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Abstract: This paper aims to select the best value of the parameter ρ from a general set of linear
multistep formulae which have the potential for efficient implementation. The ρ-Diagonally Implicit
Block Backward Differentiation Formula (ρ-DIBBDF) was proposed to approximate the solution for
stiff Ordinary Differential Equations (ODEs) to achieve the research objective. The selection of ρ for
optimal stability properties in terms of zero stability, absolute stability, error constant and convergence
are discussed. In the diagonally implicit formula that uses a lower triangular matrix with identical
diagonal entries, allowing a maximum of one lower-upper (LU) decomposition per integration stage
to be performed will result in substantial computing benefits to the user. The numerical results and
plots of accuracy indicate that the ρ-DIBBDF method performs better than the existing fully and
diagonally Block Backward Differentiation Formula (BBDF) methods.

Keywords: optimal stability properties; diagonally implicit; block backward differentiation formula;
stiff ODEs

1. Introduction

In many mathematical models of real-world problems, Initial Value Problems (IVPs) involving
systems of Ordinary Differential Equations (ODEs) exhibit a phenomenon called stiffness.
This phenomenon frequently arises in the study of vibrations, chemical engineering, electrical circuits
and control theory. Throughout the history of the development of numerical methods for stiff ODEs,
considerable attention has been given to creating a robust algorithm with optimal stability properties.
This has led us to design an efficient method that possesses a small error constant, zero stability and a
large stability region. Such approaches have been taken by numerous researchers, such as [1–7].

In this article, we consider the IVPs for first order ODEs of the form

y′ = f (x, y), (1)

with y(a) = y0 in the interval of a ≤ x ≤ b. The system (1) is said to be linear with constant
coefficients if f (x, y) = Ay + Φ(x), where A is an m× m constant matrix, while y, f and Φ(x) are
m-dimensional vectors. The matrix A has distinct eigenvalues, λi and corresponding eigenvectors, ci,
where i = 1, 2, . . . , m . The system of ODEs has a general solution in the form of

y(x) =
m

∑
i=0

kieλixci + Ψ(x).
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According to the definition provided in [8], (1) is considered stiff if the eigenvalues λi of
∂ f
∂y

satisfy

the following conditions:

(i) Re(λi) < 0 and

(ii) max
i
|Re(λi)| � min

i
|Re(λi)|where the ratio

max
i
|Re(λi)

min
i
|Re(λi)|

is called the stiffness ratio or stiffness index.

For a non-linear system, (1) is stiff in an interval I of x if, for x ∈ I, the eigenvalues λi(x) satisfy (i)
and (ii) above.

According to [8], stiffness requires solving the implicit equations by using Newton iteration,
which in turn demands an evaluation of the Jacobian at each step. These requirements will increase
the computational time and therefore, is not cost-efficient for the users. Because of the high cost of
evaluating the stages in a fully implicit method, [9] reported that many researchers have opted to
reduce it to a diagonally implicit method. Prior works along this line were discussed by [10–14].

In practical applications involving stiff ODEs, the Diagonally Implicit Runge–Kutta (DIRK) class
is the most often used among the Implicit Runge–Kutta (IRK) methods. Figure 1 illustrates the fully
implicit and diagonally implicit classes of Runge–Kutta (RK) methods, which can be defined as a
3 × 3 matrix. As stated in [15], RK methods are characterized by excellent stability properties that
make them useful for solving stiff ODEs systems. However, for a Fully Implicit Runge–Kutta (FIRK)
method, a system of n× r non-linear equations must be solved in each of its integration stage, where
n is the dimension of the problem and r is the number of stages, as described by [16]. Thus, the
authors of [17,18] proposed a DIRK method that uses a lower triangular matrix, A with aij = 0 for
i < j. It implies that the DIRK technique needs to solve a series of r-implicit structures for each n
instead of an n× r system as in the FIRK method. This structure permits solving each stage of the
system separately instead of solving all the stages simultaneously. Another common requirement, as
stated in [19], is for the non-zero diagonal entries of A to be identical, allowing for a maximum of one
lower-upper (LU) decomposition per integration stage.

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


(a) FIRK

A =

 a11 0 0
a21 a22 0
a31 a32 a33


(b) DIRK

Figure 1. Structure of the A-matrix for fully and diagonally implicit subclasses of the RK methods,
given in [16].

The well-known Backward Differentiation Formula (BDF) has been the technique of choice
for the numerical solution of stiff differential equations for many years. The classical BDF method
approximates the solution for yn+1 at xn+1 point in every step. Ibrahim et al. in [20] introduced the
Block Backward Differentiation Formula (BBDF) method to reduce the number of integration steps
and the computational time of existing numerical integrator while maintaining the accuracy. Many
attempts have been made to implement the BBDF method in solving stiff problems because it has been
proven as more accurate and efficient than the non-block method (see [20–22]) and existing solvers
(see [23,24]).

Motivated by the fact that the existing works carried out based on RK and BBDF are suitable for
solving stiff ODEs, we aim to formulate an efficient BBDF method in a diagonally implicit form that is
expected to be faster than the fully implicit methods in the existing literature.

