

UNIVERSITI PUTRA MALAYSIA

ECONOMIC VALUATION OF SOIL EROSION AND SEDIMENTATION IN CAMERON HIGHLANDS

CHEW CHANG GUAN

FEP 1999 3

ECONOMIC VALUATION OF SOIL EROSION AND SEDIMENTATION IN CAMERON HIGHLANDS

By

CHEW CHANG GUAN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Economics and Management Universiti Putra Malaysia

April 1999

ACKNOWLEDGEMENTS

I would like to extend my gratitude to my project supervisor, Prof. Madya Dr. Mohd Shahwahid Haji Othman, of the Department of Hospitality and Recreation, Faculty of Economics and Management, Universiti Putra Malaysia (UPM), for his patience, guidance, ideas and comments throughout the preparation and completion of this project paper. Thanks are due also for his research financial support under the IRPA project fund (No. 05-02-04-0008). I would also like to thank him for allowing me to use the project data for my research analysis.

I would like to thank my parents, Mr. Chew Fai Min and Madam Song Phek Eng, for their patience and support to keep me going at times when I felt like giving up. Furthermore, I am very thankful to many people who have helped me in my work especially Y.M. Raja Harris B. Raja Hasbullah, Encik Ahmad Nazri Puteh, Encik Usof Yong, Encik Nazaril and Mr. Chew Wye Kuan from Tenaga Nasional Berhad; Dr. Abdul Rahim Nik, Encik Baharuddin Kasran and Dr. Zulkifli Yusop from FRIM; Dr. Awang Noor from the Faculty of Forestry, UPM; Dr. Eddie Chiew and Prof. Madya Dr. Ahmad Shuib from the Faculty of Economics and Management, UPM and my friends Miss Tee Tuan Poy, Dr. Phang Yuen Fun, Dr. Wong Kiong Kheng and Mr. Mustain Billah.

Finally, a very special appreciation to all the people in Kampung Raja, Cameron Highlands, the staff of the Department of Agriculture both in Kuala Lumpur and Cameron Highlands, and the librarians at UPM for their assistance.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS.	ii
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF PLATES	ix
LIST OF ABBREVIATIONS	х
ABSTRACT	xi
ABSTRAK	xiii

CHAPTER

Ι	INTRODUCTION	1
	Background of the Study	1
	Economic Impacts	3
	Problem Statement	5
	Objectives of the Study	5
	Limitations of the Study	6
		0
П	LITERATURE REVIEW	8
	Introduction	8
	Effects of Soil Erosion	8
	Measurement of Soil Loss	9
	Valuing the Costs of Soil Erosion	11
	Economic Models for On-site Costs of Soil Erosion	11
	Hedonic Pricing	11
	Productivity Approach	12
	Replacement Cost Approach	16
	Net Benefits of Conservation	20
	Economic Models for Off-site Costs of Sedimentation	23
ш	RESEARCH METHODS	26
	Introduction	26
	Modelling Framework : Estimation of Damages from Erosion	
	and Sedimentation	26
	Theory of Market Failure, Joint Production and Off-site Costs	
	of Vegetable Farming	27

Study Site	30
Population.	31
Demography	31
Soil Characteristics	32
Land Uses	32
Socio-economics	32
The Sungai Ikan and Telom Catchments	33
On-site Cost Estimation Methods	37
Determination of the Sediment Eroded with and without	
Farming	37
Empirical Data	38
Calculation for the Economic Valuation of Nutrients Loss	
(N, P, .	40
Production Function Analysis (Yield Loss Due to Lost of	
Nutrients)	44
Off-site Cost Estimation Methods	47
Empirical Study	51
Incremental Social Damage Cost due to Sedimentation	53
Data Collection	56
The Present Value (PV) and Future Value (FV) of the Cost of	
Soil Erosion and Sedimentation	57

