DEVELOPMENT OF A CARTESIAN PAINTER ROBOT FOR CONSTRUCTION INDUSTRY

A. K. M. PARVEZ IQBAL

ITMA 2002 4
DEVELOPMENT OF A CARTESIAN PAINTER ROBOT FOR CONSTRUCTION INDUSTRY

By

A. K. M. PARVEZ IQBAL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in the Fulfillment of the Requirements for the Degree of Master of Science

November 2002
TO MY DEAREST FATHER, MOTHER, SISTER AND BROTHER
Nowadays robots are widely used in many applications such as in factories, the mining industries, the automobile industry etc. Currently, the application of robot is still not widely implemented in construction industry. In construction industry, robots are designed to increase speed and improve the accuracy of construction field operations. It can also be used to do hazardous and dangerous job in construction. For example, house painting is done manually. This process can be simplified using a special dedicated robot. It is very difficult and troublesome for human to work in an upright position especially for painting, cleaning and screwing in the ceiling for a long time. Painting in an upright position is also very dangerous for the eyes. To overcome this difficulty, a painter robot system is proposed and developed.

The main objective of this project is to develop a three-degree of freedom (DOF) painter robot and its intelligent system. In order to achieve the main objective, the following works are carried out:

Development of the mechanical structure of the robot. This includes the positioning module and end-effector module. The positioning module is divided into three parts
namely, X-axis module, Y-axis module and Z-axis module. Development of the electrical and electronic system of the robot. These include its power distribution system, sensor system, motor driver system, electro-pneumatic system and programmable logic controller and development of the controlling program of the robot.

The proposed painter robot has three degree of freedom (DOF). For X direction, a single-phase induction motor and a chain-sprocket mechanism are used. Two limit switches and two electronic sensors are used to limit the movement in X direction. Another sensor is used to position the robotic arm along the X direction. For Y direction, two limit switches are used to limit the movement in Y direction. Two sensors are used to protect the robotic arm along the Y direction. The single-phase motor with an inverter is utilized to control the speed of the robot in Y direction. For Z direction, a parallelogram structure and a ball-screw mechanism are used in this project. A single-phase brake motor and a photoelectric sensor are used to control the position in Z direction. Two limit switches are used to limit the movement in Z direction. The proposed robot is used to paint the ceiling of the houses. The paint is sprayed by the robot automatically using the pneumatic system.

The software part involves the design and development of the system control software. The system control software is created using FP WIN GR PLC programming software. This project implements the Matsushita NAIS FP0 programmable logic controller (PLC) to control the overall system of the machine.
From the tests conducted on the painter robot, it is observed that the robot is operating according to its original plan.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains.

PEMBINAAN ROBOT PENGECAT KARTESIAN UNTUK INDUSTRI PEMBINAAN

Oleh
A. K. M. PARVEZ IQBAL

November 2002

Pengerusi: Dr. Ishak Bin Aris

Fakulti: Institut Teknologi Maju

paksi-Y dan modul paksi-Z. Pembinaan sistem elektrik dan elektronik robot tersebut. Ini termasuklah sistem pembahagian kuasa, sistem penderia, sistem pemanduan bermotor, sistem elektro-pneumatik dan ‘programmable logic controller’ dan pembinaan program robot tersebut.

Bagian perisian melibatkan penciptaan dan pembinaan perisian sistem pengawalan. Perisian sistem pengawalan dicipta dengan menggunakan program perisian FP WIN GR PLC. Projek ini menggunakan program ‘logic controller’ (PLC) Matsushita NAIS FPO untuk mengawal keseluruhan sistem mesin tersebut.
Daripada ujian yang dijalankan ke atas robot pengecat tersebut, didapati bahawa robot tersebut beroperasi mengikut pelan asal.
ACKNOWLEDGEMENTS

The author could not have accomplished this project without the help of God. Thanks God that the author can complete his project successfully. First, the author would like to express his deep gratitude to his main project supervisor, Dr. Ishak Aris, his supervisory committee, Assoc. Prof. Dr. Shamsuddin Sulaiman, Dr. Abd. Rahman Ramli and Dr. Md. Mahmud Hasan for their valuable advice, guidance and willingness to share their expertise.

The author also is indebted to the staff of Institute of Advanced Technology and faculty of Engineering, especially to Mr. Tajul Ariffin for providing the equipment, suggestions and valuable aids to carry out this project.