This paper is organized as follows. The derivation of the method is presented in Section 2.
In Section 3, we discuss the stability properties of the method encompassing zero stability, absolute
stability, order of the method and convergence. Next, the implementation of the derived method using
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Newton iteration is discussed in Section 4, followed by the numerical results for the proposed and
existing methods in Section 5. Finally, the conclusions are provided in Section 6.

2. The ρ-Diagonally Implicit Block Backward Differentiation Formula

Various methods can be used to compute the approximate solution of y(x). One of these methods
is the general linear k-step method in the form of

k

∑
j=0

αjyn+j = h
k

∑
j=0

β j fn+j. (2)

If β0 = β1 = . . . = βk−1 = 0 and βk 6= 0, (2) becomes a BDF as outlined by Gear in [25] in the
form of

k

∑
j=0

αjyn+j = hβk fn+k. (3)

Vijitha-Kumara in [26] modified the formula in (3) by taking an arbitrary βk−1 6= 0, introducing
the free parameter ρ and formulating the non-block Fixed Step Formula (FSF) of

k

∑
j=0

αjyn+j = hβk
(

fn+k − ρ fn+k−1
)

, (4)

where βk−1 = ρβk.
The definition of the k-step 2-point block linear multistep method (LMM) of BBDF as given by

Ibrahim et al. in [20] is in the form of

k

∑
j=0

Aj,iyn+j = h
k

∑
j=0

Bj,i fn+j, (5)

where k = i = 1, 2 for yn+1 and yn+2 respectively; Ak,i = 1; Aj,i, Bj,i are r × r coefficient matrices;
fn+j = f (xn+j, yn+j) and h = step size used. This constant step size method is implemented by
approximating yn+1, . . . , yn+j concurrently in a block at the time discretization points of xn+1, . . . , xn+j.

In this section, we will derive the ρ-Diagonally Implicit Block Backward Differentiation Formula
(ρ-DIBBDF) based on the derivation of BBDF by Ibrahim et al. in [20] and FSF by Vijitha-Kumara
in [26]. FSF is a non-block method, where the computation proceeds to an approximation of yn+1 at the
xn+1 one step at a time. To increase the efficiency of the classical approach, we proposed a method that
constructed in a block, where the solutions of yn+1 and yn+2 were approximated concurrently in a block
by using three back values at the points xn, xn−1 and xn−2 of the previous block. The development of
our method involves the hybrid-like process of implementing the FSF and BBDF, which produce as
many A-stable formulae as possible. Suleiman et al. [22] extended the formula in (5), implemented the
strategy in [26] by adding extra future points and proposed the 2-point Superclass of BBDF (2SBBDF).
The BBDF and 2SBBDF are formulated in a fully implicit manner. We are motivated to develop the
ρ-DIBBDF to enhance the efficiency of the fully implicit BBDF method by proposing a diagonally
implicit method that requires fewer computations of the differentiation coefficients, thus minimizing
the cumulative error (refer to [10]). Our proposed method differs from the Diagonally Implicit 2-point
BBDF (DI2BBDF) in [10], which provides a fixed formula for each point and order because our method
generates a different set of formulae depending on the free parameter chosen in an attempt to achieve
the optimal stability properties and accurate numerical results.
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The ρ-DIBBDF method takes the general form of

k+2

∑
j=0

αj−2,kyn+j−2 = hβk,k
(

fn+k − ρ fn+k−1
)

, k = 1, 2 (6)

where βk−1,k = ρβk,k. The linear difference operator Li associated with the formula in (6), is defined as

L
[
y(xn); h

]
=

k+2

∑
j=0

αj−2,kyn+j−2 − hβ j,k(y′n+k − ρy′n+k−1). (7)

Expanding yn+j−2 and its derivative by using the Taylor series method and collecting the common
terms of the derivative y in (7) gives

L
[
y(xn); h

]
= C0y(x) + C1hy′(x) + . . . + Cqhqy(q)(x). (8)

The general form of the constant Cq is given by

C0 =
k+2

∑
j=0

αj−2,k,

C1 =
k+2

∑
j=0

(j− 2)1

1!
αj−2,k −

k(0)

0!
β j,k + ρβ j,k,

...

Cq =
k+2

∑
j=0

(j− 2)q

q!
αj−2,k −

k(q−1)

(q− 1)!
β j,k +

(k− 1)(q−1)

(q− 1)!
ρβ j,k, q = 2, 3, . . .

(9)

The values of k = 1, 2 in (6) indicate the first and second points, respectively. By setting α1,1 = 1,
α2,2 = 1, α0,2 = 0 and solving (9) simultaneously, we obtain the following coefficients of αj−2,k and β j,k
in terms of ρ as listed in Table 1:

Table 1. List of coefficients for ρ-DIBBDF.

k α−2,k α−1,k α0,k α1,k α2,k β0,k β1,k β2,k

1
ρ + 2

2ρ− 11
−3
(
2ρ + 3

)
2ρ− 11

3
(
ρ + 6

)
2ρ− 11

1 0
−6ρ

2ρ− 11
−6

2ρ− 11
0

2
2ρ + 3
6ρ− 19

−2
(
3ρ + 4

)
6ρ− 19

0
−2
(
ρ− 12

)
6ρ− 19

1 0
−12ρ

6ρ− 19
−12

6ρ− 19

Substituting the coefficients obtained in Table 1 into (6) gives the following general corrector
formula for the 2-point ρ-DIBBDF:

yn+1 = − ρ + 2
2ρ− 11

yn−2 +
3
(
2ρ + 3

)
2ρ− 11

yn−1 −
3
(
ρ + 6

)
2ρ− 11

yn +
6ρ

2ρ− 11
h fn −

6
2ρ− 11

h fn+1,

yn+2 = − 2ρ + 3
6ρ− 19

yn−2 +
2
(
3ρ + 4

)
6ρ− 19

yn−1 +
2
(
ρ− 12

)
6ρ− 19

yn+1 +
12ρ

6ρ− 19
h fn+1 −

12
6ρ− 19

h fn+2.

