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Considerable research interest has been directed towards the use of composite for 

crashworthiness applications, because they can be designed to provide impact energy 

absorption capabilities which are superior to those of metals when compared on 

weight basis. The use of composite circular tubes in  structural applications IS 

becoming more widespread throughout the auto motives, aircraft industry. 

This work examines the effect of segmentation on the crushing behaviour, energy 

absorption and failure mode of composite circular tubes. The segmented composite 

tube consists of more than one material, each with its own specific functions. 

Through out this study, segmented and non segmented composite tubes with 

different sequences were experimentally investigated under axial and lateral loading 

conditions. The effect of fibre reinforcement type and segments sequence on energy 

absorption and load carrying capacity were also presented and discussed. 
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Load-displacement curves and defonnation histories of typical specimens are 

presented and discussed. The results showed that non-segmented composite tubes 

were found to be very brittle (i.e. tissue mat glass fibre/epoxy tubes), and show very 

low initial fai lure crush load value of 1 .  89kN, as well as low specific energy 

absorption value of O.065kJ/kg under axial crushing. Whereas, the carbon fabric fibre 

reinforced plastic (CFRP) tubes showed highest load-carrying capacity among the 

tested specimens with initial fai lure crush load value of I8.85kN as well as specific 

energy absorption value of I9 .27kJ/kg. 

On the other hand, segmented composite tubes including the tissue mat glass fibres 

were found to suffer from low energy absorption and the catastrophic failure 

mechanism initiated at the part made of tissue mat glass fibre/epoxy. Segmented 

Composite tubes from carbon fabric fibre and cotton fabric fibres exhibited good 

specific energy absorption value of 1 3 . 53kJlkg as well as stable load-carrying 

capacity under axial loading. A change in segmentation sequence affects the crush 

loads significantly just for double fibre segmented composite tubes under lateral 

loading. 

The axial loaded segmented composite tubes have better load carrying capacity and 

energy absorption capability compared to the laterally loaded segmented composite 

tubes, and the failure modes were quite different. 
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Banyak penyelidikan kini berarah kepada penggunaan komposit bagi aplikasi 

"crashworthiness" disebabkan ia dapat di reka bentuk untuk menyediakan keupayaan 

tenaga hentaman impak, dimana adalah lebih tinggi daripada logam-logam apabila 

hendak dibandingkan dengan ciri berat. Kegunaan komposit tiub berongga di dalam 

aplikasi struktur telah mendapat perhatian meluas h ingga ke industri automotif, udara 

dan aeroangkasa. 

Kerja penyelidikan yang d ilakukan ini meliputi kesan segmentasi terhadap kelakuan 

remukan dan mod tenaga penyerapan bagi tiub komposit berongga. Tiub komposit 

bersegmen mempunyai lebih dari satu bahan, setiap satu mempunyai cirri masing-

masing. Kajian yang dibuat, segmen atau tidak bersegmen dengan cirri-ciri yang 

berlainan telah disiasat dibawah bebanan axial dan lateral. Kesan daripada jenis 

gentian tetulang dan ciri-ciri segmen terhadap tenaga penyerapan dan kapasiti beban 
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bawaan juga telah dibincankan. 'Lengkungan beban-anjakan dan sejarah deformasi 

bagi spesimen tipikal telah juga dibincangkan. Keputusan uj ikaj i  telah menunj ukkan 

bahawa tiub komposit tidak bersegmen adalah sangat rapuh ( sebagai contoh : tikat 

tisu gentian kaca/tiub epoksi). Atau mempunyai tenaga penyerapan yang rendah 

(sebagai contoh: fabrik gentian kapas/epoksi). 

