AXIAL AND LATERAL QUASI-STATIC CRUSHING BEHAVIOUR OF SEGMENTED AND NON-SEGMENTED COMPOSITE TUBES

AL-HADI A. SALEM ABOSBAIA

ITMA 2003 1
AXIAL AND LATERAL QUASI-STATIC CRUSHING BEHAVIOUR OF
SEGMENTED AND NON-SEGMENTED COMPOSITE TUBES

By

AL-HADI A. SALEM ABOOSBAIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirements for the Degree of Master of Science

April 2003
Dedication

A Special Dedication To

My family

Hadi

Malaysia, 2003
Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in partial fulfilment of the requirements for the degree of Master of Science

AXIAL AND LATERAL QUASI-STATIC CRUSHING BEHAVIOUR OF SEGMENTED AND NON-SEGMENTED COMPOSITE MATERIAL TUBES

By

AL-HADI A. SALEM ABOSBAIA

April 2003

Chairman: Dr. Elsadig Mahdi Ahmed
Institute: Advanced Technology

Considerable research interest has been directed towards the use of composite for crashworthiness applications, because they can be designed to provide impact energy absorption capabilities which are superior to those of metals when compared on weight basis. The use of composite circular tubes in structural applications is becoming more widespread throughout the automotive, aircraft industry.

This work examines the effect of segmentation on the crushing behaviour, energy absorption and failure mode of composite circular tubes. The segmented composite tube consists of more than one material, each with its own specific functions. Throughout this study, segmented and non segmented composite tubes with different sequences were experimentally investigated under axial and lateral loading conditions. The effect of fibre reinforcement type and segments sequence on energy absorption and load carrying capacity were also presented and discussed.
Load-displacement curves and deformation histories of typical specimens are presented and discussed. The results showed that non-segmented composite tubes were found to be very brittle (i.e. tissue mat glass fibre/epoxy tubes), and show very low initial failure crush load value of 1.89kN, as well as low specific energy absorption value of 0.065kJ/kg under axial crushing. Whereas, the carbon fabric fibre reinforced plastic (CFRP) tubes showed highest load-carrying capacity among the tested specimens with initial failure crush load value of 18.85kN as well as specific energy absorption value of 19.27kJ/kg.

On the other hand, segmented composite tubes including the tissue mat glass fibres were found to suffer from low energy absorption and the catastrophic failure mechanism initiated at the part made of tissue mat glass fibre/epoxy. Segmented Composite tubes from carbon fabric fibre and cotton fabric fibres exhibited good specific energy absorption value of 13.53kJ/kg as well as stable load-carrying capacity under axial loading. A change in segmentation sequence affects the crush loads significantly just for double fibre segmented composite tubes under lateral loading.

The axial loaded segmented composite tubes have better load carrying capacity and energy absorption capability compared to the laterally loaded segmented composite tubes, and the failure modes were quite different.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYIASATAN SECARA EXPERIMENTASI TERHADAP REMUKAN TIUB KOMPOSIT BERSEGMENTEN SECARA QUASI-STATIC AXIAL DAN LATERAL

Oleh

ALHADI A. SALEM ABOSBAIA

April 2003

Pengerusi: Dr. Elsadig Mahdi Ahmed
Institut: Teknologi Maju

Banyak penyelidikan kini berarah kepada penggunaan komposit bagi aplikasi "crashworthiness" disebabkan ia dapat di reka bentuk untuk menyediakan keupayaan tenaga hentaman impak, dimana adalah lebih tinggi daripada logam-logam apabila hendak dibandingkan dengan ciri berat. Kegunaan komposit tiub berongga di dalam aplikasi struktur telah mendapat perhatian meluas hingga ke industri automotif, udara dan aeroangkasa.

Kerja penyelidikan yang dilakukan ini meliputi kesan segmentasi terhadap kelakuan remukan dan mod tenaga penyerapan bagi tiub komposit berongga. Tiub komposit berseggmen mempunyai lebih dari satu bahan, setiap satu mempunyai cirri masing-masing. Kajian yang dibuat, segmen atau tidak berseggmen dengan cirri-ciri yang berlainan telah disiasat dibawah bebanan axial dan lateral. Kesan daripada jenis gentian tetulang dan ciri-ciri segmen terhadap tenaga penyerapan dan kapasiti beban

Komposit tiub bersegmen pula, termasuk tikar tisu gentian kaca telah didapati mengalami kadar penyerapan tenaga yang rendah dan mekanisma kegagalan teruk pada bahagian yang diperbuat daripada gentian/epoksi tersebut. Komposit tiub bersegmen menunjukkan kadar penyerapan yang baik dan juga kapasiti beban bawaan yang stabil dibawah bebanan axial. Perubahan ciri segmentasi tiub komposit akan mempengaruhi beban remukan (DF) dibawah bebanan lateral.

