
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

320

Manuscript received May 5, 2008

Manuscript revised May 20, 2008

Benchmark Framework for a Load Balancing Single System
Image

Bestoun S. Ahmed †, Khairulmizam Samsudin†† and Abdul Rahman Ramli†††

†Department of Computer & Communication Systems Engineering,
University Putra Malaysia, 43400 Serdang, Selangor, MALAYSIA

Summary
Recent developments in the load balancing single system image
(SSI) clusters enabled workstations to provide a cost effective
and high performance environment which has become
increasingly attractive to many users. However, in practice,
clusters of workstation failed to exploit their performance
potential advantages. This paper presents and propose a
framework for benchmarking and performance evaluation of a
load balancing SSI and shows how this framework used as a
methodology for a comprehensive examination of load balancing
SSI clusters performance and behavior.
Key words:
Single System Image, NOWs (Network of Workstations), Load
balancing algorithm, Distributed systems, openMosix, MOSIX.

1. Introduction

Cluster as a popular plate form for executing
computationally intense applications becomes
very important nowadays. The major objective
in the cluster is utilizing a group of processing
nodes so as to complete the assigned job in a
minimum amount of time by working
cooperatively. The main and important strategy
to achieve such objective is by transferring the
extra loads from busy nodes to idle nodes.
In another hand, single system image (SSI) as an
important part of clusters, provides the delusion
of a single powerful and high available computer
to user and programmers of a cluster. The most
important paradigm of SSI over other types of
clusters are the needless of paralyze code,
automatic process migration, i.e. load balancing
(LB) [1]. That is means simply it frees the end
user to know where the application will run and
where resources is located for such application.
Kai Hwang and Hai Jin [2] identifies the useful
and available services of SSI including single
entry point, single control point, single job

management single file hierarchy and other
services of SSI. Rajkumer [3] introduces several
level of single system image including hardware
level, software level, application level, middle
ware level and operating system level. He and
then Christine Morin in here research [1]; they
mention that Sprite, QNX, Genesis and
UnixWare are examples of systems providing
operating system kernel level SSI in additions to
MOSIX. Each of them is designed for a single or
more than purpose. The performance of these
systems differs from each other in a different
manner depending on the design of these
systems. The operating system layer has been an
important layer because of its ease of use. In
such layer, most of the mechanisms that must be
used in the clustering hide by means user do not
interact with the system and the complexity of its
implementation [3].
Load balancing mechanism in this type of
clusters plays the major part of performance. The
main part of this feature is the algorithm that
responsible for load balancing between nodes
operating systems. Although there are many
implementations of SSI as mentioned, including
OpenSSI [4] and Kerrighed [5], MOSIX [5] and
openMosix [6] are promising for providing load-
balancing operating system for high performance
SSI. Due to opensource availability of
openMosix, it makes an attractive choice for
load balancing SSI research.
Our earlier work [7] on load balancing single
system image focuses on describing a
performance model of such system. The results
lead us to investigate a dramatic analyze of an
existing opensource solution. Based on those
results, this paper presents benchmark

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

321

framework for load balancing SSI clusters. This
practical benchmark framework helps us to
understand the performance of load balancing
SSI. The goal is to develop strategies for
understanding the performance of load balancing
SSI that could provide crucial information to SSI
designs for improving the performance of the
system. This framework is shown to be effective
and practical for solving a specific load
balancing design issues. It is also demonstrating
improved performance by enhancing the load
vector management of openMosix as compared
with original algorithm.
The need to make a performance evaluation,
benchmarking and knowing the behaviour of this
kind of cluster is far more than curiosity about
how fast the system runs. Due to the complexity
of implementing a load balancing SSI, much of
the work took the form of simulations. The
limitations of simulation research in this area
demonstrate the need for empirical study of
implemented systems. Existing researches on the
performance evaluation and benchmarking focus
on the Beowulf cluster that has a different
approach due to its dependencies on MPI [8],
PVM [9] or any other middleware libraries [11].
In another hand, most (if not all) of the standard
benchmarks also depend on MPI or PVM or any
other libraries that have different approach since
they use a simple static job assignment algorithm
that completely ignores the current state of
dynamic load-balancing algorithm in SSI based
system [10]. Thus with simple time measurement
and with the current benchmark, the
performance cannot be summarized and be
known in Load balancing single system image.
The reminder of this paper is organized as
follows: After reviewing on a brief background
of related topics of this work in section 2,
section 3 is dedicated for the explanation of
openMosix architecture and describes
openMosix load balancing mechanism in detail.
Section 4 gives an introduction for the
benchmarking and a brief description of the
existing metrics for the performance and their

use in our research. Section 5 will give a good
description about the research method by
describing the testbed of the research and the
experimental procedure. Finally, the results of
the framework and the modification of the
system followed by the discussion.

