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This study aims at incorporating the use of the boundary element method 

(BEM) as an efficient and fast numerical method for the solution of the problem of 

the elastohydrodynamic (EHL) of hard rolling line contact. EHL of hard rolling is 

the dominant mode of lubrication in many critical, highly stressed machine elements 

such as gears, cams and followers, and bearings. The study of the stress 

concentration and deformation is important to predict the performance and the life 

expectancy against failures. These failures are manifested in wear, fatigue and 

scuffing. This fundamental study is based on isothermal, steady state, and smooth 

line contact EHL. The rolling of two cylindrical rollers was approximated by a 

roller and a plane. 

The hard rolling EHL relates to counter-formal contact elements made of 

high elastic modulus materials such as metals. The problem is to seek a solution, 

which reconciles the hydrodynamic equation represented by the Reynolds equation, 

and the elasticity equation while at the same time allowing for the variation of the 

lubricant properties with pressure. The resultant regime is highly non-linear. 
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A hybrid solution is util ised to solve the elasticity problem using the BEM, 

and to solve the Reynolds equation for the pressure us ing the finite difference 

method (FDM) in a ful ly coupled solution. The BEM fundamental ly consists of the 

transformation of the partial differential equations, which describe the behaviour of 

the variables ins ide and on the boundary of the domain into integral equation 

relating to the boundary values, and the numerical solution of these equations. The 

boundary integral equation is formulated for the elasticity and solved using the 

BEM. The hydrodynamic equation is solved using FDM. The coupled solution i s  

solved using Newton-Raphson iterative technique. The converged solut ion gives the 

pressure distibution and the lubricant film thickness. 

The overa l l  result  of executing the hybrid BEM-FDM program gives a ful l  

agreement when compared to the program using FDM while resulting in  reduction 

in the CPU time. The results also agree with other publ ished numerical works. These 

veri fy the use of the developed method. To ful ly uti l ize the advancement of the 

developed program, an extension of the models needs to include a non-Newtonian 

behaviour of lubricant and the thermal effects. 
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Objektif ini adalah untuk menggabungkan penggunaan kaedah unsur 

sempadan (BEM)- sebagai satu kaedah berangka yang berkesan dan cepat bagi 

penyelesaian masalah pelinciran hidrodinamik-kenyal (EHL), bagi sentuhan garisan 

penggelekan keras. EHL bagi penggelekan keras adalah ragam yang paling 

mustahak bagi pelinciran dalam banyak unsur mesin yang kritikal serta bertegasan 

tinggi seperti gear, sesondol dan pengikut, dan galas. Kaj ian bagi tumpuan tegasan 

dan ubah bentuk adalah penting bagi meramalkan prestasi dan jangkaan hayat 

menentang kegagalan-kegctgalan.  Kegagalan-kegagalan ini  dibuktikan dalam haus, 

lesu dan penghauslakuran. Kaj ian asas ini  berasaskan EHL sesuhu, keadaan mantap, 

dan sentuhan garis halus. Penggelekan bagi dua buah penggelek silinder telah 

dianggarkan oleh sebuah penggelek dan satu satah. 

EHL penggelekan keras berhubung dengan unsur sentuhan melawanbentuk 

yang terdiri daripada bahan modulus kenyal tinggi seperti logam. Masalahnya ialah 

untuk mencari satu penyeiesaian, yang menyesuaikan persamaan hidrod inamik 
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yang diwaki l i  oleh persamaan Reynolds, dan persamaan kenyal, sementara pada 

waktu yang sarna membenarkan perubahan sifat-s ifat bah an pel i ncir dengan tekanan. 

Regim yang terhasi l adalah tak-Ie lurus. 

Satu penyelesaian hibrid telah digunakan bagi menyelesaikan masalah 

kekenyalan menggunakan BEM; dan menyelesaikan persamaan Reynolds bagi 

tekanan menggunakan kaedah perbezaan terhingga (FDM) dalam penye lesaian 

terganding sepenuhnya. BEM secara dasamya mengandungi penjclmaan bagi 

persamaan kebezaan separa yang menerangkan kelakuan bagi pembolehubah yang 

tidak diketahu i  di dalam dan di atas sempadan domain kepada persamaan kamiran 

berkaitan dengan n i lai-nilai sempadan, dan penyelesaian berangka bagi persamaan 

in i .  Persamaan kamiran sempadan in i  telah d irumuskan bagi kekenyalan dan 

d ise lesaikan menggunakan BEM.  Persamaan h idrod inamik telah diselesaikan 

mengunakan FDM. Penyelesaian terganding telah dise lesaikan menggunakan tekn ik 

lelaran Newton-Raphson. Penye lesaian tertumpu memberikan tekanan dan ketebalan 

filem pelincir. 