Beban axial tiub komposit bersegmen mempunyai kadar beban bawaan dan keupayan kadar penyerapan tenaga keatas tiub komposit bersegmen yang dikenakan beban lateral tetapi pada sifat kegagalan yang berbeza.
First, I would like to express my sincere gratitude and deep thanks to my supervisor Dr. Elsadig Mahdi Ahmed for his kind assistance, support, advice, encouragement, and suggestions throughout this work and during the preparation of this thesis.

Furthermore, I would like to take this opportunity to express my deepest appreciation and gratitude to Associate Professor Dr. Abd El-Magid Salem Hamouda for his advice, valuable suggestion, and comments.

Also, I would like to thanks to Professor Dr. Barkawi Bin Sahari for his suggestions and constructive criticisms given at different stages of this study.

Finally, deep thanks to my best friend Ebrahem Alfegi for his support, and help during the fabrication of the experimental work.

Alhadi A. Absobaia
I certify that an Examination Committee met on 23th April 2003 to conduct the final examination of Alhadi A. Salem Abosbaia on his Master of Science thesis entitled “Axial and Lateral Quasi-Static Crushing Behaviour of Segmented and Non-Segmented Composite Tubes” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

\textbf{Wang Shaw Voon, Ph.D} \\
Mechanical Department \\
Faculty of Engineering \\
Universiti Putra Malaysia \\
(Chairman)

\textbf{Elsadig Mahdi Ahmed, Ph.D} \\
Aerospace Department \\
Faculty of Engineering \\
Universiti Putra Malaysia \\
(Member)

\textbf{Abdel Magid Salem Hamuoda, Ph.D} \\
Associate Professor, \\
Mechanical Department \\
Faculty of Engineering \\
Universiti Putra Malaysia \\
(Member)

\textbf{Barkawi Bin Sahari, Ph.D.} \\
Professor \\
Mechanical Department \\
Faculty of Engineering \\
Universiti Putra Malaysia \\
(Member)

\underline{GULAM RUSTAM RAHMAT ALI, Ph.D,} \\
Professor/ Deputy Dean, \\
School of Graduate Studies \\
Universiti Putra Malaysia

Date: 16 JUN 2003
This thesis submitted to the senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Elsadig Mahdi Ahmed, Ph.D
Aerospace Department
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abdel Magid Salem Hamuoda, Ph.D
Associate Professor,
Mechanical Department
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Barkawi Bin Sahari, Ph.D.
Professor
Mechanical Department
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D,
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 1 JUL 2003
DECLARATION

I hereby declare that this thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institution.

[Signature]

AL-MODI A. ABOSBAIA

Date: 16.06.2003
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER
1 INTRODUCTION
1.1 Segmentation Concept 1
1.2 Objectives 4
1.3 Significance of the study 5
1.4 Organization of thesis 5

2 LITERATURE REVIEW
2.1 Composite Material 7
2.2 Fibre-Reinforced Composite Materials 8
 2.2.1 Synthetic fibres 8
 2.2.2 Natural Fibre 10
 2.2.3 Matrix Materials 11
2.3 Fabrication Methods of Composite Shells 12
 2.3.1 Woven roving Wrapping 13
2.4 Composite Forms 13
 2.4.1 Single Fibre System 13
 2.4.2 Multi Material System 14
2.5 Failure Mechanism of composite materials 14
 2.5.1 Matrix Crack 15
 2.5.2 Fibre Breakage 15
 2.5.3 Fibre Pullout 16
 2.5.4 Fibre-Matrix Debonding 17
 2.5.5 Delamination 17
2.6 Crushing Mode of Structure Composite Material 18
 2.6.1 Transverse shearing crushing mode 19
 2.6.2 Lamina bending crushing mode 20
 2.6.3 Brittle fracturing crushing mode 21
 2.6.4 Local buckling crushing mode 22
2.7 Crushing of metallic and composite circular tubes 23
 2.7.1 Metallic Circular Tubes 24
 2.7.2 Composite Circular Tubes 27
2.8 Crashworthiness Parameters 30
2.8.1 Crush Force Efficiency-Stroke Efficiency Relation 31
2.8.2 Energy Absorption Capability 32
2.8.3 Initial Failure Indicator 33
2.9 Conclusion 34