IV	RESULTS AND DISCUSSION	58
	On-site Costs of Soil Erosion	58
	I) Losses of Soil Nutrients of Soil Erosion	58
	II) The Economic Value of the Nutrient Loss from Erosion.	63
	Off-site Costs of Sedimentation	67
	Hydroelectric Power Stations	67
	Telom Intake Sedimentation	68
	Telom Intake Improvement Work – The Telom Desander	68
	Desilting of Telom Tunnel	69
	Increased Replacement and Maintenance of Machines	
	or Parts	71
	Extra Working Payment	71
	Dredging Cost	72
	HEP Production Forgone	72
	Differential Cost	73
	Benefits	73
	Valuation of the Total Incremental Cost to TNB	74
	Valuation of	75
	Full Costing of Farming	77

V	CONCLUSION AND POLICY IMPLICATIONS Conclusion of the Study Implications of the Study Recommendations. On-site	79 79 80 81 81
	Off-site	83 85
REFERE	NCES	86
APPEND	IX	
А	Data and Results Analysis for the Average Soil Erosion Loss for 3 Locations Observed in Cameron Highlands	92
В	Profit Maximization of A Farm Producer	93
С	Photographs of the Study Site	95
D	Questionnaire	99
E	Calculation for Sediment Yield in Farmland	103
F	Result From the SPSS Regression Analysis for English Cabbage Production (With Independent Variables : Area, Fertilizer, Chicken Dung and Labour)	104
G	Result From the SPSS Regression Analysis for English Cabbage Production (With Independent Variables : Area, Fertilizer, Chicken Dung, Skilled Labour and Unskilled Labour)	105
Н	Calculation of Tree Stand Value in Sungai Ikan Catchment	106
VITA		107

LIST OF TABLES

TABLE		Page
1	: The General Impacts of Soil Erosion and Sedimentation in Cameron Highlands	7
2	: Quantity of Silt / Sediment Removed from Ringlet, Robinson Falls, Telom Intake (desander) and Sultan Abu Bakar Dam.	36
3	: The Physical Impacts of the Sedimentation from Sungai Ikan Farmlan on TNB, TNBG and Society, Cameron Highlands	nd 48
4	: Cameron Highlands Power Station – Installed Capacity	49
5	: Soil Chemistry of Tanah Rata, Cameron Highlands	59
6	: Quantity of Nutrients Eroded by Soil Erosion – Sungai Ikan Catchment, Cameron Highlands	61
7	: On-Site Costs of Soil Erosion – (in Ringgit Malaysia) Sungai Ikan Catchment, Cameron Highlands, Malaysia (1998)	62
8	: The Estimated Nutrient Loss for Sungai Ikan Catchment from 1981 to 1998	63
9	: Results of the Regression Analysis for English Cabbage Production	64
10	: Average Net Revenue Forgone Replacing of Nutrient Loss by Different Fertlizers	66
11	: Total Net Revenue Forgone in Sungai Ikan Catchment from 1981 to 1998	66
12	: The Percentage of On-site Cost to the Total Vegetable Production Cost and Total Revenue	67
13	: Sediment Load in Telom Intake from 1981 to 1998	68
14	: Incremental Cost for TNB, Cameron Highlands due to Sedimentation from 1981 until 1998. (based on 1981, with 8% discount rate)	74

15	: Incremental Off-site Cost to Society due to Sedimentation From Sungai Ikan and Telom Catchment (based on 1981, with 8%	76
	discount rate)	13
16	: The Incremental Society Cost Per Metric Ton of Sediment	76
17	: Intake Information of Jabatan Bekalan Air, Cameron Highlands	76
18	: Full Costing for Farming in Sungai Ikan Catchment (Based 1981 with 8% Discount Rate)	78
19	: The Total Incremental On-site and Off-site Cost of Soil Erosion and Sedimentation in Sungai Ikan Catchment	80
20	: Data and Results Analysis for the Average Soil Erosion Loss for 3 Locations Observed in Cameron Highlands	92
21	: Calculation of Tree Stand Value in Sungai Ikan Catchment	106

.

