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Reduce structural weight, design flexibility, and improved structure safety, are the 

features offered by composite materials. Composite materials provide higher or 

equivalent crash resistance as compared with their metallic counterparts and 

therefore find use in applications involving crash. The design of various transport 

vehicles like automobiles and aircraft for crashworthiness, required collapse 

behaviour of structural component and energy absorption characteristics 

An experimental and computational study of woven roving composite circular and 

elliptical cross section SUbjected to quasi-static axial and lateral-loading conditions 

was carried out in this project. Composite tubes with different ellipticity ratio alb 

from 1 .00 to 2.00 were investigated under three different loading conditions. The 

effect of geometry and loading condition on the load carrying capacity, energy 
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effect of geometry and loading condition on the load carrying capacity, energy 

absorption capability and their failure mechanism histories are presented and 

discussed. Finite element models were developed to predict the load carrying 

capacity, failure mechanism, deformed shapes and stress contours of composite 

elliptical tubes under different loading conditions. 

From the Experimental result, the ellipticity ratio significantly affects the load 

carrying capacity and t he energy absorption capability 0 f t he tubes on both three 

loading conditions. The tubes subjected to axial loading condition showed a stable 

load defonnation curve, higher initial failure load and higher energy absorption 

capability, compared to the tubes subjected to lateral loading conditions. 

Experimental result for tubes under axial load show that the tube with ellipticity 

ratio of a/b=LOO has the highest initial crush failure load of 42.45 leN, tubes with 

ellipticity ratio a/b= 1.25, 1.50, 1.75, and 2.00 have the initial failure load of 40.65 

kN, 40.45 kN, 36.65 kN, and 36.46 kN respectively. 

Under lateral loading condition (L W) the tube with ellipticity ratio a/b=2.00 has the 

highest initial crush failure load of 1768 N, and has the highest specific energy 

absorption of 0.70 kJ/kg, the initial crush failure load for the tubes with ellipticity 

ratio a/b=1.75, 1.50, 1.25, and a/b=1.00 are 1545 N, 1060N, 922 N, and 873 N 

respectively. 

For specimens loaded on lateral side (LN) show that the tube with ellipticity ratio 

aJb=2.00 has the highest initial crush failure load of 1480 N, and has the highest 

specific energy absorption of 0.69 kJ/kg, the initial crush failure load for the tubes 

with ellipticity ratio a/b=1.75, 1.50, 1.25, and a/b=1.00 are 1561 N, 1074 N, 912N, 

and 873 N respectively. 
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Finite element simulation predicts the initial failure load and the deformed shapes. 

The result for tubes under axial load show that tube with ellipticity ratio of a/b= 1.00 

has the highest initial crush failure load of 49.50 kN, tubes with ellipticity ratio a/b= 

1.25, 1.50, 1.75, and 2.00 have the initial failure load of 45.40 kN, 41.30 kN, 36.40 

kN, and 32.70 kN respectively. 

For lateral loading (LW) the tube with ellipticity ratio a/b=2�00 has the highest 

initial crush failure load of 2915 N, the initial crush failure load for the tubes with 

ellipticity ratio aib=1.75, 1.50, 1.25, and a/b=1.00 are 2657 N, 2232 N, 1805 N, and 

1377N respectively. 

For Lateral loaded on narrow side (LN) the tube with ellipticity ratio aib=2.00 bas 

the highest initial crush failure load of 2150 N, the tubes with ellipticity ratio 

a/b=1.75, 1.50, 1.25, and a/b=1.00 have initial crush failure load of 1821 N, 1604 N, 

1617 N, and 1377 N respectively. 

Finite element model predictions are correlated with the experimental results. 

Because of the imperfection in the real tubes is not considering in the finite element 

model, there is different in loads value between experiment and simulation. In 

general predictions are quite good. 
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Berat struktur yang berkurangan, fleksibiliti terhadap rekabentuk dan pembaikian 

keselamatan bagi struktur adalah cirri-siri yang diperkenalkan oleh bahan komposit. 

Bahan komposit menyediakan rintangan remukan yang tinggi atau setara berbanding 

dengan bahan logam dan adalah baik bagi kesan hentaman. Rekabentuk 

kebanyakkan kenderaan dan kapal terbang bagi "crashworthiness" memerlukan sifat 

remukan oleh komponen struktur dan cirri tenaga penyerapan. 

Satu ujikaji dan kajian secara komputer mengenai komposit "woven roving" secara 

bulatan dan elips yang dikenakan bebanan quai static axial dan lateral telah 

dijalankandalam projek ini. Tiub komposit dengan nisbah elips alb yang berbeza 

dari 1 .00 hingga 2.00 telah dikaji dengan tiga jenis bebanan. Kesan g eometri dan 

bebanan tehadap keupayaan beban bawaan,tenaga penyerapan dan mekanisma 
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kegagalan telah dibincangkan. Elemen tak terhingga telah dibangunkan mengenai 

keupayaan beban bawaan,tenaga penyerapan, bentuk kegagalan dan kontor tegasan 

tiub elips dibawah keadaan berbeza . 