3 METHODOLOGY 35
3.1 Introduction 35
3.2 Preparation of mandrel 36
3.3 Fabrication of segmented and non-segmented composite tubes 37
 3.3.1 Type of material and fibre 37
 3.3.2 Specimen’s specification 37
3.4 Test specimen’s fabrication procedures 38
3.5 Crushing Process 39
 3.5.1 Axial Crushing 39
 3.5.2 Lateral Test 41
3.6 Discussion 41

4 Results and Discussion 42
4.1 Design Parameters 42
4.2 Repeatability and Accuracy of the Machine 42
4.3 Crashworthiness Parameters 43
 4.3.1 Crush Force Efficiency-Stroke Efficiency Relation 44
 4.3.2 Energy Absorption Capability 45
 4.3.3 Initial Failure Indicator 46
4.4 Axial Crushing 47
 4.4.1 Load-Deformation 47
 4.4.1.1 Single Fibre (DF) Reinforced Segmented Composite Tube 47
 4.4.1.1.1 (CT-CT-CT)FRP Tube 47
 4.4.1.1.2 (C-C-C)FRP Tube 49
 4.4.1.1.3 (GT-GT-GT)FRP Tube 50
 4.4.1.2 Double Fibre (DF) Reinforced Segmented Composite Tube 51
 4.4.1.2.1 (CT-CT-C)FRP Tube 51
 4.4.1.2.2 (CT-GT-GT)FRP Tube 53
 4.4.1.2.3 (GT-GT-CT)FRP Tube 55
 4.4.1.2.4 (GT-GT-GT)FRP Tube 56
 4.4.1.3 Triple Fibre (TF) Reinforced Segmented Composite Tube 57
 4.4.1.3.1 (CT-CT-GT)FRP Tube 57
 4.4.1.3.2 (C-CT-GT)FRP Tube 57
 4.4.1.3.3 (CT-GT-C)FRP Tube 60
4.5 Failure Modes 61
 4.5.1 Single Modes (SM) 61
 4.5.1.1 SMI 61
 4.5.1.2 SMII 62
 4.5.2 Multi Modes (MM) 63
 4.5.2.1 MMI 63
 4.5.2.2 MMII 63
4.5.2.3 MMIII 64
4.5.2.4 MMIV 65

4.6 Discussion 66
4.6.1 Specific Energy Absorption (ES) 66
4.6.2 Effect of Fibre Reinforcement Type 69
4.6.3 Effect of Segmentation on Crashworthiness Parameters 70

4.7 Lateral Crushing 73
4.7.1 Failure Mode and Load-Deformation Curve 73
4.7.1.1 Tests on Single Fibre (SF) Tube 73
4.7.1.1.1 (CT-CT-CT) FRP Tube 73
4.7.1.1.2 (C-C-C) FRP Tube 74
4.7.1.1.3 (GT-GT-GT) FRP Tube 74
4.7.1.2 Tests on Double Fibre (DF) Tube 79
4.7.1.2.1 (CT-CT-C) FRP Tube 79
4.7.1.2.2 (CT-CT-GT) FRP Tube 79
4.7.1.2.3 (GT-GT-C) FRP and (GT-GT-CT) FRP Tubes 80
4.7.1.3 Triple Fibre (TF) Reinforced Segmented Composite Tube 85

4.8 Discussion 90
4.8.1 Specific Energy Absorption (ES) 90
4.8.2 Effect of Fibre Reinforcement Type and Segments Sequence 92
4.8.3 Effect of Segmentation on Crashworthiness Parameters 94

4.9 Recovery of Specimens 95
4.10 Conclusion 97

5 ANALYTICAL SOLUTION 99
5.1 Introduction 99
5.2 Assumptions 99
5.3 Orthotropic material 100
5.4 Plane stress 101
5.5 Reduced stiffness matrix 101
5.6 Laminate stiffness Matrix: (ABD Matrix) 102
5.7 Stress-strain relation 105
5.8 Failure criteria 106
5.8.1 Maximum stress 106
5.8.2 Tsai-Wu failure criteria 107
5.9 Numerical Example 108
5.9.1 Non-segmented composite tubes 108
5.9.2 Result 112
5.9.3 Discussion 112
5.9.4 Conclusion 113
5.10 Flow chart describe steps for a stress analysis for a composite laminate 114