(10)
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The matrix form of the corrector formula in (10) is therefore represented by 1 0

− 2(ρ−12)
6ρ−19 1

yn+1

yn+2

 =

0 − ρ+2
2ρ−11

0 − 2ρ+3
6ρ−19

yn−3

yn−2

+

 3(2ρ+3)
2ρ−11 − 3(ρ+6)

2ρ−11

2(3ρ+4)
6ρ−19 0


yn−1

yn


+ h

0 6ρ
2ρ−11

0 0

 fn−1

fn

+ h

− 6
2ρ−11 0
12ρ

6ρ−19 − 12
6ρ−19

 fn+1

fn+2

 .

(11)

3. Selection of Parameter ρ

To determine whether the numerical method can provide acceptable results, we need to investigate
the stability of the method. In this section, the practical efficiency of the numerical method concerning
three essential concepts, namely zero stability, absolute stability and convergence will be studied.
According to Dahlquist in [27], a potentially useful numerical method for solving stiff ODE systems
must have good accuracy and a reasonably large region of absolute stability. In designing an
efficient method, authors in [2,3,7] considered developing methods with smaller error constants.
The development of our method closely follows the works of [22,26] but in the DI scheme. To overcome
the setback in choosing the best ρ as reported in [28], we will choose a better value for ρ with optimal
stability properties that will give better accuracy to the approximate solution. The parameter ρ is
restricted to (−1, 1) so that the underlying ρ-DIBBDF in (6) satisfies the necessary condition for stiff
stability. The relevant proof for yn+1 is provided in this section concerning the theorem due to [29]
(refer to [26]). The proof of the second point is straightforward by adopting an approach similar to that
of the first point.

To begin with, the associate $ and σ polynomials of (6) are given as follows

$(ξ) = ξ3 + α0,kξ2 + α−1,kξ + α−2,k,

σ(ξ) = βk,k

(
ξ3 − ρξ2

)
.

Then, by using the following polynomials of r(z) and s(z),

r(z) =
(

1− z
2

)3
$

(
1 + z
1− z

)
,

s(z) =
(

1− z
2

)3
σ

(
1 + z
1− z

)
,

we define P(z, µ) = r(z)− µs(z) where µ = hλ. P(z, µ) can be simplified as

−
(
2ρ− 11

)
P(z, µ) = a3z3 + a2z2 + a1z + a0, (12)

where

a0 = 6(ρ− 1)µ,

a1 = −12(ρ− 1) + 6(ρ− 3)µ,

a2 = −12(ρ− 3)− 6(ρ + 3)µ,

a3 = 8(ρ + 5)− 6(ρ + 1)µ.

(13)

The following lemma will be used in the next theorem.

Lemma 1. Let p(x) = a3x3 + a2x2 + a1x + a0, where ai are real numbers and a3 6= 0. Then p(x) is a
Hurwitz polynomial if and only if the conditions (i) and (ii) both hold.

(i) ai are either all positive or negative,
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(ii) a1a2 − a0a3 > 0.

Proof. See [30].

According to [26], (6) is A0-stable if and only if its corresponding P(z, µ) is a Hurwitz polynomial
for all µ < 0.

Theorem 1. The method is A0-stable for all ρ in (−1, 1) .

Proof. Clearly from (13), ai > 0, where i = 0, 1, 2, 3 for all µ < 0 and ρ ∈ (−1, 1). For (ii), a1a2 − a0a3

can be written as 144(ρ− 1)(ρ− 3)− 48(ρ2 − 8ρ + 13)µ + 288µ2. Thus, a1a2 − a0a3 > 0 for all µ < 0
and ρ ∈ (−1, 1). By Lemma 1, −

(
2ρ− 11

)
P(z, µ) in (12) is a Hurwitz polynomial and so is P(z, µ) for

all µ < 0 and ρ ∈ (−1, 1).

The following theorem due to [31] gives necessary and sufficient conditions for stiff stability.

Theorem 2. The conditions (i)–(iv) are necessary and sufficient for a convergent method to be stiffly stable.

(i) The method is A0-stable,

(ii) The modulus of any root of the polynomial $(ξ)
ξ−1 is less than 1,

(iii) The roots of σ(ξ) of modulus 1 are simple,

(iv) If ξ0 is a root of σ(ξ) with |ξ0| = 1, then $(ξ)
ξσ′(ξ) at ξ = ξ0 is real and positive.

The following lemma will be used to prove the next theorem.

Lemma 2. Let p(x) = a2x2 + a1x + a0, where a0, a1, a2 6= 0 and a0, a1, a2 are real. Then p(x) is a Schur
polynomial if and only if the conditions of (i) and (ii) are met.