The author would also like to acknowledge the help of Mr. Danny Lim of Intellogic Technology Sdn. Bhd. for his various ideas, suggestions and supplying material as required.

The author would like to thanks his brother-in law Mr. Altaf – Ul- Amin who gave him the information about UPM and helped a lot at the initial stage of study.

Special thanks to his dearest parents, Mr. Md. Azizul Huq, Mrs. Kawsari Zannat, His dearest sister Aziza Kawsar Parvin, his dearest brother A. K. M. Asif Iqbal, his dearest niece Rafia Raunak Amin and all his relative for their patience, encouragement and support.
Last but not least, the author would like to thanks to Dr. Zangir Alam and his family and the author’s roommate and friend Mr. Md. Jakir Hossen for their moral support in the entire study period.
I certify that an Examination Committee met on 14th November 2002 to conduct the final examination of A. K. M. Parvez Iqbal on his Master of Science thesis entitled “Development of a Cartesian Painter Robot for Construction Industry” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Napsiah Ismail, Ph.D.
Assoc. Professor
Department of Mechanical and Manufacturing Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ishak Bin Aris, Ph.D.
Lecturer
Department of Electrical and Electronics Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Abd. Rahman Ramli, Ph.D.
Lecturer
Department of Computer and Communication System
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Shamsuddin Sulaiman, Ph.D.
Assoc. Professor
Department of Mechanical and Manufacturing Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Md. Mahmud Hasan, Ph.D.
Lecturer
Department of Mathematics
Faculty of Science
University Brunei Darussalam
(Member)

SHAMSHER MOHAMAD RAMADILI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

26 NOV 2002
This thesis submitted to the Senate of University Putra Malaysia has been accepted as fulfillment of the requirement of the degree of Master of Science. The members of the Supervisory Committee are as follows:

Ishak Bin Aris, Ph.D.
Lecturer
Department of Electrical and Electronics Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abd. Rahman Ramli, Ph.D.
Lecturer
Department of Computer and Communication System
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Shamsuddin Sulaiman, Ph.D.
Assoc. Professor
Department of Mechanical and Manufacturing Engineering
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Md. Mahmud Hasan, Ph.D.
Lecturer
Department of Mathematics
Faculty of Science
University Brunei Darussalam
(Member)

![Signature]

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 JAN 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

A. K. M. Parvez Iqbal
A. K. M. PARVEZ IQBAL
Date: 26-11-2002
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1.1
1.2 Problem Statement 1.2
1.3 Objectives 1.4
1.4 Overview of the Project 1.5
1.5 Limitation of the Robot 1.8
1.6 Layout of the Thesis 1.8

2 LITERATURE REVIEW

2.1 Automation and Robots 2.1
2.2 Painting Machine 2.3
2.3 Robot Classification 2.12
2.3.1 Drive Technology 2.12
2.3.2 Work-envelope Geometries 2.14
2.3.3 Motion and Control Method 2.19
2.4 Dynamic Analysis of Parallelogram Structure 2.19
2.5 Intelligent Robotic System 2.24
2.5.1 Sensing and Effecting 2.24
2.5.2 Knowledge about the Environment (World Model) 2.25
2.5.3 Interpreting 2.25
2.5.4 Generating 2.26
2.5.5 Reasoning 2.26
2.6 Components of Control System and Automation 2.27
2.6.1 The Control of Motor 2.27
2.6.1.1 AC Induction Motor 2.27
2.6.1.2 DC Servo Motor 2.28
2.6.1.3 Stepper Motor 2.29
2.6.2 Sensors 2.30

xiv
2.6.3 Solenoids Devices 2.31
2.6.4 Power Transmission Component 2.33
 2.6.4.1 Belts and Chains 2.33
 2.6.4.2 Lead Screw and Ball Screw 2.33
2.6.5 Electro-pneumatic System 2.35
2.7 Robot Controller and Programming Software 2.36
 2.7.1 The Smart Step Controller (3-Axis Controller) 2.37
 2.7.2 Programmable Logic Controller (PLC) 2.37
 2.7.2.1 Basis of Programmable Logic Controller 2.38
 2.7.2.2 Types of Inputs and Outputs 2.39
 2.7.2.3 Hardware Control System 2.40
 2.7.2.4 Programmable Control System 2.40
 2.7.2.5 The Components of PLC 2.41
 2.7.2.6 The Advantage and Disadvantages of PLC 2.42
 2.7.3 Robot Languages 2.43
2.8 Summary of Literature Review 2.45