2. Background

The main goals of SSI clusters are complete
transparency of the resources management,
scalable performance and system availability
[12]. Furthermore, it provides a dilution of a
single powerful computer to users or
programmers. From the performance point of
view in SSI, the main feature is the strategy it
takes to balance the load around the nodes.
The implemented and simulated strategies of
load balancing fall mostly in to either one of two
classes static or dynamic. With static load
balancing a single system image like any multi
computer system, distributes tasks across nodes
by using priory known information of the tasks
and the load distribution remains unchanged
during running time. In contrast with this, by
dynamic load balancing there is no priory
information about the tasks, as a result the task
distribution decision held during running time.
In turn, dynamic load balancing can be either
centralized or decentralized. In the centralized
load-balancing scheme, there is a single node
responsible for all the decisions in the whole
system. While in decentralized load balancing,
the central node can be removed in a way that
each node communicates to each other and can
decide directly [11]. Dynamic load balancing
becomes an attractive technology now days
because of its use in SSI operating systems
widely [1].
In the cluster of workstation, the load balancing
becomes effective when there is accurate
knowledge of the state of individual node around
the cluster. This is used for accurate assignment
of the task to the appropriate nodes. The
Information collection and dissemination

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

322

algorithm manages how this load information
communicates to global task schedule. For such
purpose, either broadcast or multi cast or
probabilistic mechanism holds information
exchange within decentralized systems. In
broadcast mechanism, each node periodically
broadcast its load information to each node in
the cluster. By this way, each node receives and
processes a number of messages that equal to the
number of nodes in the cluster [12]. While in
multicast mechanism, load information messages
are sent to members of certain multicast group to
limit the drawback of the traffic in the formal
one. The probabilistic mechanism method tries
to minimize the information messages between
nodes in the decentralized algorithm by making
the algorithm to send messages to a specific
number of nodes randomly in the cluster instead
of sending messages to all.
The studies in this area are distributed generally
in two directions: simulation studies and
experimental studies. The simulation studies are
done to simulate and study each component
alone and then they implemented in the real
work. It is important to mention that most of the
studies on load balancing in distributed systems
took place during 80’s to late 90’s. It is clear
also that due to the complexity of
implementation, most of these work done by
simulation. Most of these simulation studies
deals with the algorithms that balance the loads
around a cluster of nodes and the comparison
between them [13, 14, 15].
By the developments of a lot of simulation
studies and load balancing strategies, different
research groups take advantages of these studies
to implement their load balancing SSI operating
systems like Sprite, QNX, Genesis UnixWare,
OpenSSI, Kerrighed and MOSIX as mentioned
before. For this reason, different studies are
carried out to show the behaviour and difference
between these systems in specific properties.
Earlier, OpenSSI, Kerrighed and MOSIX
systems took the major part of the research
between these systems due to their attractive

features and due to their availability in
opensource.
In this area of research, an important study can
be found in [16]. In that research, a comparative
study of these three modern SSI operating
system for clusters was presented. The research
examines and evaluates some specific features in
these three systems. Although it was an
experimental study, but the research examine
each system according to some specific features
and state more on file system and kernel design
and communication. Most of the OpenSSI
feature take advantage from MOSIX, especially
the process migration and load balancing
mechanism while MOSIX group recently
changes the licence from opensource and as a
result openMosix derived from MOSIX to be a
real alternate opensource of MOSIX. Although
the development of openMosix for 2.6 kernel
was stopped but it is still the only opensource
version for researcher and the load balancing
algorithm is still in use. In another hand
Kerrighed is still a research prototype and less
robust than the two other system [16].

3. OpenMosix Architecture

OpenMosix is an open source project forked
from MOSIX. Most of its design is similar to
that of MOSIX. OpenMosix balance the load on
the CPU by means of using classical load
balancing. OpenMosix implemented on a Linux
standard kernel by extending it. The main feature
is its load balancing mechanism. This load
balancing mechanism tends to balance the
processes on processors around the nodes by
migrating extra processes. For such case, a
deputation introduced inside the kernel as a
similar case with kernel thread. This deputation
keeps a record of migrated processes. As a
result, when a process running it appears to run
on the node on which it was spawned that is
known as Unique Home Node (UHN) even it
migrated elsewhere by keeping a representative
named deputy [17]. Whenever possible a process

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

323

uses local resources, but often has to make
system calls on its UHN. The migrated user
context that is called the remote contains all data
about the processes such as code, stack, data,
memory maps and even registers. As long as the
remote needs system call, openMosix intercept
all site dependent system call and forward them
to its deputy from remote node to UHN.
The main tool for the resource management
algorithm is the pre-emptive process migration
(PPM). As long as the requirements for
resources, such as CPU are below certain
threshold point, all users processes are restricted
to their home node. When these requirements
exceed the CPU threshold levels, some processes
will be migrated transparently to other nodes
[17].Memory management is provided in
OpenMosix through a memory ushering. This
algorithm will be active when a free memory of
a node falls below a threshold value and
OpenMosix attempts to transfer process to other
nodes, which have sufficient free memory. A
better understanding of this architecture and
mechanism can be introduced as in the figure 1.