(i) |a0| < |a2| ,
(ii) |a1| < |a2 + a0| .

Proof. See [26].

Theorem 3. The method is strongly stable for ρ ∈ (−1, 1).

Proof. It suffices to show that $(ξ)
ξ−1 is a Schur polynomial for ρ ∈ (−1, 1). From Table 1, α−2,1 +

α−1,1 + α0,1 + 1 = 0, $(ξ) can be simplified as $(ξ) = (ξ − 1)(a2x2 + a1x + a0), where a0 = −α−2,1 =

− ρ+2
2ρ−11 , a1 = −(α−2,1 + α−1,1) = −

(
−5ρ−7
2ρ−11

)
and a2 = 1. Since − ρ+2

2ρ−11 ≤
1
3 for −1 < ρ < 1, we have

a0 < a2. Now, a2 + a0 = ρ−13
2ρ−11 and |a2 + a0| −|a1| = 6(ρ−1)

2ρ−11 > 0 for −1 < ρ < 1. Thus, by Lemma 2,
$(ξ)
ξ−1 is a Schur polynomial.

Theorem 4. The method is stiffly stable for ρ ∈ (−1, 1).

Proof. σ(ξ) = β1,1

(
ξ3 − ρξ2

)
where β1,1 = −6

2ρ−11 . The roots of σ(ξ) are 0, ρ and it has simple root of
modulus 1 when ρ = −1. Now Theorem 2 together with Theorem 1 and Theorem 3 imply that the
method is stiffly stable for all ρ ∈ (−1, 1).

Corollary 1. The method is A(α)-stable for all ρ ∈ (−1, 1).

Proof. Stiff stability implies A(α)-stability (refer to [31]).
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For the order 3 method, the intensive work done by [26] shows that ρ = −0.75 will produce
accurate numerical results with optimal stability properties. The stability analysis of the proposed
method for ρ = −0.75 will be presented in the following subsections.

3.1. Zero Stability

Zero stability is one of the important forms of stability for the numerical solution of IVPs. It is
defined by [32] as:

Definition 1. The method in (10) is said to have zero stability if no root of its characteristic polynomial has a
modulus higher than one and if any root with a modulus of one is simple.

Consider the scalar test equation y′ = λy. Substitute hλ = h̄ into (11) and rewrite it in the matrix
form to get 1 + 6

2ρ−11 h̄ 0

− 2(ρ−12)
6ρ−19 −

12ρ
6ρ−19 h̄ 1 + 12

6ρ−19 h̄


yn+1

yn+2

 =

 3(2ρ+3)
2ρ−11 − 3(ρ+6)

2ρ−11 + 6ρ
2ρ−11 h̄

2(3ρ+4)
6ρ−19 0


yn−1

yn


+

0 − ρ+2
2ρ−11

0 − 2ρ+3
6ρ−19

yn−3

yn−2


(14)

which is equivalent to A0Ym = B0Ym−1 + C0Ym−2. By inserting the coefficients of A0, B0 and C0 in (14)
into the determinant formula viz. |A0t2 − B0t− C0|, we obtain the following stability polynomial in
terms of ρ:

R(t, h̄) =

[
−1

(2ρ− 11)(6ρ− 19)

]
72h̄2ρ2t3 − 72h̄2t4 − 24h̄ρ2t3 − 60h̄ρt4 − 12ρ2t4 + 24h̄ρ2t2 − 288h̄ρt3

+ 246h̄t4 + 30ρ2t3 + 104ρt4 + 12h̄ρt2 + 108h̄t3 − 24ρ2t2 − 24ρt3 − 209t4 − 18h̄t2 + 6ρ2t

− 96ρt2 + 261t3 + 16ρt− 63t2 + 11t = 0.

(15)

By plugging h̄ = 0 and solving (15) with respect to t, we obtain the roots, t as listed in (16).

t = 0, 1,
1

12ρ2 − 104ρ + 209

(
9ρ2 +

√
9ρ4 + 1152ρ3 + 2346ρ2 − 120ρ− 1623 + 40ρ + 26

)
,

− 1
12ρ2 − 104ρ + 209

(
−9ρ2 +

√
9ρ4 + 1152ρ3 + 2346ρ2 − 120ρ− 1623− 40ρ− 26

)
.

(16)

By setting ρ = −0.75, we obtain the roots, t = 0, 1, 0.003617± 0.08982i. Since the roots of the
stability polynomial for ρ = −0.75 satisfy Definition 1, we conclude that the method is said to be
zero stable.

3.2. Absolute Stability

According to [32], if the employed method has a region of absolute stability that includes the
entire negative-plane, then there will be no constraint on the step length imposed by the stability.

Definition 2. A numerical method is said to be A-stable if <A ⊇ {hλ | Re(hλ) < 0}.

However, the A-stability requirement places a severe restriction on selecting appropriate LMMs.
This restriction is known as Dahlquist’s second barrier, which states that the order of an A-stable LMM
must be ≤ 2 (see [27]). This demanding requirement motivates the following definition by [33]:
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Definition 3. A numerical method is said to be A(α)-stable, α ∈ (0, π/2) if <A ⊇ {hλ | −α < π −
arg(hλ) < α} as shown in Figure 2.