LIST OF FIGURES

FIGURE

GUR	E	Page
1	: Change in Productivity Approach to Measuring On-Site Costs of Soil Erosion	14
2	: Replacement Cost Approach to Measuring On-Site Costs of Soil Erosion	18
3	: Net Benefits of Conservation Approach to Measuring On-Site Costs of Soil Erosion	22
4	: The Market Failure Diagram	28
5	: Location of Cameron Highlands	30
6	: Location of Sungai Ikan Catchment, Cameron Highlands	34
7	: Replacement Cost Approach to Measuring On-Site Costs of Soil Erosion	38
8	: Locations of Power Stations, Intakes and Tunnels of TNB	50
9	: The Physical Impacts of Sedimentation in Cameron Highlands	52
10	: Flow Diagram Illustrating the Calculation of the Financial Cost of Replacement	59
11	: Layout of the Telom Desander	70

LIST OF PLATES

PLATE		Page
1	: One of the hill plantation in Sungai Ikan Catchment	33
2	: An English Cabbage farmland beside a hill slope in Sungai Ikan Catchment	95
3	: A hill had been cut for farming in Sungai Ikan Catchment	95
4	: The river water is muddy in the Sungai Ikan Catchment	96
5	: Telom Intake of TNB in Cameron Highlands	96
6	: The water in the Telom Intake is muddy after passing the weir	97
7	: A farmer is packaging his English Cabbage for sell	98

LIST OF ABBREVIATIONS

HEP	: Hydroelectric Power
-----	-----------------------

mt	: Metric Tonne
meq	: Milli equivalent
O.M.	: Organic Matter
Pers. Com.	: Personal Communication
ppm	: Part per million
TNB	: Tenaga Nasional Berhad
TNBG	: Tenaga Nasional Berhad Generation

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in partial fulfilment of the requirements for the degree of Master of Science.

ECONOMIC VALUATION OF SOIL EROSION AND SEDIMENTATION IN CAMERON HIGHLANDS

By

CHEW CHANG GUAN

April 1999

Chairman : Associate Professor Mohd Shahwahid Haji Othman, Ph.D.

Faculty: Economics and Management

This study was conducted primarily to determine and quantify the costs associated with soil erosion (on-site costs) and sedimentation (off-site costs) in Sungai Ikan Catchment, Cameron Highlands. Data used on rate of sediment yield in the area was obtained from a study of Baharuddin et al., 1996. The average sediment yield in the Sungai Ikan Catchment was estimated to be 19.7 mt/ha/year. The on-site cost estimation revealed that a hectare of soil loss in a year is worth RM8178.62, which is the forgone net revenue of the farmer. The on-site cost is about 9.16% of the production cost of vegetable production. The total on-site cost due to erosion in Sungai Ikan Catchment is more than RM18.3 million for 18 years. For calculating the off-site costs, the incremental cost to TNB due to sedimentation is used. It shows that every metric tonne of sediment from Sungai Ikan Catchment incurred RM171.69 extra cost to TNB. The incremental cost due to sedimentation is about 10.09% of the total net revenue to TNB.

sand and the differential cost of electric to TNBG, the total incremental off-site cost to society is RM72.5 million for 18 years. The finding of this study could hopefully serve as a useful guide to the local authority in the preparation of land development and other parties who needed it. Implications of this finding for soil erosion and suggestions are discussed.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk ijazah Master Sains.

PENILAIAN EKONOMI BAGI HAKISAN TANAH DAN ENDAPAN DI CAMERON HIGHLANDS

Oleh

CHEW CHANG GUAN

April 1999

Pengerusi: Profesor Madya Mohd Shahwahid Haji Othman, Ph.D.

Fakulti : Ekonomi dan Pengurusan

Kajian ini adalah bertujuan untuk menentu dan menilai kos-kos yang berkaitan dengan hakisan (kos "on-site") dan endapan (kos "off-site") di Tadahan Sungai Ikan, Cameron Highlands. Data hasil endapan yang digunakan di kawasan ini adalah dapat dari kajian Baharuddin et al., 1996. Purata hasil endapan di Tadahan Sungai Ikan didapati ialah 19.7 mt/ha/tahun. Hasil kajian kos "on-site" ini mendapati hakisan tanah di setiap hektar dalam setiap tahun adalah bernilai RM8178.62, dimana ini adalah hasil Kos "on-site" ini adalah lebih kurang 9.16% dari kos bersih yang dilepaskan. pengeluaran sayur. Jumlah kos "on-site" yang disebabkan oleh hakisan tanah di Tadahan Sungai Ikan adalah lebih daripada RM18.3 juta untuk 18 tahun. Untuk mengira kos "offsite", kos tambahan kepada TNB yang disebabkan oleh endapan digunakan. Kajian ini menunjukkan setiap metrik ton endapan dari Tadahan Sungai Ikan telah mengakibatkan sebanyak RM171.69 kos tambahan kepada TNB. Kos tambahan yang disebabkan oleh endapan ini adalah 10.09% daripada jumlah hasil bersih TNB. Kos tambahan "off-site" kepada masyarakat, dimana mengambil kira keuntungan dari jualan pasir dan juga perbezaan kos electrik kepada TNBG, jumlah tambahan kos "off-site" kepada masyarakat

