PREPARATION AND CHARACTERIZATION OF LITHIUM-BASED SOLID STATE BATTERY MATERIALS

By

MUHAMMAD AMIN IDREES

Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Institute of Advanced Technology Universiti Putra Malaysia

August 2000
Three different cathodes such as LiMn$_2$O$_4$, LiCoO$_2$ and Li$_2$Ni$_8$O$_{10}$ were synthesized by the sol-gel technique. The said materials at low temperature were achieved through the low temperature technique. The X-ray diffraction study of the compounds confirmed the formation of single-phase compound at higher calcination temperature. At low temperatures the X-ray diffractogram of the samples showed the presence of low intensity diffraction lines with weak impurities indicating the existence of crystallinity but these were not indexed to any kind of impurities of LiMn$_2$O$_4$, LiCoO$_2$ and Li$_2$Ni$_8$O$_{10}$. The formation temperatures of the compounds were analyzed using DTA. The DTA studies showed clearly the lowest formation temperature and this formation temperature depends upon the gelating agent used in the present study. The lowest formation temperatures recorded were 208 °C for LiMn$_2$O$_4$, 201 °C for LiCoO$_2$ and 214 °C for Li$_2$Ni$_8$O$_{10}$.
The thermogravimetric analysis showed that the compounds were stable up to 800 °C. The EDAX analysis was performed for the compounds to identify the purity of the compounds. The EDAX spectrum showed that there was no impurity present in the compounds. It ascertained the formation of single-phase compounds by XRD. Because of low atomic weight lithium could not be detected other than that the EDAX showed the presence of the respective atoms. The particle size distribution of the compounds showed that the particles were distributed in large volume. The particle diameter increased with the increase of calcination temperature. Grinding reduced the large volume distribution and the particle diameter. After grinding by mortar and pestle hand grinder, the particle size was reduced much and the distribution was narrowed down, thereby the surface area of the particle was increased.

The SEM analysis also confirmed the sub-micron size reduction and the distribution was narrowed down, thereby the surface area of the particle was increased. The compounds were used as electrode materials for lithium ion batteries. The battery analysis showed that the capacities of the LiMn$_2$O$_4$, LiCoO$_2$ and Li$_2$Ni$_8$O$_{10}$ were 10 mAh, 24 mAh and 5 mAh respectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENYEDIAAN DAN PENCIRIAN BAHAN-BAHAN BATERI
KEADAN PEPEJAL LITIUM

Oleh

MUHAMMAD AMIN IDREES

Ogos 2000

Pengerurusi: Profesor Madya Mansor Hashim, Ph.D.

Fakulti: Institut Teknologi Maju

Tiga jenis bahan katod iaitu LiMn$_2$O$_4$, LiCoO$_2$ dan Li$_2$Ni$_8$O$_{10}$ telah disintesis menggunakan kaedah itu ‘sol-gel’. Kaedah suhu rendah ini menghasilkan bahan-bahan yang tersebut di atas pada suhu rendah. Kajian belauan sinar-X terhadap sebatian-sebatian ini mengesahkan pembentukan sebatian fasa tunggal pada suhu ‘kalsinasi’ yang lebih tinggi. Pada suhu rendah difraktogram sinar-X sampel-sampel menunjukkan kewujudan puncak-puncak belauan yang kecil beserta kehadiran sedikit bendasing, menandakan kewujudan sifat kehabluran, tetapi tidak pula merujuk kepada sebarang ketidakutulenan LiMn$_2$O$_4$ teroksida. Suhu pembentukan sebatian tersebut dianalisa menggunakan kajian DTA menunjukkan dengan jelas suhu pembentukan terendah ini dan suhu pembentukan ini bergantung kepada ‘gelating agent’ yang digunakan didalam penyelidikan ini. Suhu pembentukan terendah yang direkodkan adalah 208°C bagi LiMn$_2$O$_4$, 201°C bagi LiCoO$_2$ dan 214°C bagi Li$_2$Ni$_8$O$_{10}$.

SEM juga mengesahkan zarah-zarah tersebut adalah bersaiz sub-mikron. Sebatian-sebatian tersebut telah digunakan sebagai bahan katod bagi bateri litium-ion. Analisa ke atas bateri menunjukkan nilai kapasiti bagi LiMn$_2$O$_4$ adalah 10 mAh, bagi LiCoO$_2$ adalah 24 mAh dan bagi Li$_2$Ni$_8$O$_{10}$ adalah 5 mAh.
ACKNOWLEDGMENTS

"Verily never will Allah change the condition of peoples until they change it themselves (with their own souls)" - Al-Quran

Allah s.w.t blessed me throughout my life. The deepest glory and honor unto him. Without His help, I was unable to pursue and complete this impassable task of my doctoral research.

First of all, I take this opportunity, with great sincerity to thank my supervisor, Associate Professor Dr. Mansor Hashim, for his constant source of inspiration, guidance, support and bailing me out of difficulties and encouragement throughout during the period of this project. I would also like to be very grateful to my co-supervisors, Dr. Zaidan ABD Wahab and Dr. Jamil Suradi for helpful guidance, advice, patience, extend my thanks also to Dr. W. Mahmood Mat Yunus for his useful guidance and rest of Physics Department staff for moral support.