Figure 2. A(α) and stiff stability, as featured in [34].

The boundary of the stability region is determined by putting t = eiθ in (15) where 0 ≤ θ ≤ 2π

for which |t| < 1. The stable region is located outside the boundary of the solid line and the unstable
region is within the enclosed area. The absolute stability region of our method for ρ = −0.75 is plotted
in a complex hλ plane and shown below.

Referring to Figure 3, we can observe that almost the whole left-plane of the circle lies within a
stable region and hence, based on Definition 3, the method is considered A(α)-stable.

Figure 3. Stability region of ρ-DIBBDF for ρ = −0.75.

3.3. Order of the Method and Error Constant

The definition of the order of the method given by [8] is provided in Definition 4, as follows:

Definition 4. The linear multistep method (5) and the associated difference operator, Li as defined by (6), are
said to be of order p if in (8), C0 = C1 = . . . = Cp = 0 and Cp+1 6= 0, where Cp+1 is the error constant.

The error constant of the method can be obtained by substituting the corresponding values of αj,k
and β j,k in Table 1 into (9), which gives
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C0 =
4

∑
j=0

αj,k =

0

0

 ,

C1 =
4

∑
j=0

j
1!

αj,k − β j,k =

0

0

 ,

C2 =
4

∑
j=0

j2

2!
αj,k −

j
1!

β j,k =

0

0

 ,

C3 =
4

∑
j=0

j3

3!
αj,k −

j2

2!
β j,k =

0

0

 ,

C4 =
4

∑
j=0

j4

4!
αj,k −

j3

3!
β j,k =

 1
2

ρ+3
2ρ−11

3(ρ+2)
6ρ−19

 =

 −9
100
−15
94

 .

(17)

Since C4 6= 0 in (17), following Definition 4, we conclude that the derived method has the order 3
with −9

100 and −15
94 as the error constants of yn+1 and yn+2 respectively.

3.4. Convergence

An essential property of an acceptable LMM is that the solution generated by the method
converges to an exact solution as the step size approaches zero. A theorem provided by [35] states that
a method of an LMM class in (6) is convergent if and only if, it is both consistent and zero stable. The
proof for this theorem can be found in [35]. For this theorem to be satisfied, the following consistency
conditions given by [8] must be fulfilled:

(a) ∑k+2
j=0 αj−2,k = 0,

(b) ∑k+2
j=0 jαj−2,k = ∑k+2

j=0 β j,k.

By applying the above consistency conditions for the respective coefficients of yn+1 and yn+2 in
Table 1, we obtained:

a)
k+2

∑
j=0

αj−2,k =

 ρ+2
2ρ−11
2ρ+3

6ρ−19

+

−3(2ρ+3)
2ρ−11

−2(3ρ+4)
6ρ−19

+

 3(ρ+6)
2ρ−11

0

+

 1
−2(ρ−12)

6ρ−19

+

0

1

 =

0

0

 ,

b)
k+2

∑
j=0

jαj−2,k = 0

 ρ+2
2ρ−11
2ρ+3

6ρ−19

+ 1

−3(2ρ+3)
2ρ−11

−2(3ρ+4)
6ρ−19

+ 2

 3(ρ+6)
2ρ−11

0

+ 3

 1
−2(ρ−12)

6ρ−19

+ 4

0

1


=

 6ρ−6
2ρ−11

12ρ−12
6ρ−19

 =

 21
25
42
47


=

k+2

∑
j=0

β j,k.

Since the method for ρ = −0.75 is zero stable as stated in Section 3.1 and both consistency
conditions are successfully met, we conclude that the derived method converged.

The α, D in A(α)-stability and error constants (EC) of the underlying ρ-DIBBDF in (7) for ρ =

−0.75,−0.60, 0.50 and 0.95 are given in Table 2. We choose these ρ values to compare with ρ = −0.75
to ensure a higher accuracy for the numerical results by selecting the best parameter (ρ = −0.75), as
proven for the non-block FSF in [26].
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Table 2. Comparison of stability analysis for ρ-DIBBDF, BBDF and DI2BBDF.

ρ or Method −0.75 −0.60 0.50 0.95 BBDF DI2BBDF

α 85.657◦ 86.084◦ 88.352◦ 90◦ 90.0◦ 83.647◦

D −0.156 −0.115 −0.016 0 0 −0.226
|EC| yn+1 0.0900 0.0984 0.1750 0.2170 0.1667 0.1364
|EC| yn+2 0.1596 0.1858 0.4688 0.6654 0.1364 0

4. Implementation of the Method

In this section, the approximation of yn+1 and yn+2 values in (14) will be implemented using the
Newton’s iteration. Formula in (10) can be represented in the following form:

yn+1 = α1yn+2 + β1h fn + β2h fn+1 + η1,

yn+2 = α2yn+1 + β3h fn+1 + β4h fn+2 + η2,
(18)

where η1 and η2 are the back values. Equation (18) in the form of the matrix-vector is equivalent to

(I − A)Y = h (B1F1 + B2F2) + ζ,

with

I =

1 0

0 1

 , A =

 0 α1

α2 0

 , B1 =

0 β1

0 0

 , B2 =

β2 0

β3 β4

 ,

Y =

yn+1

yn+2

 , F1 =

 fn−1

fn

 , F2 =

 fn+1

fn+2

 , ζ =

η1

η2

 .