ialah RM72.5 juta untuk 18 tahun. Hasil kajian ini diharapkan boleh menjadi satu panduan kepada kerajaan tempatan untuk persediaan pembangunan tanah serta pihakpihak lain yang memerlukannya. Implikasi hasil kajian ini tentang hakisan tanah serta cadangan-cadangan juga dibincangkan.

CHAPTER I

INTRODUCTION

Background of the Study

In the past three decades, land degradation caused by erosion was considered of minor importance for many countries, including Asian and European communities. Today, land degradation is a major concern in land use management throughout the world. Recent estimate by Food and Agriculture Organization (FAO) shows that global loss of productive cropland due to soil erosion and degradation is estimated to be nearly seven million hectares annually (FAO, 1991). In relation to this, world organizations such as the World Bank and Economy and Environment Program for South East Asia (EEPSEA) are focusing their research and projects on soil degradation and conservation to master this environmental problem. For instance, on October 28, 1997, the World Bank approved a US\$55 million loan to finance the Land Management III Project in Brazil, which was designed to increase and sustain agricultural production, productivity, and income of thousands of farm families facing serious soil and water degradation problems in the State of São Paulo (World Bank, 1997).

With a growing demand for forested land (for agriculture & housing) and natural resources such as water (for fresh water and hydro-electric power generation), forested

catchment¹ areas are getting scarce. Forest catchment provides different types of goods and services including commodities such as water, food, timber and environmental services such as bio-diversity, carbon storage and flood control. However, these benefits are not known and largely ignored because they are not traded in the market. In fact, most of the fresh water used in Malaysia for household, industry, agriculture uses are drawn from forested catchment. Moreover, hydroelectric power (HEP) generation, which constitutes 10% of the total energy production, requires water flows from catchment areas to run the turbines (Pers. Com. Mohd Ismail, 1998).

A forest catchment area may also be suitable for agricultural and tourism purposes, especially in the highlands. The highland weather is suitable for certain temperate crops, such as cabbage, tomato and flower. With an increasing demand for agricultural land, changes would take place to the ecosystem. For example, by opening the forestland, man exposes the soil surface to erosion from water and wind. The lack of proper care of the forest catchment will result in accelerated soil erosion and sedimentation. This damages the forest cover or vegetation, thus affecting its ability to hold large capacity of water and to regulate the flow of water. In addition to that, soil erosion diminishes crop productivity by removing nutrients, reducing organic matter, and restricting rooting depth as the soil thins (OTA, 1982).

Soil erosion is the process by which soil particles are detached from a place of origin and transported and deposited elsewhere. According to Troeh *et al.*(1980), there

¹ Forested Catchment is defined as naturally occurring units of the landscape, which contains a complex array of inter-linked and inter-dependent resource and activities bonded by topographic features.

are three main types of water erosion classified in terms of nature and extent of soil removel, namely sheet erosion, rill erosion and gully erosion. Sheet erosion pertains to the removal of thin layers of soil by raindrop splash and surface flow acting over the whole soil surface. Rill erosion, on the other hand, refers to the situation where erosions channels are small enough to be removed by normal tillage operation. In gully erosion type, erosion channels are already so large to be erased by ordinary tillage (Francisco, 1986).

