Packing 1-plane Hamiltonian cycles in complete geometric graphs

Abstract

Counting the number of Hamiltonian cycles that are contained in a geometric graph is \#Pcomplete even if the graph is known to be planar [15]. A relaxation for problems in plane geometric graphs is to allow the geometric graphs to be 1-plane, that is, each of its edges is crossed at most once. We consider the following question: For any set P of n points in the plane, how many 1-plane Hamiltonian cycles can be packed into a complete geometric graph Kn ? We investigate the problem by taking two different situations of P , namely, when P is in convex position, wheel configurations position. For points in general position we prove the lower bound of $\mathrm{k}-1$ where $\mathrm{n}=2 \mathrm{k}+\mathrm{h}$ and $0 \leq \mathrm{h}<2 \mathrm{k}$. In all of the situations, we investigate the constructions of the graphs obtained.