(19)

Let
F̂ = (I − A)Y− h (B1F1 + B2F2)− ζ = 0. (20)

By applying Newton’s iteration to the system in (20), the (i + 1)th iterative value of yn+j is
generated and we obtain

y(i+1)
n+j = y(i)n+j −

F̂(y(i)n+j)

F̂′(y(i)n+j)
, j = 1, 2. (21)

Equation (21) is equivalent to

y(i+1)
n+j − y(i)n+j = −

(I − A)Y(i)
n+j − h (B1F1 + B2F2)− ζ

(I − A)− h
[

B1
∂F1

∂Y

(
Y(i)

n+j

)
+ B2

∂F2

∂Y

(
Y(i)

n+j

)] , (22)

where
∂F
∂Y

(
Y(i)

n+j

)
denotes the Jacobian matrix of F with respect to Y. By letting E(i+1)

n+j = y(i+1)
n+j − y(i)n+j,

(22) can be expressed in the simplest form

E(i+1)
n+j = P−1Q. (23)

It follows that
PE(i+1)

n+j = Q, (24)
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where

P = (I − A)− h
[

B1
∂F1

∂Y

(
Y(i)

n+j

)
+ B2

∂F2

∂Y

(
Y(i)

n+j

)]
, Q = − (I − A)Y(i)

n+j − h (B1F1 + B2F2)− ζ. (25)

By plugging the corresponding entries of I, A, B1, B2 in (19) into (25) we obtain

P =


1− β2h

∂ fn+1

∂yn+1
−α1

−α2 − β3h
∂ fn+1

∂yn+1
1− β4h

∂ fn+2

∂yn+2

 , Q =

 −yi
n+1 + α1yi

n+2 + β1h f i
n + β2h f i

n+1 + η1

−yi
n+2 + α2yi

n+1 + β3h f i
n+1 + β4h f i

n+2 + η2

 . (26)

Equation (21) in matrix form for formula in (10) will produce 1 +
(

2
ρ−3

)
h ∂ fn+1

∂yn+1
0

− 3
4

(
ρ−3
ρ−2

)
− 3ρ

2ρ−4 h ∂ fn+1
∂yn+1

1 +
(

3
2ρ−4

)
h ∂ fn+1

∂yn+1


E(i+1)

n+1

E(i+1)
n+2

 =

 −1 0
3
4

(
ρ−3
ρ−2

)
−1

y(i)n+1

y(i)n+2


+h

0 2ρ
ρ−3

0 0

 f (i)n−1

f (i)n

+ h

− 2
ρ−3 0
3ρ

2ρ−4 − 3
2ρ−4

 f (i)n+1

f (i)n+2

 .

(27)

The approximate values of yn+1 and yn+2 are therefore derived from

y(i+1)
n+j = y(i)n+j + E(i+1)

n+j , j = 1, 2. (28)

The computation was performed in PECE mode in accordance with the terminology used in the
LMM context. P and C indicate one predictor or corrector implementation, respectively and E indicates
one evaluation of the function y′ = f (x, y). The predictor formula used in this PECE sequence are
given by:

y(p)
n+1 = −yn−1 + 2yn,

y(p)
n+2 = −2yn−1 + 3yn.

(29)

The approximation of yn+1 and yn+2 values will be executed simultaneously in every step.
The PECE block method mode is described as:

P : y(p)
n+1 → E : f (p)

n+1 → C : y(c)n+1 → E : f (c)n+1,

P : y(p)
n+2 → E : f (p)

n+2 → C : y(c)n+2 → E : f (c)n+2.
(30)

5. Numerical Results

In the interest of validating the numerical results of our method, the ρ-DIBBDF algorithm was
written in C programming language on the Microsoft Visual C++ platform to obtain the approximate
values. BBDF in [20] and DI2BBDF in [10] are chosen as the methods of comparison because they are
of the same order as our derived method. For our method, we choose ρ = −0.60, 0.50, 0.95 to compare
with ρ = −0.75. Due to space limitation, only some ρ values will be examined. A detailed description
of the selection of ρ, was discussed in [26]. For the four selected test problems, the numerical results of
the maximum error and execution time are given in Tables 3–6, with

MAXE = max︸︷︷︸
1≤i≤T

( max︸︷︷︸
1≤i≤N

∣∣(yi)t − (y(xi))t
∣∣),
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where T is the total number of steps, N is the number of equations, yi and y(xi) are the approximated
and exact solutions, respectively.