Komposit tiub bersegmen pula, term as uk tikar tisu gentian kaca telah didapati 

mengalami kadar penyerapan tenaga yang rendah dan mekanisma kegagalan teruk 

pada bahagian yang diperbuat daripada gentian/epoksi tersebut. Komposit tiub 

bersegmen menunjukkna kadar penyerapan yang baik dan juga kapasiti beban 

bawaan yang stabil dibawah bebanan axial. Perubahan ciri segmentasi tiub komposit 

akan mempengaruhi beban remukan (DF) dibawah bebanan lateral . 

Beban axial tiub komposit bersegmen mempunyai kadar beban bawaan dan 

keupayan kadar penyerapan tenaga keatas tiub komposit bersegmen yang dikenakan 

beban lateral tetapi pada sifat kegagaJan yang berbeza. 
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NOMENCLATURE 

A Cross-section area 

R Radius of the tube 

o Diameters of the tube 

H Height of the tube 

M Weight of the tube 

P m Average crush failure load 

PI Initial crush failure load 

PIP First peak crush failure load 

P pI Highest first peak crush load 

s Instantaneous deformation 

CFE Crush force efficiency 

SE Stroke efficiency 

Es Crushing energy absorbed per unit mass 

MM Multi failure modes 

SM Single failure modes 

CT Cotton fabric fibre 

C Carbon fabric fibre 

GT Tissue mat glass fibre 

FRP Fibre-reinforced plastic 

SF Single fibre 

OF Double fibre 

TF Triple fibre 

IFI Initial failure indicator 

u Crush distance 

Ell Young's modulus in 1 direction 

Ul2 Poisson's ratio in 1-2 direction 

GI2 Shear modulus 

Q Reduced Stiffness 
lj 

AI] Represents the extensional stiffness matrix 

BI] Represents the coupling stiffness matrix 

01] Represents the bending stiffness matrix 
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CHAPTER ONE 

INTRODUCTION 

Vehicle crashworthiness has been improved in recent years with attention mainly 

directed towards reducing the impact of the crash on the passengers. Efforts have 

been made in experimental research to establish safe theoretical design criteria for 

the mechanics of crumpling, providing the engineers with the ability to design 

vehicle structures so that the maximum amount of energy will dissipate while the 

material surrounding the passenger compartment is deformed, thus protecting the 

people inside. 

During the last two decades, the attention given to crashworthiness and crash energy 

management has been centred on fibrous composite structures. The main advantages 

of fibre reinforced composite materials over conventional metals; however, are their 

high specific strength and stiffness, which can be achieved. It is also interesting to 

note that despite their relatively low strength and stiffness to weight ratio metal tubes 

are versatile construction components and are also efficient energy absorbing 

elements. In that manner, aluminium and paper honeycombs are rated as very 

efficient energy absorbers. 

Moreover, with composites, the designer can vary the type of fibre, matrix and fibre 

orientation to produce composites with improved material properties. Besides the 

perspective of reduced weight, design flexibility and low fabrication costs of 



composIte matenals offer a consIderable potentIal for lIghtweIght energy absorbmg 

structures, these facts attract the attentIon of the automotIve and aircraft mdustry 

owmg to the mcreased use of composIte matenals m vanous applIcatIOns, such as 

frame ralls and the sub-floor of an aircraft, replacmg the conventIOnal matenals used 

PrevIous mvestIgatIOns mdicated that composIte shells deform m a manner dIfferent 

to sImIlar structural components made of conventIonal matenals, (1 e 

metals/polymers) smce mIcro faIlure modes, such as matnx crackmg, delammatIOn, 

fibre breakage etc , constItute the mam faIlure modes of these collapsed structures 

