 nm for BST, MT and BST-MT respectively. There were an improvement in the 
grain growth where the grain size increased from 32.9 nm to 174.8 nm for BST, 
87.5 nm to 1575.0 nm for MT and 80.8 nm to 267.5 nm for BST-MT. The dielectric 
properties investigated using the Agilent 4294A Impedance analyzer revealed 
the dielectric constant, ԑr’ showed a decreasing trend below 104 HZ with 
increasing frequency for all samples due to the interfacial polarization. At 1 MHz, 
εr’ increased from 49.28 to 143.68 (BST), from 28.15 to 47.39 (MT) and from 
46.52 to 120.81 (BST-MT) with the rise of sintering temperatures. Therefore it 
revealed the dependency of dipolar polarization on the grain size and the 
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crystalline structure resulting in a remarkable increase in polarizability. The 
tangent loss was found to decrease with frequency where a high tan δ at low 
frequency due to the decrement of hopping process of ions. The Nyquist plot in 
all sample revealed the attribution to the grain property of the material with the 
rise of sintering temperature. Complex modulus revealed one semicircle 
observed for higher sintered BST and MT. However, the introduction of dopant 
caused two semicircle observed for BST-MT sintered at 1200 oC and 1300 oC at 
all measuring temperatures suggesting  the presence of both the grain and grain 
boundary contribution in the sample. BST-MT samples sintered at 1200 oC 
showed a prominent candidate for energy storage application as it experience a 
good physical properties with dielectric constant of 97.9 and 65% lesser dielectric 
loss compared to pure BST. 
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Membongkar hubungan di antara struktur mikro dan sifat dielektrik adalah 
pengetahuan yang bermanfaat untuk mencari bahan dielektrik dengan pemalar 
yang tinggi dan kehilangan yang rendah untuk tujuan teknologi. Oleh itu, kerja-
kerja penyelidikan ini cuba memahami hubungan terhadap suhu persinteran di 
antara sifat ketelusan dan struktur mikro di dalam barium strontium titanat (BST), 
magnesium titanat (MT) dan magnesium titanat didopkan kepada barium 
strontium titanate (BST-MT). Sampel BST, MT dan BST-MT secara mekanikal 
dihancurkan dengan mesin pengisar bola bertenaga tinggi masing-masing 
selama 10, 12 dan 2 jam. Pelet dibentuk diikuti dengan proses persinteran dari 
500 oC hingga 1300 oC dengan kenaikan 100 oC. Analisis fasa yang dijalankan 
menggunakan pembelauan sinar-X (XRD) menunjukkan seramik BST, MT atau 
BST-MT yang berhablur tidak boleh dibentuk melalui proses pengisaran sahaja. 
Pada 500 oC, refleksi utama (Ba0.5Sr0.5TiO3, MgTiO3 atau Ba0.5Sr0.5TiO3/ MgTiO3) 
meningkat dari puncak yang luas ke puncak yang tajam apabila mencapai suhu 
1300 oC. Di dalam sistem BST-MT, tiada kesan dopan, MgTiO3 diperhatikan 
untuk semua suhu persinteran melalui XRD. Walau bagaimanapun, imej sinar-
X tenaga serakan (EDX) mengesahkan kehadiran Mg ion dalam sistem          
BST-MT. Aktiviti persinteran menunjukkan peningkatan ketumpatan di mana ia 
meningkat daripada 3.67 g/cm3 menjadi 4.88 g/cm3 untuk sampel BST, daripada 
3.08 g/cm3 kepada 3.56 g/cm3 untuk sampel MT dan daripada 3.914 g/cm3 
sehingga 5.318 g/cm3 untuk sampel BST-MT. Mikroskop elektron pengimbasan 
pancaran medan (FESEM) mendedahkan purata saiz zarah permulaan ialah     
39 nm, 89 nm dan 78 nm masing-masing untuk BST, MT dan BST-MT. Terdapat 
peningkatan di dalam pertumbuhan butiran di mana saiz butiran meningkat 
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daripada 32.9 nm kepada 174.8 nm untuk BST, daripada 87.5 nm kepada  
1575.0 nm untuk MT dan daripada 80.8 nm kepada 267.5 nm untuk BST-MT. 
Sifat dielektrik yang dikaji menggunakan penganalisa rintangan Agilent 4294A 
menunjukkan pemalar dielektrik, εr’ menurun dengan peningkatan frekuensi di 
bawah 104 Hz untuk semua sampel disebabkan oleh pengutuban di antara 
muka. Pada 1 MHz, εr' meningkat dari 49.28 kepada 143.68 (BST), dari 28.15 
kepada 47.39 (MT) dan dari 46.52 kepada 120.81 (BST-MT) dengan 
peningkatan suhu persinteran. Oleh itu ia mendedahkan pergantungan 
pengutuban dwikutub pada saiz butiran dan struktur hablur yang mengakibatkan 
peningkatan yang luar biasa di dalam pengutuban. Kehilangan tangen didapati 
berkurangan dengan frequensi di mana nilai tan δ yang tinggi pada frekuensi 
rendah disebabkan oleh pengurangan proses melompat ion. Plot Nyquist di 
dalam semua sampel mendedahkan kehadiran sifat butiran bahan dengan 
peningkatan suhu persinteran. Modulus kompleks menunjukkan separuh 
bulatan diperhatikan untuk BST dan MT yang disinter pada suhu yang lebih 
tinggi. Walau bagaimanapun, pengenalan dopan menyebabkan dua separuh 
bulatan diperhatikan untuk BST-MT yang disinter pada 1200 oC dan 1300 oC 
untuk semua suhu pengukuran dan ini menunjukkan kehadiran sifat butiran dan 
butiran sempadan di dalam sampel. Sampel BST-MT yang disinter pada 1200 
oC menunjukkan calon yang sesuai untuk aplikasi penyimpanan tenaga kerana 
ia mengalami sifat fizikal yang baik dengan pemalar dielektrik 97,9 dan 65% 
kadar kehilangan dielektrik yang lebih kecil berbanding dengan BST tulen. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1   Background of the Study 
 
