

UNIVERSITI PUTRA MALAYSIA

THE OPTIMUM LOCATION, NUMBER AND SIZE OF RICE MILLS IN TANJUNG KARANG, WEST MALAYSIA

SIOW KIAT FOO

FEP 1990 1

THE OPTIMUM LOCATION, NUMBER AND SIZE OF RICE MILLS IN TANJUNG KARANG, WEST MALAYSIA

Вy

SIOW KIAT FOO

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Economics and Management Universiti Pertanian Malaysia

April 1990

DEDICATION

To my daughters

HENNA SIOW

and

LILY SIOW

ACKNOWLEDGEMENTS

The author wishes to record his appreciation to Universiti Pertanian Malaysia for the two years of study leave,

for the scholarship and Professor Dr. Mohamed Ariff Hussein, Dean of the Faculty of Economics and Management, for the generosities of heart and mind in allowing him to further his study.

The author wishes to express his thanks to his chief supervisor Assoc. Prof. Dr. Mohd Ghazali Mohayidin and co-supervisor Dr. Eddie Chiew Fook Chong for the former's supervision and guidance in the preparation of this thesis and the latter's criticisim and correction of the draft of this thesis.

The author also wishes to thank his colleague, Mr. Ruthranganathan, for his patience and understanding.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS		iii
LIST OF TABLES		ix
LIST OF F	FIGURES	xi
LIST OF A	ABBREVIATIONS	xii
ABSTRAC	Т	xiii
ABSTRAK		xv
CHAPTER	R	
Ι	INTRODUCTION	1
	Importance of Paddy in Malaysia	1
	Physical Paddy Area	1
	Planted Paddy Area	1
	Paddy Production	4
	Rice Consumption	6
	Problem Setting	9
	Self-sufficiency in Rice	9
	Postharvest Losses	10
	Value of Postharvest Losses	11
	Pricing of Paddy and Rice	12

	Statement Of Problem	13
	Situations Under Single-Cropping	13
	Situations Under Double-Cropping	14
	Pricing of Paddy and Rice	14
	Implications	15
	Objectives	17
II	REVIEW OF SPATIAL MODELS	18
	Historical Development	18
	General Equilibrium Theory	18
	Locational Theory	18
	Transportation Models	19
	Stollsteimer Model	21
	Transshipment Model	25
	Spatial Equilibrium Model	26
	Description of Spatial Equilibrium Model	26
	Solution Algorithms for the Spatial Equilibrium Model	26
	Comparison Between Solution Algorithms	26
Ш	ANALYTICAL FRAMEWORK	27
	Specification of the Analytical Model	27
	Objective Function	28
	Assumptions	33
	Data	34

IV	PADDY ASSEMBLY	36
	Description of Paddy Assembly Operations	36
	Purchasing Agents	36
	Purchasing Centres	36
	Transportation from Fields to Purchasing Centres	37
	Transportation from Purchasing Centres to Mills	37
	Hexagonal Supply Areas	37
	Average Distance	40
	Estimation of Road Distances	40
	Distances Between Purchasing Centres and Mills	41
	Production Potential of Supply Region	41
	Cost of Paddy Assembly	42
	Trucking Cost Functions	42
	Farmers Total Trucking Cost Function	43
	Truck Operator's Trucking Cost Function	43
	Buying Cost	45
	Assembly Cost Function	45
V	COST OF PROCESSING PADDY	48
	Cost of Drying	48
	Drying Capacities	48
	Drying Cost Function	50
	Cost of Milling	52
	Milling Capacities	52
	Milling Cost Function	52
	Cost of Handling	53

Cost of Raw Material	55
Price	55
Value of Output	55
Conversion Rate for Paddy to Rice	55
Price of Rice	56
RESULTS OF THE SPATIAL EQUILIBRIUM MODEL	58
Model Identification	58
Computation Procedures	60
Optimal Solutions	61
Cost of Raw Materials	61
Cost of Handling	62
Cost of Assembly	62
Cost of Drying	63
Cost of Milling	63
Average Cost	64
Revenue from Sales of Rice	64
Net Revenue	64
The Best Configuration	65
Paddy Flows	66
Actual Situation in Tanjung Karang in 1985	68