3 METHODOLOGY
3.1 Overview 3.1
3.2 Mechanical Design 3.4
 3.2.1 Positioning Module 3.5
 3.2.1.1 Design of X-axis Module 3.5
 3.2.1.1.1 X-axis Motor Torque Calculation 3.6
 3.2.1.2 Design of Y-axis Module 3.11
 3.2.1.2.1 The Selection of the Y-axis Module Guide Rod 3.11
 3.2.1.3 Design of Z-axis Module 3.14
 3.2.1.3.1 Z-axis Harden Guide Rod Selection 3.16
 3.2.1.3.2 Z-axis Motor Torque Calculation 3.18
 3.2.2 End-Effector Module 3.20
 3.2.2.1 Design of End-Effector Module 3.20
 3.2.3 Dynamic Formulation of the Parallelogram Structure 3.22
3.3 Electrical and Electronic System 3.28
 3.3.1 Power Supply Module 3.28
 3.3.2 Programmable Logic Controller (PLC) 3.29
 3.3.3 Sensing Module 3.32
 3.3.3.1 Electrical Sensor Circuitry 3.33
 3.3.3.1.1 Photoelectric Sensors 3.33
 3.3.3.1.2 Inductive Sensor 3.34
 3.3.3.1.3 Limit Switch 3.35
 3.3.4 Electro-Pneumatic System Design 3.36
 3.3.5 Control of AC Induction Motor 3.39
 3.3.6 Control Panel 3.41
3.4 Software Development 3.42
 3.4.1 Flow Chart 3.42
3.4.2 Ladder Diagram Construction 3.49
3.4.3 PLC Programming Development Software 3.54
3.4.4 Creating and Editing the Program 3.55
3.5.5 Compiling Program 3.56
3.4.6 The Input and Output Port Indication 3.56

4 RESULT AND DISCUSSION
 4.1 X-axis Module 4.1
 4.1.1 Test Conducted to the X-axis Module 4.6
 4.1.1.1 Repeated Positioning Accuracy Test for X-axis 4.7
 4.1.1.2 X-axis Positioning Sensor Test 4.8
 4.1.1.3 Test for Protection Sensor in X Direction Movement 4.10
 4.2 Y-axis Module 4.11
 4.2.1 Test Conducted to the Y-axis Module 4.14
 4.2.1.1 Repeated Positioning Accuracy Test for Y-axis 4.14
 4.2.1.2 Test of Protection Sensor in Y Direction Movement 4.15
 4.3 Z-Axis Module 4.17
 4.3.1 Test Conducted to the Z-axis Module 4.21
 4.3.1.1 Repeated Positioning Accuracy Test for Z-axis 4.21
 4.3.1.2 Ceiling Detection Sensor Test 4.22
 4.4 End-Effector Module 4.24
 4.4.1 Test Conducted to the End-Effector Module 4.25
 4.4.1.1 The Single Acting Cylinder Test 4.25
 4.4.1.2 Pressure Sensor Test 4.26
 4.4.1.3 Pneumatic Control System 4.28
 4.5 AC Induction Motor Drivers 4.29
 4.6 System Control Software 4.32
 4.7 System Integration 4.37
 4.7.1 Painting Test 4.40
 4.7.2 Cost of the Project 4.41

5 CONCLUSION AND RECOMMENDATION
 5.1 Conclusion 5.1
 5.2 Recommendation 5.3

REFERENCES R.1

APPENDIXES
Appendix A: Mechanical Drawing of the Painter Robot A
Appendix B: PLC Programming B
Appendix C: Mechanical Components and Design Chart C
Appendix D: Electrical Components D
Appendix E: Pneumatic Components E