Fig.1 OpenMosix architecture and work mechanism

3.1. Load Balancing in OpenMosix

The main load-balancing component of
OpenMosix is the information dissemination,
process migration and memory migration.
The information dissemination daemon as noted
in fig.2, disseminate load balancing information
to other nodes in the cluster. The daemon runs
on each node and is responsible for sending and
receiving load information to and from other
nodes. The sending part of this daemon will
periodically send load information each second
to two randomly selected nodes. The first node is
selected from all nodes that have contacted the
node "recently" with their load information. The
second node is chosen from any nodes in the
cluster [19]. The receiving portion of the
information dissemination daemon receives the
load information and attempt to replace
information in the local load vector. The
standard implementation simply utilizes a first-
in-first-out (FIFO) queue of eight entries. Thus,
the oldest information is overwritten by newly
received information [20].

Fig.2 Load information Dissemination and Collection Management

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

324

4. Benchmark strategy

Benchmarking simply means measuring the
speed of a given task on a given system to
discover the performance and behaviour of a
system. Performance evaluation by
benchmarking is the primary method for
measuring the performance of any system. In
addition to that, it can be done in a way to allow
a comparison between different
hardware/software combinations [21]. In this
way, it deals with facts and figures not opinion
or approximation. Benchmarking carries out to
conduct two main points: first is providing a
means of system comparison and the second is
allowing system performance and behaviour
estimation [25].
Before starting any benchmarking process,
decision must be made to use either synthetic
benchmark or application benchmark. Synthetic
benchmarks are designed specifically to know
and measure the performance of individual
component of a computer system by examining
the component to its maximum capacity.
Whetstone suite is a well-known example of this
kind of benchmarks that was originally
programmed in 1972 [22].
In another hand, the recent benchmarking
techniques are going to the direction of choosing
a common application and use it to test the
performance of complete system. This direction
comes to face by the starting and developing in
the network technologies and distributed system.
The benchmark frame works vary from single
computer to a cluster of computers. It is also
varied by the variation of the system. Most of the
benchmarks take the execution as a main
parameter to benchmark. As a result, the
benchmarks results are useful for measuring the
performance of the system as seen by the user,
but provide little information to a system
designer and to the researcher [23]. As a result,
the needs of benchmark framework coming to
face for the designer to give a methodology for
those designers who want to know their
information more than execution time. For such

framework different metrics must be chosen and
different factors must be selected to know the
behaviour. The following sections give brief
information about existing performance metrics
that is used in this research to help us to form the
benchmark framework later.

4.1. Existing performance metrics

Different performance metric has been declared
to know the performance of a specific system in
a specific case. Existing performance metrics are
derived either from a common benchmark
program or individually depending on the kind
of the system itself and their meaningfulness;
also it depends on ease of measurement. These
existing performance metrics vary from metrics
defined for a single computer to the metrics
defined for the Beowulf systems. In addition,
there are common metrics between the two
types. In the following section we will explain in
detail some performance metrics and its use or
useless in our research.

4.2. Run Time

Run time performance metric simply means the
total time for completing a given job without
considering the number of operations performed.
It is the standard performance measurement for
systems running the same application. This
metrics used commonly in the first time when
predicting the performance of any system.
Since the essential aim of load balancing
algorithm is the improvement of mean response
time of the running program, therefore, the main
observation and focusing point is on the Mean
Response Time (MRT).

4.3. Speedup

Speedup measure is the ratio between the time
required to solve problem on a single processor
node to the time taken to solve the same problem
using more than one node. This performance

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

325

metrics is suitable to measure the scalability of
the OpenMosix cluster, as the scalability is a
feature of performance [24]. Speed-up is given
by:

Speed-up=T (1)/T (N) (1)

Where T (1) is the run time for a particular
program on a single node and T (N) is the run
time on N nodes.
It is important to mention that speedup of a
specific benchmark on a specific hardware
system cannot be compared with the speedup of
such benchmark on a different hardware system
due to the difference of a hardware specification
[24].
Therefore, we measure the speedup of the
benchmark on same system for different
configurations as a second step of the benchmark
framework concurrently with the efficiency
performance metric.

4.4. Efficiency

Efficiency is defined as the percentage of speed
up divided by the number of nodes. Efficiency is
given by:

Efficiency =speed-up * 100 / number of nodes (2)

It is very useful to measure the percentage of a
node time spent in useful problem solving. A
rigorous analysis of the efficiency metric can be
used to identify dominant overhead factors and
measure it in practice. In another words, cluster
efficiency also demonstrate the overhead of the
system as well [24].

5. The Research Method

In this section, we describe the empirical
methodology that used to achieve the aim of this
research. This has been done by describing the
cluster that built for the purpose of this research
then going through the experimental procedure.

5.1. Hardware/Software Testbed

As shown in fig.3, we used openMosix to
implement a load balancing single system image
that described in Section 3 for our experiments.