VI

VII	SUMMARY AND CONCLUSION	69
	Introduction	69
	Statement of problem	70
	Procedure	71
	Results	72
	Conclusion	73
	Policy Considerations	73
	Assembling Activities	74
	Processing Activities	76
	Recommendations	77
BIBLIOGE	ХАРНҮ	79
APPENDI	CES	
Α	HEXAGONAL SUPPLY PATTERNS AND AVERAGE DISTANCE	84
В	ADDITIONAL TABLES	87
С	SUBROUTINE FOR NON-LINEAR DRYING AND MILLING ACTIVITIES	99
D	ESTIMATION OF ACTUAL INDUSTRIAL COST OF PADDY PROCESSING IN TANJUNG KARANG IN 1985	100

VITA

105

LIST OF TABLES

No.	Title	Page
1	Physical Paddy Areas in Malaysia	2
2	Physical Paddy Areas in Peninsular Malaysia by Irrigation and Scheme	2
3	Planted Paddy Area in Malaysia	4
4	Paddy Production in Malaysia	6
5	Average per Annum Rice Consumption in Malaysia	9
6	Rice Loss Estimates for Southeast Asia	11
7	Operating Schedules for Paddy Drying Facilities of Rice Mills in Tanjung Karang	49
8	Drying Capacities of Rice Mills in Tanjung Karang	49
9	Milling Capacities of Rice Mills in Tanjung Karang	52
10	Average Price of Paddy	55
11	Conversion Rate for Paddy to Rice for the Mills in Sungai Besar and Sekinchan in 1985	56
12	Permitted Maximum Ex-mill Prices of Rice	57
13	Grades, Quantity and Value of Rice Output of the Mills in Sungai Besar and Sekinchan in 1985	57
14	Total Number of Combinations of Mill Number and Location	59
15	Combinations of Number of Mills and Locations in Each Configuration	60
16	Optimal Solutions of Different Configuration Types	62
17	Costs of the Optimal Configuration (15)	66
18	Mill Sizes of the Optimal Configuration (15)	66
19	Average Distance in Regular Market Pattern with Equal Circumscribing Circle of Radius R	86

20	Average Distance in Regular Market Pattern with the Same Area as a Circle of Rarius <i>r</i>	86
21	Estimated One Way Road Road Distances (Km) between Centre of Hexagons ${\rm S}_i$ and Mill ${\rm M}_k$	87
22	Unit Assembly Costs for Given Distances between Centre of Hexagons $\mathbf{S_i}$ and Mill $\mathbf{M_k}$	88
23	Standard Specification and Grading Requirements of the Grades of Rice	89
24	Programming Tableau of Model 15 (4 - Mills Combination)	91
25	Optimal Solutions of Model Variations	93
26	Optimum Flow of Paddy from Supply Areas to Rice Mills (m. tons)	97
27	Existing Mill in Tanjung Karang Operating under Actual Situation in 1985	98
28	Assemblying Cost of Paddy	100
29	Drying Cost of Paddy	101
30	Milling Cost of Paddy	102
31	Handling Cost of Paddy	103
32	Cost of Raw Material	104
33	Value of Output	104

LIST OF FIGURES

No.	Title	Page
		_
1	Paddy Planted Area	3
2	Paddy Production	5
3	Rice Consumption in Malaysia	8
4	Hexagonal Supply Areas of Tg. Karang	39
5	Trucking Cost Function of Farmers	44
6	Trucking Cost Function of Transport Operators	46
7	Drying Cost Function	51
8	Milling Cost Function	54
9	Optimal Flow of Paddy from Supply Areas to Rice Mills in Tg. Karang	67

LIST OF ABBREVIATIONS

Cost, insurance, freight c.i.f. Linear programming LP Lembaga Padi dan Beras Negara LPN NF Network flow Quadratic programming QP Total cost TC Total plant Cost TPC Hectare ha kilogram kg mt metric ton

ABSTRACT

Abstract of thesis submitted to the Senate of Universiti Pertanian Malaysia in partial fulfilment of the requirements for the degree of Master of Science.

THE OPTIMUM LOCATION, NUMBER AND SIZE OF RICE MILLS

IN TANJUNG KARANG, WEST MALAYSIA.

By

SIOW KIAT FOO

April, 1990

Supervisor: Assoc. Prof. Dr. Mohd Ghazali MohayidinCo-supervisor: Dr Eddie Chiew Fook ChongFaculty: Faculty of Economics and Management

Non-linear programming is used in analysing the spatial equilibrium model to determine the optimum configuration of number, location and size of rice mills in Tanjung Karang, West Malaysia. The model simultaneously considered the costs of raw materials, handling, assembly, drying and milling and revenue from output to determine the optimum net industry revenue. In the model, the transportation cost, drying cost and milling cost were represented by 3 non-linear functions. The region covered in the study consists of 4 mills and 43 supply areas. A total of 16 configurations reflecting all possible combinations of mills and supply areas under existing conditions were constructed and analysed to yield 16 optimum solutions, one for each configuration. Configuration 15 had the highest net loss of \$5,439,087 for 4 mills located at Sungai Besar, Sekinchan, Ulu Tiram Buruk and Batu Dua with the

respective mill sizes of 22,722 mt, 22,722 mt, 22,722 mt and 8,115 mt of paddy. The results of the analysis indicate the importance of assembly and processing costs in determining the optimum number, location and size of rice mills.