6 CONCLUSION 115
6.1 Quasi-static Axial Crushing 115
6.2 Quasi-static Lateral Crushing 116
6.3 Recommendation and future suggestion work

REFERENCE 119
APPENDIX (A) 124
VITA 126
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Constituent materials</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Specification of test specimens</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Characterization of failure mode</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Crashworthiness parameters of segmented and non-segmented composite tubes under axial load</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Crashworthiness parameters of segmented and non-segmented composite tubes under lateral load</td>
<td>97</td>
</tr>
<tr>
<td>5.1</td>
<td>Elastic engineering properties of the materials</td>
<td>109</td>
</tr>
<tr>
<td>5.2</td>
<td>Failure stresses of the materials</td>
<td>110</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison between the experimental and theoretical results for initial failure</td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Unidirectional fibre-matrix reinforced composite material in a unidirectional form</td>
</tr>
<tr>
<td>2.2</td>
<td>Hybrid system</td>
</tr>
<tr>
<td>2.3</td>
<td>Matrix cracking failure</td>
</tr>
<tr>
<td>2.4</td>
<td>Fibre breaking failure</td>
</tr>
<tr>
<td>2.5</td>
<td>Fibre pull-out during crack failure</td>
</tr>
<tr>
<td>2.6</td>
<td>Fiber matrix debonding failure</td>
</tr>
<tr>
<td>2.7</td>
<td>Delamination crack failure</td>
</tr>
<tr>
<td>2.8</td>
<td>Crushing characteristics of transverse shearing crushing mode</td>
</tr>
<tr>
<td>2.9</td>
<td>Crushing characteristics of lamina bending crushing mode</td>
</tr>
<tr>
<td>2.10</td>
<td>Crushing characteristics of brittle fracture crushing mode</td>
</tr>
<tr>
<td>2.11</td>
<td>Crushing characteristics of local buckling crushing mode</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart shows the procedure of methodology</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic fabrication process for segmented composite tube</td>
</tr>
<tr>
<td>3.3</td>
<td>Segmented composite tube under axial load</td>
</tr>
<tr>
<td>3.4</td>
<td>Segmented composite tube under lateral load</td>
</tr>
<tr>
<td>4.1</td>
<td>Repeatability of load-displacement curves for three specimens of (CT-CT-CT)FRP</td>
</tr>
<tr>
<td>4.2</td>
<td>Load-displacement curves and deformation histories of (CT-CT-CT)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.3</td>
<td>Load-displacement curves and deformation histories of (C-C-C)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.4</td>
<td>Load-displacement curves and deformation histories of (GT-GT-GT)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.5</td>
<td>Load-displacement curves and deformation histories of (CT-CT-C)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.6</td>
<td>Load-displacement curves and deformation histories of (CT-CT-GT)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.7</td>
<td>Load-displacement curves and deformation histories of (GT-GT-C)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.8</td>
<td>Load-displacement curves and deformation histories of (GT-GT-CT)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.9</td>
<td>Load-displacement curves and deformation histories of (CT-C-GT)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.10</td>
<td>Load-displacement curves and deformation histories of (C-CT-GT)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.11</td>
<td>Load-displacement curves and deformation histories of (CT-GT-C)FRP segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.12</td>
<td>Specific energy absorption-stroke efficiency curves of a single fibre (SF) reinforced segmented composite tubes under axial load</td>
</tr>
<tr>
<td>4.13</td>
<td>Specific energy absorption-stroke efficiency curves of double fibres (DF) reinforced segmented composite tubes under axial load</td>
</tr>
</tbody>
</table>
4.14 Specific energy absorption-stroke efficiency curves of triple fibres (TF) reinforced segmented composite tubes under axial load 68
4.15 Effect of fibre reinforcement types on crushing behaviour of axially loaded segmented composite tubes 69
4.16 Effect of segmentation types on crushing behaviour of axially loaded composite tubes 71
4.17 Load-displacement curves and deformation histories of (CT-CT-CT)FRP segmented composite tubes under lateral load 76
4.18 Load-displacement curves and deformation histories of (C-C-C)FRP segmented composite tubes under lateral load 77
4.19 Load-displacement curves and deformation histories of (GT-GT-GT)FRP segmented composite tubes under lateral load 78
4.20 Load-displacement curves and deformation histories of (CT-CT-C)FRP segmented composite tubes under lateral load 81
4.21 Load-displacement curves and deformation histories of (CT-CT-GT)FRP segmented composite tubes under lateral load 82
4.22 Load-displacement curves and deformation histories of (GT-GT-C)FRP segmented composite tubes under lateral load 83
4.23 Load-displacement curves and deformation histories of (GT-GT-CT)FRP segmented composite tubes under lateral load 84
4.24 Load-displacement curves and deformation histories of (CT-C-GT)FRP segmented composite tubes under lateral load 87
4.25 Load-displacement curves and deformation histories of (C-CT-GT)FRP segmented composite tubes under lateral load 88
4.26 Load-displacement curves and deformation histories of (CT-GT-C)FRP segmented composite tubes under lateral load 89
4.27 Specific energy absorption-stroke efficiency curves of a single fibre (SF) reinforced segmented composite tubes under lateral load 91
4.28 Specific energy absorption-stroke efficiency curves of double fibres (DF) reinforced segmented composite tubes under lateral load 91
4.29 Specific energy absorption-stroke efficiency curves of triple fibres (TF) reinforced segmented composite tubes under lateral load 92
4.30 Effect of fibre reinforcement types on crushing behaviour of laterally loaded segmented composite tubes 93
4.31 Effect of segmentation types on crushing behaviour of laterally loaded composite tubes 95
4.32 Recovery of specimens under quasi-static lateral condition 96
5.1 Uniaxial loading in x-direction 100
5.2 Symmetric laminate coordinates 103
5.3 Unidirectional reinforced lamina 105
5.4 Non-segmented composite tubes under axial compression 109
5.5 Tensile load-displacement curves for cotton fabric, carbon fabric, tissue mat fiber/epoxy 110
5.6 Flow chart describes steps for a stress analysis for a composite laminate 114
A.1 Straight-sided coupon 125
NOMENCLATURE