BIODATA F
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Robot work envelopes based on major axes</td>
<td>2.15</td>
</tr>
<tr>
<td>3.1</td>
<td>Input and output mapping of the system</td>
<td>3.57</td>
</tr>
<tr>
<td>4.1</td>
<td>Testing result of the X-axis-positioning sensor</td>
<td>4.9</td>
</tr>
<tr>
<td>4.2</td>
<td>Testing result of the protection sensor in X-direction movement</td>
<td>4.10</td>
</tr>
<tr>
<td>4.3</td>
<td>The testing result of protection sensor in Y-direction</td>
<td>4.16</td>
</tr>
<tr>
<td>4.4</td>
<td>The testing result of ceiling detecting sensor</td>
<td>4.23</td>
</tr>
<tr>
<td>4.5</td>
<td>The operation status of the pressure sensor</td>
<td>4.27</td>
</tr>
<tr>
<td>4.6</td>
<td>The testing result of the motor driver</td>
<td>4.31</td>
</tr>
<tr>
<td>4.7</td>
<td>Type and function of the relays</td>
<td>4.32</td>
</tr>
<tr>
<td>4.8</td>
<td>The I/O mapping of the FP0 PLC</td>
<td>4.32</td>
</tr>
<tr>
<td>4.9</td>
<td>Robot specification</td>
<td>4.39</td>
</tr>
<tr>
<td>4.10</td>
<td>Cost of the project</td>
<td>4.41</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.1</td>
<td>The overview of the project</td>
<td>1.5</td>
</tr>
<tr>
<td>1.2</td>
<td>The general structure of the system</td>
<td>1.7</td>
</tr>
<tr>
<td>2.1</td>
<td>Relative cost-effectiveness of soft automation</td>
<td>2.2</td>
</tr>
<tr>
<td>2.2</td>
<td>Cartesian robot</td>
<td>2.16</td>
</tr>
<tr>
<td>2.3</td>
<td>Cylindrical robot</td>
<td>2.16</td>
</tr>
<tr>
<td>2.4</td>
<td>Spherical robot</td>
<td>2.17</td>
</tr>
<tr>
<td>2.5</td>
<td>SCARA robot</td>
<td>2.18</td>
</tr>
<tr>
<td>2.6</td>
<td>Articulated robot</td>
<td>2.18</td>
</tr>
<tr>
<td>2.7</td>
<td>Parallelogram structure</td>
<td>2.19</td>
</tr>
<tr>
<td>2.8</td>
<td>Solenoids: (a) Basic construction; (b) relay switch; (c) solenoid valve</td>
<td>2.32</td>
</tr>
<tr>
<td>2.9</td>
<td>Push and pull solenoid and force/ displacement characteristics</td>
<td>2.32</td>
</tr>
<tr>
<td>2.10</td>
<td>The lead screw and ball screw</td>
<td>2.34</td>
</tr>
<tr>
<td>2.11</td>
<td>Basic of programmable logic controller</td>
<td>2.38</td>
</tr>
<tr>
<td>2.12</td>
<td>Type of input and output signal</td>
<td>2.39</td>
</tr>
<tr>
<td>2.13</td>
<td>Signal from switch or sensors</td>
<td>2.39</td>
</tr>
<tr>
<td>3.1</td>
<td>Project activities</td>
<td>3.2</td>
</tr>
<tr>
<td>3.2</td>
<td>Block diagram of the robotic system of this project</td>
<td>3.4</td>
</tr>
<tr>
<td>3.3</td>
<td>The base frame</td>
<td>3.5</td>
</tr>
<tr>
<td>3.4</td>
<td>Total system of the project</td>
<td>3.6</td>
</tr>
<tr>
<td>3.5</td>
<td>The Y axis module and Z-axis module</td>
<td>3.14</td>
</tr>
<tr>
<td>3.6</td>
<td>The motor, bearing, chain and sprocket arrangement</td>
<td>3.16</td>
</tr>
</tbody>
</table>
Figure 3.7: The end effector module 3.20
Figure 3.8: The air compressor, paint tank and spray gun 3.21
Figure 3.9: The parallelogram structure of the system. 3.22
Figure 3.10: Power supply distributions of the painter robot 3.29
Figure 3.11: Basic structure of PLC 3.31
Figure 3.12: Photoelectric sensor 3.33
Figure 3.13: Wiring diagram for the connection to the power supply unit and PLC 3.34
Figure 3.14: The inductive sensor 3.35
Figure 3.15: Wiring diagram for connection of limit switch to the power supply unit and PLC 3.36
Figure 3.16: Signal flow diagram and pneumatic elements 3.37
Figure 3.17: (a) Pneumatic system; 3.37
Figure 3.17: (b) (b) Electronic control circuit 3.38
Figure 3.18a: Wiring diagram of motor and relays for the connection to PLC 3.40
Figure 3.18b: Wiring diagram of motor and inverter for the connection to PLC 3.40
Figure 3.19: Block diagram of the control panel 3.41
Figure 3.20: The flow chart of the program 3.43
Figure 3.21: The FPWIN GR programming Edit window 3.54
Figure 3.22: Edit window of the FPWIN GR 3.55
Figure 3.23: Edit window before compiling 3.56
Figure 4.1: Slider guide ways and runner block 4.2
Figure 4.2: The first mounting used to hold the Y-axis module 4.3
Figure 4.3: The first mounting used to hold the Y-axis module 4.4
Figure 4.4: The chain bearing and idler arrangement 4.5
Figure 4.5: The platform control panel and painting tanc. 4.5
Figure 4.6: The motor and coupling of X-axis 4.6
Figure 4.7: Repeated positioning length 4.7
Figure 4.8: Testing of X axis positioning sensor 4.9
Figure 4.9: The inductive proximity sensor 4.9
Figure 4.10: The testing of protection sensor 4.10
Figure 4.11: Protection sensor in X-direction 4.11
Figure 4.12: The guide rod and linear bushing 4.12
Figure 4.13: The Y-axis module 4.13
Figure 4.14: Motor and coupling of Y-axis module 4.13
Figure 4.15: Repeated positioning length of Y-axis module 4.15
Figure 4.16: The testing of protection sensor 4.16
Figure 4.17: The protection sensor of Y-axis module 4.17
Figure 4.18: Parallelogram structure 4.18
Figure 4.19: The bottom part of Z-axis module 4.19
Figure 4.20: Guide rod and bushing 4.19
Figure 4.21: Ball screw and nut. 4.20
Figure 4.22: Motor and coupling of Z-axis module 4.20
Figure 4.23: Repeated positioning length 4.22
Figure 4.24: The testing of protection sensor 4.23
Figure 4.25: The ceiling-detecting sensor 4.24
Figure 4.26: Cylinder and spray gun 4.25
Figure 4.27: (a) Control of single acting cylinder; (b) single acting cylinder advances when valve is actuated 4.26
Figure 4.28: The testing of the pressure sensor