ABSTRAK

Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia sebagai memenuhi sebahagian daripada keperluan bagi penganugerahan ijazah Master Sains.

BILANGAN, LOKASI DAN SAIZ KILANG-KILANG PADI YANG OPTIMUM

DI TANJUNG KARANG, MALAYSIA BARAT.

Oleh

SIOW KIAT FOO

April 1990

Penyelia	: Assoc. Prof. Dr. Mohd Ghazali Mohayidin
Penyelia Bersama	: Dr Eddie Chiew Fook Chong
Fakulti	: Fakulti Ekonomi dan Pengurusan

Pemprograman tidak linear digunakan di dalam menganalisis model keseimbangan ruang untuk menentukan bilangan, lokasi dan saiz kilang-kilang padi yang optimum di Tanjung Karang, Malaysia Barat. Model ini mengambil kira secara serentak kos bahan mentah, pemegangan, pengumpulan, pengeringan dan pengilangan serta hasil dari output untuk menentukan hasil industri bersih yang optimum. Di dalam model ini, kos pengangkutan, kos pengeringan dan kos pengilangan diwakili oleh tiga fungsi tidak linear. Kawasan kajian mengandungi 4 buah kilang dan 43 kawasan bekalan. Sejumlah 16 jenis konfigurasi yang mencerminkan kesemua kemungkinan kombinasi kilang dan kawasan bekalan di bawah keadaan yang sedia ada dibentuk. Analisis ini menghasilkan 16 penyelesaian optimum. Konfigurasi dengan penyelesaian terbaik optimum mempunyai hasil bersih negatif \$5,439,087 bagi 4 buah kilang yang terletak di Sungai Besar, Sekinchan, Ulu Tiram Buruk dan Batu Dua dengan saiz kilang masing-masing 22,722 mt, 22,722 mt,

22,722mt dan 8,115 mt padi. Hasil kajian ini menunjukkan kepentingan kos pengumpulan dan kos pemprosesan di dalam menentukan bilangan, lokasi dan saiz kilang yang optimum.

CHAPTER I

INTRODUCTION

Importance of Paddy in Malaysia

Physical Paddy Area

Malaysia has 465,800 hectares of physical paddy land (Embi Yusoff, 1986), of which 6.9 percent is found in Sabah, 12.2 percent in Sarawak and 80.9 percent in Peninsular Malaysia (Table 1). In terms of planted area, paddy ranks as the country's third major crop after oil palm and rubber. Of the total physical paddy area in Peninsular Malaysia, 78.5 percent or 295.8 thousand hectares are fully irrigated and double-cropped. Table 2 shows the area of the major irrigated schemes. The remaining 21.5 percent of the paddy area is either rainfed or partially irrigated.

Planted Paddy Area

The planted paddy area in Peninsular Malaysia shows a rising trend between 1967 to 1974 but it declined from 1975 onwards (Figure 1). The decline is due to increasing area being left idle (Tan, 1986). Over the same period, the planted area in Sabah remained constant, while that in Sarawak increased slightly.

Table 1

Physical Paddy Areas in Malaysia

Region	Area ('000 ha)	Percent
Sabah	32.0	6.9
Sarawak	57.0	12.2
P. Malaysia	376.8	80.9
Total	465.8	100.0

Source : Embi Yusoff (1986) Rice Production in West Malaysia - Technology Needs in the Next Decade. Paper presented at the National Paddy Conference, Malaysian Agricultural Research and Development Institute, 20-22 January, 1986.

Table 2

Physical Paddy Area in Peninsular Malaysia by Irrigation and Scheme

Scheme	Area ('000 ha)	Percentage of Total
Fully Irrigated Paddy:		
Muda	95.0	25.2
Kemubu	31.5	8.4
Barat Laut Selangor	19.0	5.0
Kerian/Sg. Manik	30.1	8.0
Seberang Perai	13.1	3.5
Seberang Perak	9.5	2.5
Kemasin Semerak	7.3	1.9
Endau Rompin	11.3	3.0
Besut	5.1	1.4
Other Minor Schemes	73.9	19.6
Rainfed, Partially Irrigated		
and Hill Paddy	81.0	21.5
Total 376.8	100.0	

Source : Embi Yusoff (1986) Rice Production in West Malaysia - Technology Needs in the Next Decade. Paper presented at the National Paddy Conference, Malaysian Agricultural Research and Development Institute, 20-22 January, 1986.