Beside soil erosion, the eroded soil deposits on waterways and reservoir. This process is known as sedimentation. The degree of damage is determined, to a great extent, by the nature of the soil and its position in the landscape (Harlin and Berardi, 1987). Example of damages of sedimentation include the reduction of fish catch for downstream users, increase in sediment of dead storage in reservoirs, and water pollution for the usage of downstream users.

Economic Impacts

The impacts of soil erosion and sedimentation have profound economic implications for many countries, including Malaysia. For instance, degradation of land resources threatens prospects for economic growth and human welfare. The erosion and sedimentation impacts that result from human activities on the forest catchment areas can be classified into on-site and off-site impacts.

The on-site impacts of soil degradation measures the decline in quality of the land resource itself, such as degradation of natural soil fertility, loss of organic matter,

market prices of agricultural inputs and outputs, and are therefore easily neglected in public and private decision-making. Thus, to incorporate these degradations in a cost benefit analysis would require measuring these impacts over an appropriate period of time and incorporating the economic costs of these degradations.

Problem Statement

The conversion of forestland to agricultural activities (legally or illegally) attests to the seriousness of soil erosion problems in the Cameron Highlands. The water resources are highly turbid and sediment laden and also exposed to organic and chemical pollution from heavy use of fertilizer (organic and inorganic) and pesticide. The loss in productivity due to erosion has an impact at all levels of society. If this problem is still ignored by society, the economic loss to society will be much higher in the future due to higher abatement cost. Seeing the weight of the on-site and off-site problem, a study on economic valuation of environmental impacts from erosion and sedimentation in Cameron Highlands can perhaps ensure environmentally sound development of the area. The main stakeholders² involved or affected are the farmers, local district council, Tenaga Nasional Berhad (TNB), Forestry Department and general public, where the soil erosion problem will increase their cost of maintenance and management.

Objectives of the Study

The objective of this paper was to quantify the net revenue of farmland when the external cost of erosion and sedimentation are taken into account. In order to do that, on-

² Stakeholders are groups of people, organized or unorganized, who share a common interest or stake in the system (Mohd Shahwahid *et al.*, 1998).

site and off-site costs associated with soil erosion and sedimentation in Cameron Highlands have to be computed. For the on-site cost, this would first require quantifying the physical quantities of topsoil and nutrient loss. Evaluating their value would require estimating the physical inputs (fertilizers) as replacement for the nutrient loss. The effect on production of certain crops owing to the amount of nutrient loss was estimated. For off-site cost of the sediment problem, the main downstream party affected is TNB. The extra production cost and the benefits forgone by TNB are computed. Having quantified the economic cost of the impact of soil erosion from farmland to the economy of Cameron Highlands, recommendation to address the soil erosion problem is given.

Limitations of the Study

This study undoubtedly represents an important step in quantification of soil erosion impact. The analysis, however, is partial in nature and based on a number of assumptions and generalizations which need refinement. The estimated value is a little underestimated. There are many other impacts of soil erosion and sedimentation, which have not been incorporated due to lack of time and budget. These impacts of soil degradation are shown in Table 1.

olding capacity
olding capacity
enth
rognic matter
iganic matter
on
a
rang Asli)
mestic water supply
ee and expenses
destruction
ation park
al
hotels and other
ses
(TNB)
cost
e cost
tion

Table 1 : The General Impacts of Soil Erosion and Sedimentation in Cameron Highlands

CHAPTER II

LITERATURE REVIEW

Introduction

This chapter reviews and discusses different ways which have been used by researchers to study soil erosion. This includes the methods for evaluation of on-site and off-site costs, requirement of data, advantages and disadvantages of the approaches.

Effects of Soil Erosion

Evidence of the exhaustion of arable land under agriculture is found throughout history and in all parts of the world. Several authors (Tolley and Riggs, 1961; Pasig, 1981) have pointed out the need to treat the watershed as a unit in economic analysis and planning. This is due to the fact that the activities being performed in the uplands or forest zones, which generally result in soil erosion, will certainly affect the stability of the lowlands through sedimentation.