A Cross-section area
R Radius of the tube
D Diameters of the tube
H Height of the tube
M Weight of the tube
P_m Average crush failure load
P_i Initial crush failure load
P_{1P} First peak crush failure load
P_{p_1} Highest first peak crush load
s Instantaneous deformation
CFE Crush force efficiency
SE Stroke efficiency
E_s Crushing energy absorbed per unit mass
MM Multi failure modes
SM Single failure modes
CT Cotton fabric fibre
C Carbon fabric fibre
GT Tissue mat glass fibre
FRP Fibre-reinforced plastic
SF Single fibre
DF Double fibre
TF Triple fibre
IFI Initial failure indicator
u Crush distance
E_{11} Young’s modulus in 1 direction
\nu_{12} Poisson’s ratio in 1-2 direction
G_{12} Shear modulus
Q_{ij} Reduced Stiffness
A_{ij} Represents the extensional stiffness matrix
B_{ij} Represents the coupling stiffness matrix
D_{ij} Represents the bending stiffness matrix
N_x, N_y, Normal forces in x-direction, y-direction resultants
N_{xy}, Shear force resultants
M_x, M_y, Bending moment resultants
M_{xy}, Twisting moment resultants
k^0, Curvature strain
σ_1^t, Tensile failure stress in the 1 direction
σ_1^c, Compressive failure stress in the 1 direction
σ_2^t, Tensile failure stress in the 2 direction
σ_2^c, Compressive failure stress in the 2 direction
τ_{12}^s, Shear failure stress in the 1-2 plane
CHAPTER ONE

INTRODUCTION

Vehicle crashworthiness has been improved in recent years with attention mainly directed towards reducing the impact of the crash on the passengers. Efforts have been made in experimental research to establish safe theoretical design criteria for the mechanics of crumpling, providing the engineers with the ability to design vehicle structures so that the maximum amount of energy will dissipate while the material surrounding the passenger compartment is deformed, thus protecting the people inside.

During the last two decades, the attention given to crashworthiness and crash energy management has been centred on fibrous composite structures. The main advantages of fibre reinforced composite materials over conventional metals; however, are their high specific strength and stiffness, which can be achieved. It is also interesting to note that despite their relatively low strength and stiffness to weight ratio metal tubes are versatile construction components and are also efficient energy absorbing elements. In that manner, aluminium and paper honeycombs are rated as very efficient energy absorbers.