Fig.3 Load Balancing Experiment Testbed

As mentioned, the reason behind using
openMosix is that it is the opensource version of
MOSIX that is the recommended solution
nowadays for load balancing SSI. In addition, its
load-balancing algorithm is clear and said to be
efficient nowadays.
In our experiments we use eight commodity off
the shelf (COTS) single CPU nodes based on
Intel Pentium 4, 1.6 GHz processor with 256 MB
of main memory, all running the Fedora Core 1
GNU/Linux distribution with 2.4.26 kernel,
which supports the requirements of installation
and compilation of kernel with gcc 3.3.2 that is
patched with openMosix 2.4.26 patch. All nodes
were interconnected with star topology using an
Ethernet 10/100 Mbit/s switch. There is no
graphic card on the nodes except for the main
node to reach the low cost requirements.
All nodes in the system are homogeneous. This
will help us to neglect the mismatch of
processing speeds that may cause additional
process coordination complexity and therefore
affect the execution performance of the
programs.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

326

Each performance metrics considered has been
measured by using a Distributed Key Generator
(DKG) [25]. The program generates 4000 RSA
public and private key pairs with 1024 bits. To
ensure that the load exceed the CPU threshold of
our cluster we modify the program so that the
parent distribute computation to a specific
number of child processes using fork () from the
default value of four as will be shown in the
results section. It is important to mention here
that although in the systems that depends on
libraries like MPI or PVM, the algorithm of the
program that written plays the major part of the
performance since the performance will varied
from algorithm to others. However, in dynamic
load balancing SSI, since the scheduling and
distribution of the job is dynamic, the scheduler
can manage processes in the cluster in order to
efficiently use available resources in the
transparent way from the user [26], and as a
result, the performance depends on the system
not on the program itself. Only the important
point is that program must be migratable as
stated before.

5.2. Experimental Set-up

As in any measurement experiment, the
consideration of experiment environment and
platform variability must be taken into account.
In our test bed, as described before, the nodes in
the system are homogenous by means all nodes
have same hardware specification and same
performance individually. This because of the
availability of the hardware and it helps us to
neglect the factor of the mismatching of
processing speeds in different computers that
may cause process coordination problems and
therefore affect the execution performance of the
programs as mentioned before. Therefore, this
will reduce the influence of heterogeneous factor
of the system. However, as our focus of the
research on the dynamic load balancing, the run
time may vary from one run to another through
the experiment due to the job placement

variation. This factor is minimized by running
each experiment several times and taking the
mean value of each measurement. From the
literature, the maximum repetition of the
experiment that we note was five times.
Therefore, we decide to repeat each experiment
six times and take the mean of the observed
result to ensure the level of confidence.
The investigation of the framework depends on
the aim of the work itself. As we declared in the
first and second chapter, our aim of the study is
load-balancing algorithm, it is important to
distinguish between load balancing algorithm
and memory ushering algorithm. Most of the SSI
systems depend on the CPU load for balancing,
but some SSI systems add the memory load
feature for balancing in a separate algorithm as
in [18] [27].
In most of the research in this area, they used
matrix multiplication to evaluate the
performance of the cluster at all but although the
matrix multiplication makes a big load on the
processer due to its heavy calculation
requirements, but it affects the memory ushering
algorithm also by means of loading the elements
of the matrix to the memory.
In another hand, the behaviour of the system
from the performance point of view may vary
depending on the workload [26]. As a result,
choosing the workload depends on many factors,
for example, is the workload affect the memory.
Alternatively, is the load using memory ushering
algorithm?
As a result, we use DKG as a benchmark for
performance evaluation that uses processes to
make load on the processor only with a little
load on the memory. In this way, we can prove
the memory ushering algorithm is inactive due to
the little load on the memory.

6. Benchmark framework

As we stressed before, the first step is choosing a
suitable load for performance evaluation and
benchmark. Then we can investigate the

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

327

components of the framework that can be used in
the experiments.
In [28], a simulation framework of a load
balancing algorithms proposed. Furthermore, the
authors stated that any load balancing algorithm
depends on some important factors including
communication delay, topology, workload and
negotiation protocol. In another hand the
research concluded that for any simulation study
framework of a load balancing algorithm, there
are some factors that must take in to account. In
real state two factors of those factors must take
into account that are the performance evaluation
and the cost evaluation.
Depending on the above conclusion, the
framework isolates the performance factors of
the system in to three main components. As
depict in fig.4 clearly.

Fig.4 The Components of the Framework

The first component is the overall performance
itself; the second is the communication
mechanism and finally the load balancing
mechanism. As a result, the first component is
said to be an overall performance evaluation
while the other components is said to be the cost
evaluation that evaluate the costs caused by an
extra components.
The first components done by three performance
metrics, run time, speedup and efficiency. The
second component is analysed by traffic
measurement of the node and its behaviour then

the overhead measurement. The last component
is the load balancing mechanism and its time
inquired to balance the load around the nodes.

