
 
 

 
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 

SUBSONIC AEROELASTIC ANALYSIS OF A THIN FLAT PLATE 
 
 
 
 
 
 
 
 

DAYANG LAlLA BT. ABANG HAJI ABDUL MAJID 
 
 
 
 
 
 
 
 
 

ITMA 2001 6 



SUBSONIC AEROELASTIC ANALYSIS OF A THIN FLAT PLATE 

By 

DAY ANG LAlLA BT. ABANG H AJI ABDUL MAJID 

Thesis Submitted in Fulfilment of the Requirement for the Degree of 
Master of Science in the Institute of Advanced Technology 

Universiti Putra Malaysia 

March 2001 



ii 

DEDICATION 

Alhamdulillah, thanks to Allah s.w.t. upon the completion of this thesis. This thesis is 

specially dedicated to my beloved father, Abang Haji Abdul Majid bin Abang Taha, 

who during his lifetime, had continuously stressed on his children to strive for a better 

education. I only hope that I have inherited his great wisdom to pass on to my own 

. children. 



iii 

Abstract of thesis presented to the Senate ofUniversiti Putra Malaysia in fulfilment of 
the requirement for the degree of Master of Science. 

SUBSONIC AERO ELASTIC ANALYSIS OF A TIDN FLAT PLATE 

By 

DAYANG LAlLA BT. ABANG HAJI ABDUL MAJID 

March 2001 

Chairman: Associate Professor ShahNor Basri, Ph.D., PEngo 

Institute of Advanced Technology 

The interaction between an aircraft structure and the airflow surrounding it has been 

known to severely affect the stability, performance and manoeuvrability of the aircraft. 

These interactions form the heart of aero elasticity, a field that comprises all types of 

aeroelastic phenomena. In this work, a parametric aeroelastic analysis of a thin flat plate 

clamped at the leading edge and exposed to subsonic airflow was conducted. The 

aeroelastic effects predicted to occur was flutter, a type of self-excited oscillation. 

The analysis was simulated using ZAERO, a panel code aeroelastic program, which 

requires free vibration input, obtained using MSC-NASTRAN, a finite element code. 

The flutter equation was obtained using Newton's Law of Motion to model the plate 

while the airflow was modeled using the Small Disturbance Unsteady Aerodynamic 

Theory. Free vibration results and flutter results obtained were validated against 

published works found in reference [8, 60 and 61]. 
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The important parameters studied were the aspect ratio and the mass -ratio of the plate. 

The effect of the number of free vibration modes employed in the analysis was also 

tested. From the results, it was shown that the flutter velocity decreased as the mass 

ratio and aspect ratio were increased. The flutter frequency also decreased with higher 

mass ratio and at large aspect ratio. The use of a higher number of modes in the flutter 

analysis was found to increase the accuracy of the flutter. 
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Interaksi antara struktur pesawat dan udara sekelilingnya telah diketahui boleh 

mempengaruhi kestabilan, prestasi dan olahgerak pesawat tersebut. Interaksi inilah 

yang merupakan nadi keaeroelastikan, suatu bidang yang merangkumi kesemua j enis 

fenomena aeroelastik. Dalam kerja ini, analisis parametrik aeroelastik untuk suatu plat 

nipis dan rata yang diikat pada hujung mendahulu dan terdedah kepada aliran subsonik 

telah dijalankan. Kesan aeroelastik yang dijangka berlaku adalah 'flutter', iaitu sejenis 

getaran teruja sendiri. 

Simulasi ini telah dijalankan menggunakan ZAERO, perisian aeroelastik berasaskan 

kod panel, yang memerlukan input getaran bebas diperolehi menggunakan MSC-

NASTRAN, sebuah kod elemen terhingga. Persamaan untuk 'flutter' diperolehi dengan 

menggunakan teori Gerakan Newton untuk model plat dan aliran udara dimodel dengan 

menggunakan teori Aerodinamik Gangguan Kecil dan Tak Mantap. Keputusan getaran 
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bebas dan 'flutter' diperolehi dan disahkan oleh hasil-hasil kerja yang telah diterbitkan 

dalam rujukan [8, 60 dan 6 1 ] .  

Parameter-parameter penting yang dikaji adalah nisbah aspek dan nisbah jisim plat 

tersebut. Kesan daripada bilangan mod getaran bebas yang digunakan dalam analisis 

juga dikaji. Daripada keputusan, didapati halaju 'flutter' berkurang apabila nisbah aspek 

dan nisbah jisim bertambah. Frekuensi 'flutter' juga didapati menurun dengan 

pertambahan nisbah aspek dan nisbah jisim. Penggunaan bilangan mod yang tinggi 

dalam analisis 'flutter' didapati telah memperbaiki ketepatan 'flutter'. 
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1.1  Introduction 

CHAPTER 1 

INTRODUCTION 

Modem aircraft structures are extremely flexible and therefore tend to deform when 

exposed to airflow [ 1 ] .  This usually involves the interaction of inertial, elastic and 

aerodynamic forces, which consequently may result in static and dynamic deformations 

and instabilities. Aeroelasticity deals with the behaviour of an elastic body or vehicle in 

an air stream, whereby there is significant reciprocal interaction or feedback between 

deformation and flow [2] . These aero elastically-induced deformations may have severe 

consequences on the stability, performance and manoeuvrability of an aircraft. 

However, dynamic instabilities often provide more cause for concern than static 

instabilities, whereby the final consequence usually leads to failure. 

Because of this practical consequence, understanding of the aero elastic behaviour is 

critical, which necessitates the need for reliable prediction tools that can model all the 

important characteristics of the interaction. As an interdisciplinary field, aero elasticity 

requires the coupling of the aerodynamic and structural responses. Computationally, 

this will involve coupling of computational disciplines such as Computational Fluid 

Dynamics (CFD) and Computational Structural Dynamics (CSD), which are generally 

referred to as Computational Aeroelasticity (CA) [3J. From an engineering viewpoint, 

the major aim in computational aero elasticity is therefore to describe the influence of 

structural deformations on the aerodynamic load and vice versa. 