Moreover, with composites, the designer can vary the type of fibre, matrix and fibre orientation to produce composites with improved material properties. Besides the perspective of reduced weight, design flexibility and low fabrication costs of
composite materials offer a considerable potential for lightweight energy absorbing structures, these facts attract the attention of the automotive and aircraft industry owing to the increased use of composite materials in various applications, such as frame rails and the sub-floor of an aircraft, replacing the conventional materials used

Previous investigations indicated that composite shells deform in a manner different to similar structural components made of conventional materials, (i.e. metals/polymers) since micro failure modes, such as matrix cracking, delamination, fibre breakage etc, constitute the main failure modes of these collapsed structures. Therefore, this complex fracture mechanism renders difficulties to theoretically model the collapse behaviour of fibre-reinforced composite shells.

Extensive research work has focused primarily on axial loading and bending of simple thin-walled composite structures. The effect of specimen geometry on the energy absorption capability was investigated by varying the cross-sectional dimensions, wall thickness and length of the shell. The effect of the type of composite material, laminate sequence, loading conditions and strain rate on the crashworthy behaviour of the components were also studied. Environmental effects related to crash characteristics of composites have also been investigated.

However, the behaviour of crushable composite energy absorber devices is often unstable, with energy absorption rising and falling erratically. This instability is one of the more critical problems in using fibre composites for crash energy management. It is interesting to note that specific energy absorption capability of
composite devices is significantly influenced by the failure mechanism, which depends on many factors, such as material constituent, fibre architecture, fabrication process, geometry of elementary substructures and loading conditions.

It could be concluded from that axial crushing of non-trigger tubes (i.e. tube with constant thickness and straight wall) produces an unstable load-end shortening behaviour characterized by energy absorption rising and falling erratically. In previous work, the initial crush failure load was found to have a significant effect on the energy absorption during crush.

To achieve stable crush-deformation behaviour as well as to maximize the energy absorption capability of the composites structures, the sharpness and magnitude of the instability needs to be minimized or eliminated. Extensive experimental work concerning the axial collapse of thin-walled composite material tubes of various geometries and material under various loading conditions demonstrated a high energy absorbing capability of these materials.

The operating loads of laterally compressed tubes are for lower than those of axially compressed tubes and the energy absorbed by laterally loaded tube is about an order of magnitude less than what it can absorb under axial compression, however the energy absorbing capability of laterally compressed tubes can be increased by encouraging the tubes to deform in alternative modes which involve more plastic hinges. The stable crushing stage is generally more important because this is where much of the energy absorption takes place. Compliant material (i.e. cotton fabric
CTFRP) has used to achieve this stability, with low post crash stage. Whereas, when
the stiff composite material is used (i.e. carbon fibre CFRP or tissue mat GTFRP), it
exhibited high post crash stage with unstable behaviour.

The inspiration of the current work is to study the crashworthiness performance of
segmented woven roving laminated composite tubes in terms of energy absorption
capability and load carrying capacity subjected to quasi-static axial and lateral
crushing load.

1.1 Segmentation Concept

Most of the existing data concerns with the failure mechanism and energy absorbing
characteristics are obtained from the crushing investigation of composite circular
tubes. Therefore, it was preferred to examine the effect of segmentation on their
crushing behaviour. Tubes with same diameters were chosen to eliminate the
influence of geometry so that the effect of segmentation remains.

1.2 Objectives

The main objectives of this work are:

1. To study the effect of loading conditions on crushing behaviour of segmented
 composite tubes.
2. To study the crushing behaviour for different arrangements of axial segmentation composite tubes.

3. To examine the energy absorption capability of axially segmented composite tubes.

1.3 Significance of the Study

It is interesting to study the effect of the segmentation on composite materials, and also to investigate the energy absorber devices using different materials as composite-composite materials. This study is important because of the following;

1. The present study is focused on introducing a new concept for collapsible energy absorber device.

2. This study may change the design philosophy of applying the hybrid energy absorber system.

3. The generated data from this study can be useful in the design of energy absorber elements made from composite materials.

1.4 Organization of Thesis

The thesis is organised as follows: Chapter one is an introduction of thesis and the objectives. Chapter two reviews of the literature of the fibre reinforced composite materials and studies on their use as energy absorption structure devices. Methodology used in this study has explained in Chapter three. Experimental results