Figure 4.29: The resting of the pneumatic control valve

Figure 4.30: (a) The testing of Z-axis brake motor; (b) The testing of X-axis motor;

Figure 4.30 (c): The testing of Y-axis motor

Figure 4.31: Homing function

Figure 4.32: Start and reset function

Figure 4.33 Shift register function

Figure 4.34: Interlock function

Figure 4.35: Painting in forward mode function

Figure 4.36: X-axis positioning function

Figure 4.37: Painting in backward mode function

Figure 4.38: Break opening function

Figure 4.39: X-axis forward mode function

Figure 4.40: Z-axis forward mode function

Figure 4.41: Pneumatic valve opening function

Figure 4.42: Y-axis forward mode function

Figure 4.43: Y-axis backward mode function

Figure 4.44: Z-axis motor run mode function

Figure 4.45: X-axis motor run mode function

Figure 4.46: Indicator light opening function

Figure 4.47: The mechanical structure of the system

Figure 4.48: The control panel

Figure 4.49: The painted area
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternative current</td>
</tr>
<tr>
<td>AML</td>
<td>A manufacturing language</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer aided design</td>
</tr>
<tr>
<td>CCW</td>
<td>Counter clock wise</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of freedom</td>
</tr>
<tr>
<td>I/O</td>
<td>Input and output</td>
</tr>
<tr>
<td>MINT</td>
<td>Motion interpreter</td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable logic controller</td>
</tr>
<tr>
<td>RIA</td>
<td>Robotic industries association</td>
</tr>
<tr>
<td>RPP</td>
<td>Revolute, prismatic, prismatic</td>
</tr>
<tr>
<td>RRP</td>
<td>Revolute, revolute, prismatic</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(K \) Kinetic energy
\(T \) Torque
\(J \) Inertia
\(T \) Time
\(\omega \) Angular velocity
\(g \) Gravity constant
\(W_L \) Weight of the load
\(W_S \) Weight of the sprocket
\(W_C \) Weight of the chain
\(F \) Frictional Force
\(R \) Radius of sprocket
\(V \) Linear velocity
\(\rho \) Density
\(R \) Radius of shaft
\(L \) Length
\(\mu_s \) Static coefficient of friction
\(d \) Diameter of shaft
\(M \) Maximum moment
\(\delta_d \) Design Stress
\(m \) Mass
\(\delta_u \) Ultimate stress
\(\delta_y \)
Yield stress

\(e \)
Efficiency of ball-screw

\(m \)
Meter

\(n \)
Newton

\(p \)
Pitch

\(\text{mm} \)
Millimeter

\(\text{cm} \)
Centimeter

\(L_n \)
Measured distance

\(M_1 \)
Motion of parallelogram link

\(M_2 \)
Motion of parallelogram link

\(V \)
Potential energy.