 

The development in ceramic materials started at the beginning of the 20th 
century with the advent of electronic in the radio and television broadcasts 
and the invention of transistor. Later, artificially synthesized raw materials 
and metallization and other technologies were developed to permit stronger 
ceramic-to-metal bonding, thus grew closer to today’s fine ceramic. Fine 
ceramics were made by scientifically controlling chemical compositions and 
manipulation of preparation methods to brings the realization of new 
materials customized to the unlimited amount of purpose they served. The 
variation in different conductivities is one of the greatest advantages of 
electronic ceramics since it can be designed to be conductors and insulators. 
Electronic ceramics can further be sub-divided into dielectric ceramics, 
magnetic ceramics, transparent ceramics, pyroelectric ceramics, 
semiconductive ceramics, and piezoelectric ceramics. 
 
 
Many devices operate through the interaction of radio-frequency (RF) 
electromagnetic waves with electronic ceramic materials. There were great 
interest in characterization of the interface and interaction between fields and 
materials since it is a critical task in any electromagnetic (EM) device or 
instrument development, from nanoscale to larger scales (Kumar et al., 
2009; Wang et al., 2004; Yoon et al., 2004). The electromagnetic interaction 
with electronic ceramic in radio-frequency region has unique properties such 
as the ability to travel in guided wave structures, the ability of antennas to 
launch waves that carry information over long distances, possess 
measurable phase and magnitude, the capability for imaging and memory 
storage, dielectric heating, and the ability to penetrate materials (Bakers-
Jarvis and Kim, 2012). RF dielectrics are interesting materials which are 
friendly with electromagnetic waves. When it is irradiated with an 
electromagnetic wave, polarization is produced in these materials by 
alternative electric field at frequencies 3 kHz to 300 GHz wave. The RF 
dielectrics cause resonance which releases electromagnetic wave energy 
and vice versa. 
 