Khoshoo and Tejwani (1993), as quoted by Alladeen (1997) suggested that the consequences of erosion are all pervasive and pernicious. Soil erosion adversely affects the functioning of natural ecosystem (ecological impact), the production base (economic impact) and life of the people (social impact). Bishop (1992) for instance, pointed out that the consequences of erosion can be a cost or benefit which is not reflected in the

market prices. Sedimentation of downstream reservoirs, hydroelectric facilities or irrigation channels is a typical negative externality. In comparison, the protection of watersheds provided by tree plantations, orchards and other perennial crops is an example of a positive externality. Such environmental externalities are often difficult to measure.

Measurement of Soil Loss

One of the methods in estimating the soil erosion loss is using the "Universal Soil Loss Equation". The "Universal Soil Loss Equation" (USLE) was developed in the United States through statistical analyses of erosion measurements by using an empirical equation. It was developed based on agricultural plots with certain ranges of variations in soil, climatological and slope conditions. The development of USLE was pioneered by W. H. Wischmeier and D. D. Smith from the US Agriculture (USDA), Agriculture Research Service and Purdue University in the late 1950s (Renard *et al.*, 1991). The amount of soil loss in mt/ha/year (A) was estimated by multiplying the rainfall / runoff (R), the erodibility factor of the soil (K), the length of the slope (L), the steepness of slope factor (S), the cropping and management factor (C) and the supporting conservation practice factor (P). It reflects the influence of all the major factors known to affect rainfall erosion. The equation is given as:

$$A = R^{K*}L^{*}S^{*}C^{*}P$$

where,

- A = Amount of soil loss (mt/ha/year)
- R = Rainfall erosivity factor
- K = Erodibility factor of the soil
- L = Length of slope factor
- S = Steepness of slope factor
- C = Cropping and management factor
- P = Supporting conservation practice factor (terracing, contouring an so forth)

According to Roslan (1996), to estimate the average annual soil loss, numerical values have to be established for all the factors. However, such data are lacking in Malaysia, for instance as in the case of Cameron Highlands. Thus, more research work on this field is needed. The importance of the soil-loss equation is to serve as a guide to the soil conservation programs for assisting in land use planning and management decision. From his study the soil erosion loss at three locations in Cameron Highlands using the USLE are computed as 95.092 mt/ha/3 months for Gunung Brinchang, 46.814 mt/ha/3 months for Sungai Ikan and 2.468 mt/ha/3 months for Tanah Rata area. The values of R, K, L, S, C and P used in the computation are shown in Appendix A.

Arnoldus (1977) warned users of USLE to take precaution in applying the equation to countries outside the United States for which it was originally designed. Modifications have to be made to make the equation applicable to outside environments like the tropical watersheds. For instance, in the modified model, vegetation-management (VM) factor will be replaced soil cover-management factor (C) and the soil conservation practice factor (P) in USLE (Baharuddin *et al.*, 1999). The new model is called modified soil loss equation, (MSLE) (Warrington *et al.*, 1980). The modified equation is given as:

$$A = R K L S V M$$

where,

R = Rainfall erosivity factor

K = Erodibility factor of the soil

- L = Length of slope factor
- S = Steepness of slope factor
- VM = vegetation-management factor

Valuing the Costs of Soil Erosion

A range of analytical techniques is used to evaluate the impacts of soil degradation in terms of economic costs and benefits.

On-site impacts are most frequently studied, generally by an analysis of the effect of soil loss on crop production (Bishop, 1992). Assessments of off-site effects have been hampered by a lack of physical data. Barbier (1995) added that the off-site impacts of land degradation are often much harder to evaluate because the off-site benefits provided by land resources are not traded at all.

Economic Models for On-site Costs of Soil Erosion

Various methods are available to estimate the value of on-site costs for erosion. Each approach has its disadvantages and advantages:

Hedonic Pricing

Hedonic pricing compares the sale or rental price of plots of land which differ only in the extent of physical degradation (Bishop, 1992). This method is applicable only where land markets are well developed, and price data are available. The technique presumes that physical degradation is in fact reflected in land price. However, if property rights are ill defined or when speculation or policy distorts land markets, problems can arise. In view of this, Hedonic pricing may be more applicable in a developed country context in which rural real estate markets are well-established (Norse and Saigal, 1993). This approach may also understate the full cost of soil degradation to society, as it captures

