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Faculty Institute of Advanced Technology 

The study proposed and demonstrated a strategy smooth trajectory planning to follow 

the path constrained with time optimal trajectories for the manipulator. The problem 

in trajectory planning was to find a smooth trajectory function and optimal joint 

optimisation processes. Such trajectories were obtained by considering the 

kinematics properties for velocities, accelerations and jerks profiles in joint 

coordinates for the end-effector to move the path constraints. The method was based 

on the position profile composed of three polynomial segments such as 4-3-4, 3-5-3 

and 3-cubic trajectory and five polynomial segments for 5-cubic trajectory. These 

polynomial segments combination allowed the analytical solution to the minimum 

time trajectory problem under consideration of velocity, acceleration and jerk by 

using Mathematica software. 

A number of simulations were performed to demonstrate the trajectory methods 

using robot simulation PUMA 560 model. The robot simulation model was 

developed using Mechanical Desktop software and the analytical analysis was done 
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using visualNastran software. The simulations showed that the trajectory ability 

methods for the investigation under varying time ratio conditions and the operations 

such as Pick and Place Operation (PPO) and Continuous Path (CP). 

For comparison on varying time ratio 4-3-4 gave a reasonably smooth for normal 

trajectory condition and a ramp at middle segment to generate a minimum free-space 

time compared to 3-5-3 and cubic trajectories. For PPO and CP, 4-3-4 trajectory 

generated a lower values for accelerations and jerks compared to 3-5-3 and cubic 

trajectories. This showed the 4-3-4 trajectory was the best type of joint interpolated 

trajectory planning for any path planning operations. 
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Satu strategi telah dicadang dan ditunjuk ajar untuk perancangan trajektori yang 

lancar mengikut kekangan laluan dengan masa optimum untuk manipulasi. Masalah 

dalam perancangan trajektori adalah kesukaran mencari fungsi trajektori yang sesuai 

untuk proses-proses kelancaran dan masa yang optimum. 

Trajektori boleh didapati dengan merujuk sifat-sifat kinematik untuk profil-profil 

keJajuan, pecutan dan getaran dalam koordinasi sambungan untuk "end-effector" 

bergerak mengikut kekangan laluan. Kaedah trajektori yang digunakan berdasarkan 

tiga segmen polinomial bagi 4-3-4, 3-5-3 and 3-cubic trajektori dan lima segmen 

polinomial bagi 5-cubic. Gabungan segmen polinomial ini membolehkan 

penyelesaian dan analisa terhadap masalah trajektori dengan masa yang minimum 

dibawah kelajuan, pecutan dan getaran dirujuk menggunakan perisian 

"Mathematica" . 
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Untuk simulasi pula, telah dijalankan terhadap kaedah trajektori menggunakan 

simulasi robot model PUMA 560. Model robot simulasi ini dibangunkan dengan 

perisian "Mechanical Desktop" dan kemudian analisa simulasi dijalankan 

menggunakan perisian "visualNastran 4D". Keputusan simulasi menunjukkan 

kaedah trajektori boleh digunakan untuk menggerakkan robot dengan kajian dibawah 

keadaan berbeza mengikut nisbah masa dan operasi-operasi seperti PPO dan CPo 

Keputusan simulasi menunjukkan perbandingan terhadap perbezaan nisbah masa 

telah memberikan trajektori 4-3-4 satu gerakan yang lebih lancar berbanding 3-5-3 

dan cubic. Bagi operasi-operasi PPO dan CP, trajektori 4-3-4 juga menghasilkan 

nilai yang paling rendah untuk pecutan dan getaran berbanding 3-5-3 dan cubic. Ini 

menunjukkan trajektori 4-3-4 adalah jenis yang terbaik untuk perancangan trajektori 

bagi operasi-operasi rancangan laluan yang diambilkira. 
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1.1 Introduction 

CHAPTER 1 

INTRODUCTION 

Robotic is now firmly established as a critical manufacturing technology, believed 

for its reliability, accepted by today's workforce, and gaining in use at the multi­

industries. Robot is also called robotic arm and known as fixed base manipulators 

that commonly found in industries. 

Both fixed base manipulators and mobile robot conform to the Robotic Industries 

Association of America (RIA) defines a robot as "a reprogrammable, multifunctional 

manipulator designed to move material, parts, tools, or specified device through 

variable programmed motions for the performance of variety of tasks" (Daniela, C.  

1 998, Sciavicco, L.  and Siciliano, B. 1 996, and Fu, K.S .  1 987). However, the focus 

for this work is on fixed base manipulator. 

Industrial robot has seen a big shift in the applications where robots are applied and 

present three fundamental capacities that make them useful in manufacturing 

processes; material handling (e.g. palletising, part sorting and packaging), 

manipulation (e.g. arc and spot welding, spray painting, and laser and water jet 

cutting), and measurement (e.g. object inspection, contour fmding and imperfect 

detection) (Sciavicco, L. and Siciliano, B. 1 996). The high capability demands 

capable to perform complex tasks in minimum time. 
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A manipulator in general, is a mechanical system aimed at manipulating objects. 

Manipulating means to move something with one's hands, as it derives from the 

Latin manus, meaning hand. The basic idea behind the foregoing concept is that 

hands are among the organs that the human brain can control mechanically with the 

highest accuracy, as the work of an artist like Picasso, of an accomplished guitar 

player, or of a surgeon can attest (Angeles, J. 1 997). 

The manipulators have existed ever since the need for manipulating probe tubes 

containing radioactive substances during World War II (Fu, K.S.  1 987 and Angeles, 

J. 1 997). They have developed to the extent that they are now capable of actually 

mimicking motions of the human arm . Now, these mechanical devices emulation of 

the human arm or hand can be programmed to automatically manipulate objects in 

physical space and the real world. 

The control of interaction between a robot manipulator and the environment is 

crucial for successful execution of a number of practical tasks where the robot end­

effector (EE) has to manipulate an object or perform some operation on a surface. 

Typically examples include polishing, deburring, machining or assembly. A general 

strategy to control interaction with environment can be based on the number of 

degree of freedom (DOF) involved. During interaction, the environment set 

constraints on the geometric paths followed by EE. This situation is generally 

referred to as constrained motion. 

When only the translation DOF of the motion are constrained, the interaction task 

can be classified as a 3-DOF task because only linear forces may arise during 

2 