Test Problem 1:

y′ = −2π sin(2πx)− 1
10−3

(
y− cos(2πx)

)
, y(0) = 1, 0 ≤ x ≤ 1

Exact solution:
y(x) = cos(2πx)

Source: [36]

Test Problem 2:
y′ = 5e5x (y− x

)2
+ 1, y(0) = −1, 0 ≤ x ≤ 1

Exact solution:
y(x) = x− e−5x

Source: [37]

Test Problem 3:

y′1 = −y′2 − 10−5y1

(
1− y2

1 − y2
2

)
, y1(0) = 1, 0 ≤ x ≤ 3

y′2 = y′1 − 3× 10−5y2

(
1− y2

1 − y2
2

)
, y2(0) = 0

Exact solution:

y1(x) = cos(x)

y2(x) = sin(x)

Source: [36]

Test Problem 4:

y′1 = −21y1 + 19y2 − 20y3, y1(0) = 1, 0 ≤ x ≤ 10

y′2 = 19y1 − 21y2 + 20y3, y2(0) = 0

y′3 = 40y1 − 40y2 − 40y3, y3(0) = −1

Exact solution:

y1(x) = 0.5
[
e−2x + e−40x (cos(40x) + sin(40x)

)]
y2(x) = 0.5

[
e−2x − e−40x (cos(40x) + sin(40x)

)]
y2(x) = 2e−40x

[
−1

2
cos(40x) +

1
2

sin(40x)
]

Source: [8]
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The notations used in Tables 3–6 are described as follows:

H : Step size

MAXE : Maximum error

TIME : Execution time (seconds)

ρ-DIBBDF(ρi) : ρ-Diagonally Implicit Block Backward Differentiation Formula (ρ value)

BBDF : Block Backward Differentiation Formula of order 3 in [20]

DI2BBDF : Diagonally Implicit 2-point BBDF of order 3 in [10]

Table 3. Numerical results for test problem 1.

H Method MAXE TIME

10−2 ρ-DIBBDF(−0.75) 3.61318 × 10−2 7.90031 × 10−6

ρ-DIBBDF(−0.60) 3.83043 × 10−2 8.90948 × 10−6

ρ-DIBBDF(0.50) 1.04695 × 10−1 1.90458 × 10−5

ρ-DIBBDF(0.95) 1.70999 × 10−1 3.15808 × 10−5

BBDF 7.75777 × 108 9.31533 × 10−6

DI2BBDF 3.49466 × 10−1 2.37411 × 10−5

10−4 ρ-DIBBDF(−0.75) 5.14905 × 10−7 1.55234 × 10−5

ρ-DIBBDF(−0.60) 5.25483 × 10−7 2.45657 × 10−5

ρ-DIBBDF(0.50) 6.58550 × 10−7 2.81742 × 10−5

ρ-DIBBDF(0.95) 1.18569 × 10−6 3.92283 × 10−5

BBDF 7.89764 × 10−6 8.58038 × 10−5

DI2BBDF 7.77654 × 10−7 6.88387 × 10−5

10−6 ρ-DIBBDF(−0.75) 6.28992 × 10−11 2.49431 × 10−4

ρ-DIBBDF(−0.60) 6.44415 × 10−11 2.96971 × 10−4

ρ-DIBBDF(0.50) 9.41198 × 10−11 3.05194 × 10−3

ρ-DIBBDF(0.95) 4.17385 × 10−10 3.50504 × 10−3

BBDF 7.89758 × 10−8 4.38280 × 10−3

DI2BBDF 6.86129 × 10−11 3.38284 × 10−3

Table 4. Numerical results for test problem 2.

H Method MAXE TIME

10−2 ρ-DIBBDF(−0.75) 3.02746 × 10−3 6.23108 × 10−6

ρ-DIBBDF(−0.60) 3.08609 × 10−3 9.37159 × 10−6

ρ-DIBBDF(0.50) 3.79190 × 10−3 1.59550 × 10−5

ρ-DIBBDF(0.95) 6.39361 × 10−3 3.01500 × 10−5

BBDF 2.27791 × 10−2 1.89023 × 10−4

DI2BBDF 4.51915 × 10−3 2.88128 × 10−5

10−4 ρ-DIBBDF(−0.75) 3.97922 × 10−7 2.66365 × 10−5

ρ-DIBBDF(−0.60) 4.07670 × 10−7 3.28285 × 10−5

ρ-DIBBDF(0.50) 5.95266 × 10−7 6.75064 × 10−5

ρ-DIBBDF(0.95) 2.63877 × 10−6 7.72533 × 10−5

BBDF 2.49799 × 10−4 4.18826 × 10−4

DI2BBDF 4.33979 × 10−7 1.15268 × 10−4

10−6 ρ-DIBBDF(−0.75) 3.99347 × 10−11 2.33363 × 10−4

ρ-DIBBDF(−0.60) 4.09109 × 10−11 2.52284 × 10−4

ρ-DIBBDF(0.50) 6.00101 × 10−11 1.85521 × 10−3

ρ-DIBBDF(0.95) 2.85265 × 10−10 2.54802 × 10−3

BBDF 2.49998 × 10−6 9.91201 × 10−3

DI2BBDF 4.34093 × 10−11 4.43944 × 10−3
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Table 5. Numerical results for test problem 3.