 
Over the past thirty years, there is a fast growth in the technique of 
synthesizing the material in order to cope the industrial demand. Earlier, solid 
state reaction method is a very popular processing technique used to 
produce micron size material but with higher sintering temperatures 
(Sreedhar and Pavaskar, 2003). Nowadays, there are a lot of well-known 
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methods substantially modified with reduction in particle sizes such as sol 
gel technique (Ferreira and Baptista, 1994; Miao et al., 2006), water soluble 
single precursor method (Deng et al., 2010), and stearic acid gel routes (Li 
et al., 2010). Among the processes with the highest potential for tailoring 
advanced materials, mechanical alloying techniques are of special interest 
because they offer great flexibility in the choice of constituent materials to be 
combined, simplicity, and relatively inexpensive to produce (Koch et al., 
1989). The effect of mechanical treatment is very huge as it can change the 
thermodynamic potential and reduce the sintering temperature by enhancing 
the atomic mobility thus stimulating different microstructural properties of 
material (Benjamin and Voilin, 1974). These properties do affect the 
dielectric performance of the materials as the dielectric properties are reliable 
on the microstructure where a homogenous sample with greater grain size 
and less pores will result in a good dielectric value. Thus, it is a critical step 
to choose an appropriate processing technique with a great constituent 
material to be combined in order to obtain desirable dielectric properties that 
fulfill technological requirements of developing market. In this research, 
barium strontium titanate (BST), magnesium titanate (MT) and a 
nanocomposite of barium strontium titanate and magnesium titanate       
(BST-MT) were chosen to be synthesized by mechanical alloying method 
aiming at developing nanostructured particles with low temperature 
properties and delivering better output than those produce via conventional 
technique. 
 
 
1.2   Dielectric Materials 
 
 
The discovery of the use of electrical insulation begins at the same age as 
the discovery of the electrical phenomena while the recognition of 
electrostatic appearances of electrification begins at an ancient age. A 
systematic investigation of dielectric properties may be traced in the 1870’s. 
Insulators are classified as materials used to prevent the flow of current by 
achieving lowest electrical conduction and maximum resistance while 
dielectric material is defined as insulators material which can be polarized by 
electric field (Jonscher, 1983). 
 
 
The current tendency in dielectric materials based on TiO2 is rising with a 
rapid development in capacitors, filters, mobile and satellite communication 
systems at higher frequencies. The development of new dielectrics 
especially the ferroelectrics, as well as the growth of the area of application 
of some of their special features have led to the creation of new types of 
dielectric devices for radio-electronic and optical equipment, and have 
induced large number of research in this field. For example, BaTiO3 was the 
first material used for manufacturing dielectric ceramics capacitors, 
multilayer capacitors due to its high dielectric constant and low dielectric loss 
(Vijatovic et al., 2008). Later, BST (BaxSr1-xTiO3) which is derived from the 
prototype BaTiO3 perovskite were discovered. With emerging properties 
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such as high power density, good reliability and highly nonlinear dielectric 
response to an applied electric field, BST became a leading candidate in 
dielectric storage (Ricketts et al., 2000).  
 
 
Other than that, one of the promising materials is magnesium titanate, which 
has good dielectric properties such as intermediate dielectric constant,            
ε’ = 15-20, low dielectric loss and high Q values; Q = 20,000 at 10 Ghz 
(Belous et al., 2007). A number of researchers reported that the equilibrium 
phase of binary magnesium titanate showed existence of three stable 
phases MgTiO3, Mg2TiO4 and MgTi2O5 (Filipovic et al., 2010 and Obrodovic 
et al., 2011). MgTiO3 has the ilmenite structure; Mg2TiO4 has the spinel 
structure and MgTi2O5 has the pseudobrookite structure. Thus, magnesium 
titanate has attracted much attention in industrial applications such as 
multilayer capacitor, band-pass filters, oscillators in radar detectors, cellular 
telephones and global positioning satellite devices (Bernard and Houviet, 
2004). 
 