Keputusan-keputusan keseluruhan dalam melaksanakan aturcara hibrid 

BEM-FDM memberikan persetuj uan sepenuhnya j ika dibandingkan dengan aturcara 

menggunakan FDM, sementara menghasilkan pengurangan dalam masa CPU. 

Keputusan-keputusan in i  j uga menawarkan persetujuan yang baik dengan kerja

kerja berangka yang lain yang telah diterbitkan. In i  mengesahkan penggunaan 

kaedah yang telah d ibangunkan. Untuk memanfaatkan sepenuhnya kerja 

penyel id ikan ini , aturcara yang telah dibangunkan memerlukan tambahan dalam 

mode l dengan memasukkan kelakuan tak-Newtonian bagi pel inc ir dan kesan haba. 
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1.1 Overview 

CHAPTER 1 

INTRODUCTION 

The main aim of this research is to use an efficient and fast numerical 

method for the solution of the challenging problem of the elastohydrodynamic of 

hard rolling line contact. The boundary element method (BEM) is utilised to 

achieve this goal. The investigations lead to two numerical models; one uses BEM 

and the other uses the finite difference method (FDM). The novel contribution of 

this study to the field of hard rolling elastohydrodynamic lubrication (EHL) is to 

incorporate the BEM to the numerical solution of the problem. 

EHL is a form of fluid film lubrication where the elastic deformation of the 

lubricated bodies becomes significant. The elastic deformation together with the 

hydrodynamic behaviour of the lubricant film determine the regime. The EHL 

study describes the separation using a lubricant film between two elastic machine 

elements loaded against each other in a relative motion. The lubricant film is 

capable of reducing friction and wear between surfaces by the mechanism of 

separating the contact surfaces. Nevertheless, the elastic deformation is the 

prominent characteristic of EHL, as the materials under contact can have high 

modulus of elasticity that denote the hard EHL, as well as a low modulus value 

which in turn designates the soft EHL. Since the EHL of hard rolling is the 

dominant mode of lubrication in many critical, highly stressed machine elements, 

the study of the stress concentration and deformation is important to predict the 

performance and the life expectancy of the machine element. In these machine 



elements such as gears, cams and followers and bearings, most of the failures are 

manifested in wear, fatigue and scuffing. 

EHL is a sort of tluid film lubrication, which is related to the hydrodynamic 

lubrication by the common hydrodynamic action. The Hydrodynamic lubrication is 

generally characterized geometrically by the conformal contact, and its appl ications 

in journal and thrust bearings are wel l developed . The confirmation of theoretical 

prediction through experiments has led to satisfactory design procedures. The 

conformity between the bearing components enables a substantial load to be carried 

at a relatively small lubricant fi lm pressure. EHL however, is characterized by a 

non-conformal contact, in which the load is carried out by a small lubricant foot 

print area at relatively h igh pressure. 

The concepts of lubrication come to exist in the prehistoric period. When 

human invented the wheel and drove it in an axle, they found that it ran easier and 

faster when lubricated. It is l ike ly that even in prehistory, men were interested in 

two aspects of friction. Firstly, man is interested in its effect in generating heat and 

then producing fire, and secondly, its effect in reducing the motion of his first cart. 

It is known that in the Pheronic Egypt, lubrication was used to facil itate the 

movement of sledges carrying large statues and bui lding blocks of stone. Cowls 

Encyclopaedia of Science and Technology mentions that the chariots found in the 

Egyptian tombs have traces of lubricant, which upon analys is proved to be a 

mutton or beef tallow. Although l ubrication is an old subject, it is sti l l  advancing 

with the advances in the machinery and industrial technologies, and even advances 

rapidly with the need to conserve energy and reduce wear. 
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