7. Benchmarking Experiments and Results

As we mentioned before, we demonstrate the
importance of having enough child process
spawned from the parent. The average CPU
utilization during the running time in a cluster
have been measured for each node without
considering time by monitoring all nodes
processors since the utilization is the percentage
of the time that the CPU is busy. The following
figures illustrate the CPU utilization for DKG
running with 4-child and 8-child.

Fig.5 CPU Utilization in Each Node with 4 and 8 child DKG

Fig.5 illustrates CPU utilization for each node in
the cluster by executing DKG with four and
eight child. We can note that the load generated
from 4-child DKG does not exceed CPU
threshold of every participate cluster nodes,
therefore the processes are not migrated to other
nodes. The fifth node was shown to be idle
during running time compared with the other
utilized nodes at approximately 99%. Therefore,
we increase the number of child processes to
obtain enough load to conduct the benchmarking
process. By executing DKG with 8-child, It is
clear from fig.5 also that the load surpass the
CPUs threshold as all the nodes in the cluster
utilize all of their CPU resources. The
importance of this step is to ensure that all nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

328

in the cluster will be participating in the process
of load sharing and load balancing.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Number of Nodes

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

Fig.6 Run Time of DKG on the cluster

As a suitable load for the benchmark has been
found, a run time benchmark is conducted to
investigate the behaviour of the system under
load with varying number of nodes, as shown in
Fig. 6.
We note that there is a significant performance
improvement between one node and two nodes
(nearly 50%); however, there is no significant
improvement after having five nodes. We predict
that there would be no significant performance
gain after eight nodes.
To investigate the performance point of drop and
the scalability of the system, the speedup and
efficiency metrics will be very important. Fig.7
and Fig.8 illustrate the speed-up and efficiency
measurement of DKG on the cluster
respectively. It is clear that the speed-up
improvement is not linear with the number of
nodes, while efficiency of DKG on the cluster
starts to degrade after having more than four
nodes (nearly 4.37 speedup and 87.58% at five
node).

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Number of Nodes

Sp
ee

du
p

Speedup
Ideal Speedup

Fig. 7 Speed-up of DKG on OpenMosix cluster

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

Number of Nodes

Ef
fic

ie
nc

y
%

Fig. 8 Efficiency of DKG on OpenMosix Cluster

The result from fig.7 is in line with what was
discovered in [16] regardless of the nodes
specification and the value of speedup, with the
difference of number of nodes and the
benchmark program.
To identify the cause of speed-up and efficiency
degradation, that is lead us to expect extra
overhead , we investigate the effect of network
traffic and the process migration overhead and
extra overhead on the performance of
OpenMosix. The traffic measurements are held
by measuring the traffic on the home node while
executing 8-child DKG in a controlled network
environment. IPtraf [29] was used to perform the
measurement of network traffic as it is
recommended and used by [30].

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

329

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8

Number of Nodes

Tr
af

fic
 (k

bi
ts

/s
)

Average rates Total
Average rates Incoming
Average rates outgoing

Fig. 9 Nodes Relation with Traffic

Fig.9 shows the network traffic generated on the
home node and the actual inbound and outbound
traffic of the network interface. Obviously,
network traffic increases with each additional
node (by approximately 50% with each node
addition) and as a result contributes to the
degradation of efficiency on performing
calculation.
The increases of the traffic influence the home
node in such a way that the performance of the
cluster itself will noticeably drop. Furthermore,
the deputation mechanism will be the main
responsible for this increasing in traffic.
Communication among nodes in the OpenMosix
cluster relies on both TCP and UDP protocol.
TCP is used to migrate the processes while UDP
datagrams are used solely to send load messages
[19]. However, from the measurement, the
amount of UDP traffic is insignificant compared
to TCP. As a result, we can say that the traffic is
increased by adding more nodes since the
deputation mechanism decrease.
The results are completed by an experiment of
the process migration overhead. We use the
method that was used in [31]. The overhead is
measured by starting the application on the home
node and migrate it to a remote node to know the
migration overhead time caused by the process
during the running time. The measurement has
been done in two cases, first with idle nodes then
with loaded nodes by four processes DKG. We

run a dummy cycle with a large number of loops
for this test as used in [32]. These cycles have a
processing cost with a good time to know the
overhead costs. The program runs in the home
node and then runs the same process in the
remote node from the home node the difference
of the time will be the overhead.

0

5

10

15

20

25

30

35

40

2 4 6 8

Number of Nodes

 O
ve

rh
ea

d
Ti

m
e

(s
ec

.)