 
1.3   Problem Statement 
 
 
Many reports were made generally on the influence of composition, effect of 
dopants and the relationship between the microstructure and dielectric 
properties of dielectric ceramic at higher sintering temperatures. For 
examples, Song et al., (2014) covered the effect of grain size on the energy 
storage of (Ba0.4Sr0.6)TiO3 at 1260 oC to 1400 oC while Mohammadi and Fray 
(2012) studied the effect of different molar ratio of Mg:Ti on their 
microstructure properties. Extensive studies were also made for magnesium 
as a dopant effect on the BST ceramics as it will modify the dielectric 
permittivity (Ren et al., 2012; Zhang et al., 2009 and Xu et al., 2009).  
 
 
However, the available literatures contain no sufficient data regarding the 
parallel evolution of microstructure and complex permittivity of the grain and 
grain boundaries of nanosize BST, MT and nanocomposite BST-MT relating 
them at lower temperatures until they are evolving towards their final form 
and values. There are several questions that become our most intention in 
this study such as what is the influence of microstructure-evolution changes 
on the dielectric properties at earlier and intermediate sintering condition? 
Secondly, how does the microstructure affect the dielectric permittivity in the 
frequency 40 Hz to 1 MHz? Hence, these findings will be the driving source 
of this research to build up new knowledge. 
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1.4   Objectives 
 
 
The ultimate goal of this research is to track down the evolution studies 
between dielectric permittivity and their microstructure changes starting at 
lower sintering temperature (500 oC) up to its final state of form (1300 oC). 
This research attempted to understand the dielectric property-microstructure 
relationship in nanostructured polycrystalline of BST, MT and nanocomposite 
BST-MT in the frequency range 40 Hz to 1 MHz. The findings will be a good 
reference and guidance for the development of the new general theoretical 
model based on the evolution studies for both properties in the future. 
However, the necessary groundwork towards achieving the above goal has 
to be prepared in the form of detailed information on the materials response 
characteristics.  
 
 
Hence, the work-step objectives for this research work are as follows; 
 

1. To prepare and to characterize the phase formation and 
morphology studies of nanoparticles BST, MT and 
nanocomposite BST-MT via mechanical alloying. 

2. To measure the complex permittivity of the as-prepared samples 
from 40 Hz to 1 MHz at different measuring temperatures 
starting from 30 oC up to 250 °C. 

3. To correlate the microstructure and dielectric properties of the 
nanostructured samples sintered in a series of ascending 
temperatures. 
 
 

1.5 Limitation of Study 
 
 
Although the objectives in this thesis had been thoroughly investigated and 
studied, there are few limitations regarding to the research: 

1. The dielectric measurement was carried out in the range of 40 
Hz to 1 MHz 

2. The composition of BST used in this research is Ba0.5Sr0.5TiO3 
3. The sintering temperature for all samples are in the range of 

500 oC to 1300 oC. 
 
  
1.6 Thesis Outline 
 
 
This thesis comprises of six chapters. In the introduction, the dielectric 
material is briefly overview with an emphasis on dielectric application with 
respect to energy storage and cellular application. The research tools and 
expectations are stated. The second chapter deals with dielectric materials 



© C
OPYRIG

HT U
PM

 
5 

 

viewed through the workby researchers in the last few decades. Several of 
the synthesis methods are also mentioned including the mechanical alloying 
method. The role of microstructure on the dielectric properties is also 
highlighted. The third chapter mentions the theory of polarization 
mechanisms, perovskite structure, fundamentals of dielectric permittivity and 
theory of mechanical alloying process. The fourth chapter states the 
experimental and measurement techniques which include the sample 
preparation and apparatus used for both dielectric permittivity and 
microstructure analysis. The parameters and physical measurements are 
defined. The fifth chapter presents the results of the relationship of 
microstructure and dielectric permittivity of nanostructured polycrystalline 
BST, MT and nanocomposite BST-MT. The final chapter summarizes the 
research findings and concludes some recommendations for further work.  
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