Daripada keputusan ini, nisbah elips mempengaruhi keupayaan beban bawaan dan 

tenaga penyerapan pada tiga kondisi bebanan.Tiub diba)Vah beban axial 

menunjukkan lengkungan stabil, beban awal yang tinggi dan tenaga penyerapan 

yang tinggi berbanding dengan tiub dibawah bebanan lateral. 

Simulasi elemen tak terhingga menyasarkan kemungkinan beban kegagalan dan 

bentuk dan disini ia telah menepati ujikaji yang telah dilakukan secara ujikaji. 

Disebabkan ketidaksempumaan tuib sebenar berbanding tiub yang telah dibentuk 

didalam simulasi terdapat nilai yang berbeza. Secara amnya kemungkinan yang 

dianggarkan adalah baik. 
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CHAPTERl 

INTRODUCTION 

The importance of improved safety in a utomobile a nd aircraft is evident through 

. 

increased design requirements. For aerospace application, it is believed that to meet 

these requirements with increasing the payload efficiency, transport fuselages design 

started to appear to be constructed from advanced composite materials. 

An e nergy absorber d evice i s  designed s uch t hat i n t he e vent of crash it a bsorbs 

impact energy in a controlled manner, such that the net deceleration of the occupants 

of a car is less than the net deceleration above which irreversible brain damage 

occurs. 

To ensure passenger safety or at least to alleviate severe impact during collision, a 

highly reliable system is required. Impact energy absorbers (lEA) protect 

passengers, pedestrians and fragile devices from the effects of sudden impact. This 

is done by converting the impact energy into many different ranges of defomlation 

energy keeping the peak force exerted on the protected object below the level, which 

causes damage They must also provide a long deformation path to reduce the 

deceleration of the protected object. Such lEA will rely solely on a crushable energy 

absorber to cushion the passenger compartment during impact. 



The energy absorption capability of composite devices is significantly influenced by 

the failure mechanism, which depends on many factors, geometry, constituent 

material, fabrication process, fibre architecture, and loading conditions. 

Crushing behaviour of composite m aterial need t o  be investigated by performing 

crushing tests to understand the various variables influences the cUlshing behaviour 

and energy absorption capability. 

Crushing behaviour and energy absorption of composite structures can be predicted 

and simulated using numerical methods. In the finite element simulation the cost of 

experiments is reduced, because of the model parameters can be easily changed 

whereas it is not achievable experimentally. 

From previous work the initial crush failure load was found to have a significant 

effect on the behaviour of crushing load and failure modes, high initial loads leads to 

a sharp drop in initial crush load (catastrophic drop) and unstable load-end 

shortening behaviour. This instability is one of the more critical problems in using 

fibre composites for crash energy management. 

The current research work focuses on the study of the effect of the various variables, 

which influence the energy absorption capability of composite materials. Most of the 

experimental work on composite material has been carried out using axisymmetric 

cylindrical tubes mainly because they are easy to fabricate and their geometry has 

proven to be one of the most favourable shapes for energy absorption. This 
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geometry is self-stabilising a nd a llows testing of relatively t hin-section laminates. 

The lack of edges along its length reduces the complexity of the boundary conditions 

and provides consistency throughout the cross section. Moreover, composite cones 

showed high-energy absorption performance with the advantage of a self-triggering 

capability. 

However, most of the existing data concerns the failure mechanism and energy 

absorbing characteristics is obtained from the crushing investigations of shell 

structures with circular, rectangular and square cross-section geometries. In contrast, 

studies of energy absorption capability as well as the load-carrying capacity of 

composite elliptical tubes are however still scarce. 

1.1 Research Objectives 

The main objective of this work is to study the effect of ellipticity ratio on the axial 

and lateral crushing of composite tube. To investigate experimentally and 

numerically the effects of loading condition on the c rushing behaviour of woven 

roving glass/epoxy composite elliptical tubes, and the following are the aim of this 

study 

• To investigate the effects of ellipticity ratios and loading conditions on 

crashworthiness performance 

• To study the crushing behaviour of composite elliptical tubes. 

• To examine the energy absorption capability of tubes 
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1.2 Significance of the Study 

• Composite materials are rapidly becoming potential substitutes for metal due 

to their higher strength and stiffness-to-weight ratio, improved corrosion 

resistance, styling enhancement and the reduction of fabrication and 

maintenance costs. 

• The efficient use of composite tubes as energy absorber depends on the 

understanding of their crushing behaviour. 

• The generated data from this study can be useful in the design phase of 

energy absorber elements made from composite materials. 

1.3 Thesis Organization 

The thesis is divided into seven chapters. Following this Introduction Chapter, 

Chapter Two introduces the Literature review. The Third Chapter is the 

methodology, in this Chapter the experimental work and finite element simulation is 

described and discussed, Chapter Four present and discussed the experimental result. 

Finite element results presented and discussed in Chapter Five. Chapter Six the 

Overall discussion is presented. Finally in Chapter Seven, conclusion from the work 

and the proposal for future studies are listed. 
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