Idle Nodes
Loaded Nodes

Fig. 10 Process Migration Overhead Time

As we noted from fig .10, the process migration
overhead measured by adding two nodes at a
time for better recognition of overhead since this
time cannot recognized clearly by adding single
node at a time. The overhead is said to be
constant value of time and the changes by adding
more nodes will be very small and cannot be
recognized in real time systems under no load
condition. In the next matter, when the cluster
loaded by running four processes DKG, the
traffic will increase by increasing the number of
nodes as shown in fig .10. The increasing is
going to be constant at 5 nodes and above since
the load cannot exceed 4 nodes as shown in
fig.5, in such case the system calls made
between 4 nodes only and the other nodes will
be idle. In the beginning at two nodes, the
overhead is said to be large. This overhead is
because of the processing time the CPU takes for
DKG, so the processor took more than the exact
time to process dummy cycle and DKG
concurrently and this is called CPU overhead.
The important case that we want to stress on is
the case of after four nodes when there are
enough nodes for processing DKG. We can note
from fig.10 that the overhead going to be

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

330

constant but with a slight different with the case
of no load. This caused by the transferring of
memory pages and data stacks through the
network to the destination node that will make
extra overhead. This traffic will eliminate the
data gathering from the network. Such
elimination leads the processes that are running
on a processor to go to ready queue since the
system calls need the home node. This will be
accepted with what H. Justin and F. Wu-chun
said in their research [33]. This caused by an
interrupt that make the CPU to handle extra job
before continuing its original load. In another
hands, when the process needs to access data on
the home node, it must wait for the request of
data.
In addition, the time that the system takes to
balance the load on all the participating node
around the cluster will be very important as well
as the factors that affect this time. This time is
the time when equal number of processes started
in the home node and migrates freely to other
nodes till the load on these nodes become equal.
This load balancing time was measured by using
a special method benefits from [34]. As we note
from fig.11, the load balancing time increase by
adding more nodes.

0

2

4

6

8

10

12

2 4 6 8

Number of Nodes

Lo
ad

 B
al

an
ci

ng
 T

im
e

(s
ec

.)

Fig.11 Load balancing Time

This increasing of time caused by the time the
nodes take to exchange information about their
state and the time of decision and choosing
suitable nodes as shown in the flow chart in
fig.2.

From the above result, we can note several
important factors that could improve the
performance of the cluster one of these factors is
the time that the cluster takes to balance the load
between all nodes. As stated in section three, due
to the probabilistic and decentralized nature of
load message dissemination, OpenMosix would
always update the local load vector information
(LVM) without considering the advantages to
the current node. This leads us to modify the
existing load vector information management in
the kernel. Our approach is to update the load
vector only when the load information from the
remote node is beneficial (Lremote < Llocal) to
the existing node. This load vector management
modification shown in the following simplified
flow chart. This modification will allow the
information about the nodes load to be
disseminating around the cluster more efficiently
as compared with the original one.

Fig.12 Modified Load information Dissemination and Collection

Management

This modification derives us to repeat all the
experiments of our framework to know the exact
modification and its effect on the various costs.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

331

Fig.13 Comparison of run time for standard and improved LVM

Fig.13. shows the run time comparison between
the standard OpenMosix LVM policy and the
improved LVM. There is visible additional
performance gain after five nodes. With eight
nodes, a gain of 50 second of run-time
performance is achieved. However, we cannot
expect more improvement in performance
because of our small-scale cluster.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Number of Nodes

Sp
ee

du
p

Speedup Before Modification
Ideal Speedup
Speedup After Modification

Fig.14 Comparison of speedup for standard and improved LVM

Fig.14 shows the speed up of running DKG
using standard OpenMosix LVM compared to
the improved LVM policy. The modified LVM
has a significant performance gain over the
standard LVM. This is due to the efficient

information dissemination around the cluster that
leads to better load balancing strategy.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

Number of Nodes

Ef
fic

ie
nc

y
%

Efficiency After Modification

Efficiency Before Modification

Fig.15 Comparison of Efficiency for standard and improved LVM

In the same way, the efficiency, as in fig 15,
show us a noticeable better change. These
changes lead us to expect a decreasing in some
factor. This expectation leads us also to repeat
the cost level of the framework. When we
measure the traffic and overheads, we could not
recognize noticeable changes in these factors.
Except a very small decreasing in traffic as
compared with the original one that is caused by
the difference in the execution time. The only
changes can be noted in the load balancing time,
which is said to be an extra cost.

0

2

4

6

8

10

12

2 4 6 8

Number of Nodes

Lo
ad

 B
al

an
ci

ng
 T

im
e

(s
ec

.)

Fig.16 Comparison of load balancing time for standard and improved

LVM

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

332

Fig.16 illustrates a comparison of load balancing
time for standard and improved LVM. As
mentioned before, the load balancing efficiency
depends on the information dissemination and
decision to migrate the processes that is depends
on the load vector management. This modified
load vector management leads the load exchange
more efficiently and leads the load to balance
around the cluster quickly.