Figure 1. Paddy Planted Area

The average planted area for the whole country in the period 1965 to 1969 was 615.5 thousand hectares per annum. It increased to 739.3 thousand hectares in the period 1970 to 1974 but subsequently decreased to 724.2 thousand hectares and 670.3 thousand hectares in the period 1975 to 1979 and 1980 to 1984, respectively (Table 3).

The average growth rate for planted area in the period 1965 to 1969 was 4.6 percent per annum. It declined to 1.9 percent and 0.5 percent in the periods 1970 to 1974 and 1975 to 1979, respectively. It subsequently became negative in the period 1980 to 1984 (Table 3).

Table 3

Planted	Paddy	Area	in	Malaysia
Tanteu	lauuy	mea		iviala y sia

Year	Area ('000 ha)	Average per Annum Growth (%)		
1965 to 1969	615.5	4.6		
1970 to 1974	739.3	1.9		
1975 to 1979	724.2	0.5		
1980 to 1984	670.3	-4.8		

Sources: 1) Department of Statistics, Malaysia. Sabah Annual Bulletin of Statistics, various issues.

- 2) Department of Statistics, Malaysia. Sarawak Annual Bulletin of Statistics, various issues.
- 3) Department of Statistics, Malaysia Annual Bulletin of Statistics, various issues.

Paddy Production

Paddy production for the whole of Malaysia showed an increasing trend from

1967	to	1979	but	declined	from	1980	to	1984	(Figure 2).
	••								

Figure 2. Paddy Production

The paddy production in Sabah remained constant over the years while that of Sarawak showed a very slight increase.

The average paddy production for the whole of Malaysia in the period 1965 to 1969 was 1.348 million metric tons per annum. It increased to 1.866 million metric tons and 1.891 million metric tons in the periods 1970 to 1974 and 1975 to 1979, respectively. It subsequently declined to 1.854 million metric tons in the period 1980 to 1984 (Table 4).

The growth rate for the period 1965 to 1969 was 6.7 percent per annum. It decreased to 5.8 percent and 3.5 percent in the periods 1970 to 1974 and 1975 to 1979, respectively. It finally became negative at 6.1 percent in the period 1980 to 1984.

Table 4

Paddy Production In Malaysia

Year	Production (10 ⁶ mt)	Growth Rate (%)	
1965 to 1969	1.348	6.7	
1970 to 1974	1.866	5.8	
1975 to 1979	1.891	3.5	
1980 to 1984	1.854	- 6.1	

Sources: 1) Department of Statistics, Malaysia. Sabah Annual Bulletin of Statistics, various issues.

- 2) Department of Statistics, Malaysia. Sarawak Annual Bulletin of Statistics, various issues.
- Department of Statistics, Malaysia. Peninsular Malaysia Annual Bulletin of Statistics, various issues.

Rice Consumption

In this study, total rice consumption over a specified period was defined as the sum of total domestic rice production and net imports of rice and it was assumed that the rice stock remains constant at the beginning and end of the period. Rice smuggled into the country was not included because the data for such rice were not available.

The total rice consumption in Malaysia remained stable in the period 1969 to 1984, with the quantity of net import smoothing out the fluctuations in domestic production (Figure 3). The average rice consumption in the period 1965 to 1969 was 1.201 million metric tons per annum. It increased to 1.492 million metric tons in the period 1970 to 1974 and then decreased slightly to 1.479 million metric tons in the period 1975 to 1979. It went up slightly again to 1.525 million metric tons in the period 1980 to 1984 (Table 5).

The average growth rate for rice consumption in the period 1965 to 1969 was 3.9 percent per annum. It then increased to 4.2 percent in the period 1970 to 1974 and then decreased to 3.2 percent in the period 1975 to 1979. It subsequently became negative at 0.3 percent in the period 1980 to 1984. The decrease was due to a shift in the consumption of rice to other forms of cereals. In 1972, the per capita daily intake of rice was 326.3 grams (Mohd. Ghazali Mohayidin and Siti Khairon Shariff, 1986). By 1984,

capita daily consumption of other cereals on the other hand increased from 88.7 grams in 1972 to 112.9 grams in 1984.

Figure 3. Rice Consumption in Malaysia