H Method MAXE TIME

10−2 ρ-DIBBDF(−0.75) 8.78849 × 10−5 1.45541 × 10−5

ρ-DIBBDF(−0.60) 9.04698 × 10−5 1.50898 × 10−5

ρ-DIBBDF(0.50) 1.13442 × 10−4 1.95526 × 10−5

ρ-DIBBDF(0.95) 5.29869 × 10−4 2.24700 × 10−5

BBDF 1.06418 × 10−2 8.95481 × 10−4

DI2BBDF 2.25443 × 10−4 4.13131 × 10−4

10−4 ρ-DIBBDF(−0.75) 1.58367 × 10−8 1.57766 × 10−4

ρ-DIBBDF(−0.60) 1.62268 × 10−8 1.94590 × 10−4

ρ-DIBBDF(0.50) 2.35125 × 10−8 2.17491 × 10−4

ρ-DIBBDF(0.95) 9.59352 × 10−8 3.57073 × 10−4

BBDF 1.11445 × 10−4 4.94205 × 10−3

DI2BBDF 1.73985 × 10−8 3.35674 × 10−3

10−6 ρ-DIBBDF(−0.75) 6.09042 × 10−11 1.53734 × 10−3

ρ-DIBBDF(−0.60) 6.20290 × 10−11 1.80857 × 10−3

ρ-DIBBDF(0.50) 6.62064 × 10−11 3.11916 × 10−3

ρ-DIBBDF(0.95) 4.47822 × 10−10 8.19571 × 10−3

BBDF 1.11489 × 10−6 1.80581 × 10−2

DI2BBDF 6.30545 × 10−11 1.49118 × 10−2

Table 6. Numerical results for test problem 4.

H Method MAXE TIME

10−2 ρ-DIBBDF(−0.75) 1.45990 × 10−1 3.69631 × 10−5

ρ-DIBBDF(−0.60) 1.50371 × 10−1 4.54829 × 10−5

ρ-DIBBDF(0.50) 1.87600 × 10−1 1.29152 × 10−4

ρ-DIBBDF(0.95) 2.43046 × 10−1 2.59329 × 10−4

BBDF 1.14580 × 1025 2.03291 × 10−4

DI2BBDF 6.08664 × 10−1 1.34293 × 10−4

10−4 ρ-DIBBDF(−0.75) 5.11045 × 10−5 1.29651 × 10−4

ρ-DIBBDF(−0.60) 5.23545 × 10−5 1.70325 × 10−4

ρ-DIBBDF(0.50) 7.67139 × 10−5 2.30800 × 10−4

ρ-DIBBDF(0.95) 3.40368 × 10−4 3.10669 × 10−4

BBDF 8.16801 × 10−3 2.37062 × 10−3

DI2BBDF 5.55654 × 10−5 1.06007 × 10−3

10−6 ρ-DIBBDF(−0.75) 5.11183 × 10−9 1.61469 × 10−2

ρ-DIBBDF(−0.60) 5.23685 × 10−9 1.63234 × 10−2

ρ-DIBBDF(0.50) 7.68199 × 10−9 2.65020 × 10−2

ρ-DIBBDF(0.95) 3.65574 × 10−8 3.65687 × 10−2

BBDF 8.22481 × 10−5 6.33621 × 10−1

DI2BBDF 5.55636 × 10−9 5.27749 × 10−1

Tables 3–6 display the numerical results of ρ-DIBBDF, BBDF and DI2BBDF using different step
sizes of 10−2, 10−4 and 10−6. Based on the results, we observe that our method with ρ = −0.75
obtains a smaller MAXE than ρ = −0.60, 0.50, 0.95 for all the test problems. This is due to the stability
properties discussed in Section 3, whereby a good choice of the parameter ρ, we can produce a method
that has better accuracy. For MAXE, we observe that for all the ρ values, the ρ-DIBBDF outperforms the
BBDF method. This is due to the nature of the BBDF method, which has more interpolating points in
the fully implicit form, thus increasing the cumulative errors during the computation process (refer to
[10]). Compared to DI2BBDF, our method obtains comparable accuracy for all the tested problems. For
TIME, our method with ρ = −0.75 manages to solve the test problems in less execution time compared
to BBDF and DI2BBDF.



Symmetry 2019, 11, 1342 15 of 18

To illustrate the performances of the suggested method and other compared methods, graphical
presentations of the numerical results are shown in Figures 4–7. For a particular abscissa, the lowest
value of the coordinate is considered to be more efficient at the abscissa considered. It follows that
the graphs of log10 MAXE against log10 TIME demonstrate the advantage of the ρ-DIBBDF(−0.75)
method over the other ρ, BBDF and DI2BBDF methods in terms of efficiency. Overall, we observe that
the ρ-DIBBDF(−0.75) method performs better than the other ρ, BBDF and DI2BBDF methods.

Figure 4. Efficiency curves for test problem 1.

Figure 5. Efficiency curves for test problem 2.
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Figure 6. Efficiency curves for test problem 3.

Figure 7. Efficiency curves for test problem 4.

6. Conclusions

In this study, we developed the ρ-DIBBDF method with the best choice of the parameter ρ that
holds optimal stability properties. The stability analysis shows that this order 3 method is zero stable,
A(α)-stable and convergent. Based on Section 3, we noted that the stability properties of the methods
compared in Table 2 are related to the MAXE obtained in Section 5. By choosing the best value for
the parameter ρ, we developed a method that possesses a smaller error constant, a reasonably big
α and a larger stability region than the compared methods, thus leading to more accurate results.
The proposed method performed better with higher accuracy and less execution time compared to
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the existing methods, BBDF and DI2BBDF because the DI structure applied to the formula led to an
efficient implementation.

Therefore, we conclude that the ρ-DIBBDF method has significance as an efficient numerical
method for solving stiff first order ODEs.
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