8. Summary and Conclusions

In the current work, a flexible benchmark
framework for examination and experiments of
certain type of load balancing single system
image is implemented as a methodology of
performance evaluation and benchmark.
Performance metrics and costs for performance
degrade are formulated. Furthermore, the
information dissemination algorithm has been
modified. Due to this framework, we make an
analyzing and empirical study of an existing and
successful opensource load balancing SSI. We
validate the data of the improved algorithm by
comparing with the original system. Finally, we
combine results from the tests into single figure
of performance behaviour.
The interpretation of the experiments results and
the framework reveals to the following points.
The number of nodes affect the performance of
SSI cluster and can regarded as an important
factor of performance decaying. This number of
nodes can affect the performance by adding
extra costs in a way for decreasing that
performance. Each cost is related to each other
in a way that cannot separate them. The main
costs that affect the performance are traffic, load
balancing time and overhead. The performance
of SSI can be enhanced and improved by
enhancing any of the above factors or all
together.

References

[1] Morin, Christine, et al., "Towards an efficient single system
image cluster operating system." Amsterdam, The

Netherlands, The Netherlands : Future Gener. Comput.
Syst.,Elsevier Science Publishers B. V., 2004, Issue 4, Vol.
20. 0167-739X.

[2] Hwang, Kai, et al., "Designing SSI Clusters with
Hierarchical Checkpointing and Single I/O Space." Los
Alamitos, CA, USA : IEEE Journal of Concurrency, 1999,
Issue 1, Vol. 7. 1092-3063.

[3] Buyya, Rajkumar, Cortes, Toni and Jin, Hai., "SINGLE
SYSTEM IMAGE (SSI)." s.l. : The International Journal of
High Performance Computing Applications, 2001, Issue 2,
Vol. 15.

[4] OpenSSI home page . [Online] http://openssi.eu/.
[5] Barak, Amnon and La'adan, Oren., "The MOSIX

multicomputer operating system for high performance
cluster computing." Amsterdam, The Netherlands, The
Netherlands : Future Gener. Comput. Syst.,Elsevier Science
Publishers B. V., 1998, Issue 4-5, Vol. 13. 0167-739X.

[6] B., Moshe, K., Maya and B., Krushna., "openMosix, a
Linux Kernel Extension for Single System Image
Clustering." s.l. : Proceedings ofthe 10th International Linux
SystemTechnology Conference, 2003.

[7] Ahmed, Bestoun S., et al., "A Descriptive Performance
Model of a Load Balancing Single System Image." Los
Alamitos, CA, USA : Proceeding of Second Asia
International Conference on Simulation and
Modelling,IEEE Computer Society, 2008. 978-0-7695-
3136-6.

[8] Pacheco, Peter., Parallel Programming With MPI. s.l. :
Morgan Kaufmann; 1st edition , 1996. 1558603395.

[9] Geist, Al, et al., PVM: Parallel Virtual Machine: A Users'
Guide and Tutorial for Network Parallel Computing. s.l. :
The MIT Press, 1994. 0262571080.

[10] Keren, Arie and Barak, Amnon., "Opportunity Cost
Algorithms for Reduction of I/O and Interprocess
Communication Overhead in a Computing Cluster."
Piscataway, NJ, USA : IEEE Trans. Parallel Distrib. Syst.,
2003, Issue 1, Vol. 14. 1045-9219.

[11] Shivaratri, Niranjan G., Krueger, Phillip and Singhal,
Mukesh., "Load Distributing for Locally Distributed
Systems." s.l. : Journal of Computer ,IEEE Computer
Society, 1992, Issue 12, Vol. 25. 0018-9162.

[12] Wills, Craig E. and Finkel, David., "Scalable approaches to
load sharing in the presence of multicasting." s.l. : Journal
of Computer Communication, 1995, Issue 9, Vol. 18.

[13] Zhou, S., "A Trace-Driven Simulation Study of Dynamic
Load Balancing." s.l. : IEEE Transactions on Software
Engineering, 1988, Issue 9, Vol. 14. 0098-5589.

[14] Eager, D. L., Lazowska, E. D. and Zahorjan, J., "The
limited performance benefits of migrating active processes
for load sharing." s.l. : SIGMETRICS Perform. Eval. Rev.,
1988, Issue 1, Vol. 16. 0163-5999.

[15] Harchol-Balter, Mor and Downey, Allen B., "Exploiting
process lifetime distributions for dynamic load balancing."
s.l. : ACM Trans. Comput. Syst., 1997, Issue 3, Vol. 15.
0734-2071.

[16] Lottiaux, Renaud, et al., "OpenMosix, OpenSSI and
Kerrighed: a comparative study." s.l. : IEEE International
Symposium on Cluster Computing and the Grid, 2005. 0-
7803-9074-1.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008

333

[17] Malik, Kamran, et al., "Migratable sockets in cluster
computing." New York, NY, USA : Elsevier Science Inc.,
2005, Issue 1-2, Vol. 75. 0164-1212.

[18] Barak, Amnon and Braverman, Avner., "Memory ushering
in a scalable computing cluster." Melbourne, Vic.,
Australia : 3rd International Conference on Algorithms and
Architectures for Parallel ProcessingICAPP 97, Dec 1997.
0-7803-4229-1.