Therefore, thIS complex fracture mechamsm renders dIfficultIes to theoretIcally 

model the collapse behavIOur of fibre-remforced composIte shells 

ExtensIve research work has focused pnmanly on aXIal loadmg and bendmg of 

SImple thm-walled composIte structures The effect of speCImen geometry on the 

energy absorptIOn capabIlIty was mvestIgated by varymg the cross-sectIOnal 

dImenSIOns, wall thIckness and length of the shell The effect of the type of 

compOSIte matenal, lammate sequence, loadmg condItIOns and stram rate on the 

crashworthy behavIOur of the components were also studIed EnVIronmenta l effects 

related to crash charactenstlcs of compOSItes have also been mvestlgated 

However, the behavIOur of crushable compOSIte energy absorber deVIces IS often 

unstable, wIth energy absorptIOn nsmg and falling erratIcally ThIS instabIl I ty IS one 

of the more cntlcal problems 111 uS1I1g fibre compOSItes for Clash energy 

management It IS mterestmg to note that speCific energy absorptIon capabilIty of 
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composite devices is significantly influenced by the failure mechanism, which 

depends on many factors, such as material constituent, fibre architecture, fabrication 

process, geometry of elementary substructures and loading conditions. 

It could be concluded from that axial crushing of non-trigger tubes (i .e .  tube with 

constant thickness and straight wall) produces an unstable load-end shortening 

behaviour characterized by energy absorption rising and falling erratically. In 

previous work, the initial crush failure load was found to have a significant effect on 

the energy absorption during crush. 

To achieve stable crush-deformation behaviour as well as to maximize the energy 

absorption capability of the composites structures, the sharpness and magnitude of 

the instabil ity needs to be minimized or eliminated. Extensive experimental work 

concerning the axial collapse of thin-walled composite material tubes of various 

geometries and material under various loading conditions demonstrated a high 

energy absorbing capability of these materials. 

The operating loads of lateral ly compressed tubes are for lower than those of axial ly 

compressed tubes and the energy absorbed by laterally loaded tube is about an order 

of magnitude less than what it can absorb under axial compression, however the 

energy absorbing capability of laterally compressed tubes can be increased by 

encouraging the tubes to deform in al ternative modes which involve more pl astic 

hinges. The stable crushing stage is generally more important because this is where 

much of the energy absorption takes place. Compliant material ( i . e . cotton fabric 
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CTFRP) has used to achieve this stabi lity, with low post crash stage. Whereas, when 

the stiff composite material is used (i .e. carbon fibre CFRP or tissue mat GTFRP), it 

exhibited high post crash stage with unstable behaviour. 

The inspiration of the current work is to study the crashworthiness performance of 

segmented woven roving laminated composite tubes in terms of energy absorption 

capability and load carrying capacity subj ected to quasi-static axial and lateral 

crushing load. 

1 . 1  Segmentation Concept 

Most of the existing data concerns with the fai lure mechanism and energy absorbing 

characteristics are obtained from the crushing investigation of composite circular 

tubes. Therefore, it was preferred to examine the effect of segmentation on their 

crushing behaviour. Tubes with same diameters were chosen to eliminate the 

influence of geometry so that the effect of segmentation remains. 

1.2 Objectives 

The main objectives of this work are: 

1 .  To study the effect of  loading cond itions on crushing behaviour of segmented 

composite tubes. 
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2 .  To study the crushing behaviour for different arrangements of axial 

segmentation composite tubes. 

3 .  To examine the energy absorption capabil ity of axially segmented composite 

tubes. 

1.3 Significance of the Study 

It is interesting to study the effect of the segmentation on composite materials, and 

also to investigate the energy absorber devices using different materials as 

composite-composite materials .  This study is important because of the fol lowing; 

1. The present study is focused on introducing a new concept for collapsible 

energy absorber device. 

2. This study may change the design philosophy of applying the hybrid 

energy absorber system. 

3 .  The generated data from this study can be useful in the des ign o f  energy 

absorber elements made from composite materials. 

1 .4 Organization of Thesis 

The thesis is organised as follows: Chapter one is an introduction of  thesis and the 

objectives. Chapter two reviews of the literature of the fibre reinforced composite 

materials and studies on their use as energy absorption structure devices. 

Methodology used in thi s study has explained in Chapter three. Experimental results 
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