[19] Barak, Amnon, Guday, Shai and Wheeler, Richard G., The
MOSIX Distributed Operating System: Load Balancing for
UNIX. Secaucus, NJ, USA : Springer-Verlag New York,
Inc., 1993. 0387566635.

[20] Collier, Nigel., Evaluation of Enigma: an OpenMOSIX
Cluster for Text Mining. Tokyo,Japan : NII, 2003. 1346-
5597.

[21] Damelio, Robert., The Basics of Benchmarking . USA :
Productivity Press, 1995. 0527763012.

[22] Harbaugh, Sam and Forakis, John A., "Timing studies using
a synthetic Whetstone benchmark." New York, NY, USA :
ACM,Ada Lett, 1984, Issue 2, Vol. IV. 1094-3641.

[23] Krishnaswamy, Umesh and Scherson, Isaac D., "A
Framework for Computer Performance Evaluation Using
Benchmark Sets." Washington, DC, USA : IEEE
Transactions on Computers,, 2000, Issue 12, Vol. 49. 0018-
9340.

[24] Hwang, Kai, et al., "Designing SSI Clusters with
Hierarchical Checkpointing and Single I/O Space." Los
Alamitos, CA, USA : IEEE Concurrency, 1999, Issue 1, Vol.
7. 1092-3063.

[25] H., Ying., [Online] http://ying.yingternet.com/mosix.
[26] Vall´ee, Geoffroy, et al., "A New Approach to Configurable

Dynamic Scheduling in Clusters Based on Single System
Image Technologies." Washington, DC, USA : Proceedings
of the 17th International Symposium on Parallel and
Distributed Processing,IEEE Computer Society, 2003. 0-
7695-1926-1.

[27] Morin, Christine, et al., "Towards an efficient single system
image cluster operating system." Amsterdam, The
Netherlands, The Netherlands : Future Gener. Comput.
Syst.,Elsevier Science Publishers, 2004, Issue 4, Vol. 20.
0167-739X.

[28] Psoroulas, Ioannis, et al., "A Study of the Parameters
Concerning Load Balancing Algorithms." s.l. : International
Journal of Computer Science and Network Security, 2007,
Issue 4, Vol. 7. 1738-7906.

[29] [IPtraf home page. [Online] http://iptraf.seul.org.
[30] Abiona, O. O., et al., "Development of a non Intrusive

Network Traffic Monitoring and Analysis System." s.l. :
African Journal of Science and Technology, 2006, Issue 2,
Vol. 7. 16079949.

[31] Lottiaux, Renaud, et al., "OpenMosix, OpenSSI and
Kerrighed: a comparative study." Cardiff, UK : IEEE
International Symposium on Cluster Computing and the
Grid, 2005. 0-7803-9074-1.

[32] Russo, Ruggero, Lamanna, Davide and Baldoni, Roberto.,
"Distributed Software Platforms for Rehabilitating Obsolete
Hardware." Genova : Proceedings of the First International
Conference on Open Source Systems, 2005. 88-7544-048-4.

[33] Hurwitz, Justin (Gus) and Feng, Wu-chun., "End-to-End
Performance of 10-Gigabit Ethernet on Commodity

Systems." Los Alamitos, CA, USA : IEEE Micro, 2004,
Issue 1, Vol. 24. 0272-1732.

[34] Andresen, Robert., "Monitoring Linux with native tools."
Las Vegas, Nevada USA : International Conference of The
Computer Measurement Group, Inc, 2004.

[35] Tanenbaum, Andrew S and Street, Maarten Van.,
Distributed Systems Principles and Paradigm. s.l. : Pearson
Prentice Hall, 2007. 0132392275.

Bestoun S. Ahmed received the B.E.
degree in electrical and electronics
engineering from University of Salahaddin
Erbil in 2004. He is currently a master
student and research fellow in Department
of Computer and Communication Systems
Engineering, University Putra Malaysia. He
has been attended in many national and

international communication companies. His research interest
includes distributed operating system, high performance
computing, performance evaluation and modeling, clustering

Khairulmizam Samsudin received the
B.E. degree from University Putra
Malaysia in 2001. He received the Ph.D.
degree in electrical and electronics
engineering from University of Glasgow
in 2006. He is a faculty member in the
Department of Computer and
Communication Systems Engineering and
leads the Computer Systems Research

Group. His research interest includes distributed operating
system, high performance computer architecture, biologically
inspired computing and mobile-robot agents.

Abd Rahman Ramli received MSc
degree in Information Technology System
from University of Strathclyde, United
Kingdom in 1985 and PhD Degree in
Image Processing from University of
Bradford, United Kingdom in 1995. He is
currently an Associate Professor and Head
of Intelligent Systems and Robotics
Laboratory in Institute of Advanced

Technology Universiti Putra Malaysia. His research interests
include image processing and intelligent systems.