I would like to express my utmost gratitude to Prof Radhakrishna for his help, also Dr Abdul Hamid, Dr Khalid and Dr Jacob for guidance. I wish to thank my friends, Mr Naseer Ahmad, Mr Arshid CH, Mr M. Aslam Navid, Mr Azmin, Raihan Othman, Shameem, Bouzid, Osman, Seigo, who made my stay as a pleasant one.

Last, but not least, I wish to express my grateful heart to my children, wife, brothers, sisters, relatives and friends for their moral support, encouragement and love.
I certify that an Examination Committee met on 18th August 2000 to conduct the final examination of Muhammad Amin Idrees on his Doctor of Philosophy thesis entitled “Preparation and Characterization of Lithium-Based Solid State Battery Materials” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Zainul Abidin Hassan, Ph.D
Institute of Advanced Technology
Universiti Putra Malaysia
(Chairman)

Mansor Hashim, Ph.D
Associate Professor
Institute of Advanced Technology
Universiti Putra Malaysia
(Member)

Zaidan Abdul wahab, Ph.D
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Jamil Suradi, Ph.D
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Abdul Kariem Bin Mohd Arof. Ph.D
Associate Professor
Department of Physics, Universiti Malaya, 50603 Kuala Lumpur

[Signature]

MOHD. GHAZALI MOHAYIDIN, Ph.D
Professor/Deputy Dean of Graduate School,
Universiti Putra Malaysia

Date: 11 SEP 2000
This thesis was submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfilment of the requirements for the degree of Doctor of Philosophy.

KAMIS AWANG, Ph.D.
Associate Professor,
Dean of Graduate School
Universiti Putra Malaysia

Date: 11 NOV 2000
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MUHAMMAD AMIN IDREES

Date: 11-09-2000
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION ... 1

II LITIRATURE REVIEW ... 12

 Introduction ... 12
 Types of existing rechargeable batteries for commercial interest ... 12
 Why lithium batteries? 15
 Primary Lithium Batteries 19
 Secondary Lithium Metal Batteries 19
 Disadvantages of Secondary Lithium Batteries 20
 Li-ion batteries or Rocking-chair batteries 21
 What is meant by intercalation 25
 Intercalation in Graphite 26
 Advantage of using Graphite/carbon Anode 28
 A New Anode Material for Lithium Secondary Batteries ... 29
 Selection criteria for intercalation material 30
 Types of cathode material 32
 Why Lithium Transition Metal Oxides? 33
 Lithium insertion Cathode Material 36
 Manganese Oxides .. 38
 Other Oxide .. 39

III MATERIALS AND METHODS 41

 Introduction ... 41
 Chemicals used ... 41
 Acids used .. 41
 Synthesis procedure 42
Experimental techniques used .. 44
X-ray diffraction ... 44
Differential thermal analysis (DTA) 48
Thermogravimetric analysis (TGA) 52
Particle size distribution ... 54
Energy dispersive analysis (EDAX) 57
Scanning electron microscopy (SEM) 58
Battery Assembly ... 60
Electrolyte preparation ... 60
Battery Fabrication ... 60
Schematic representation of the fabricated cell 61
Battery Charge and Discharge 62
Characteristics of batteries .. 64

IV

SAMPLE, COMPOSITION AND SAMPLE PREPARATION 65
Introduction .. 65
Section A (LiMn₂O₄) .. 67
Synthesis procedure for poly crystalline LiMn₂O₄ powders by sol-gel method ... 68
LiMn₂O₄ at different stages of preparation 70
Section B (LiCoO₂) .. 71
LiCoO₂ at different stages of preparation 74
Section C (Li₂Ni₈O₁₀) .. 75
Li₂Ni₈O₁₀ at different stages of preparations 77

V

EXPERIMENTAL RESULTS AND DISCUSSION 78
Introduction .. 78
Experimental Results and Discussion of LiMn₂O₄ 79
X-ray diffraction analysis .. 79
Differential thermal analysis (DTA) 85
Thermogravimetric analysis (TGA) 92
EDAX studies ... 98
Particle size distribution .. 99
Scanning electron microscopy (SEM) discussion 104
Battery characteristics ... 109
Experimental Results and Discussion of LiCoO₂ 114
X-ray diffraction analysis .. 114
Differential thermal analysis (DTA) 120
Thermogravimetric analysis (TGA) 127
Energy dispersive analysis (EDAX) 132
Particle size distribution .. 134
Scanning electron microscopy (SEM) 138
Battery characteristics .. 143

xi
Experimental results and discussion of $\text{Li}_2\text{Ni}_6\text{O}_{10}$ 147

X-ray diffraction analysis 147
Differential thermal analysis (DTA) 152
Thermogravimetric analysis (TGA) 159
Energy dispersive analysis (EDAX) 164
Particle size distribution 166
Scanning electron microscopy (SEM) 171
Battery characteristics 176
Summary 179

CONCLUSION 185
Suggestions for future work

REFERENCES 186

APPENDICES 194
A Definitions of some Terms 194
B Standard Reduction Potentials of Electrodes Reactions 198
C Electrochemical Equivalents of Battery Materials 200
D Conductivity Ranges of Various Electrolytes 202
VITA 203
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cathode, anode and electrolyte requirements for a good cell (David Linden, 1984)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of various batteries, their energy density and the cost</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Types of cathode materials (Prabaharan et al, 1997)</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>Formation temperatures of (a-h) routes for LiMn$_2$O$_4$ gel precursor powders, by using different starting reagents and acids such as citric or maleic or succinic or tartaric acid as gelating agents</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>Formation temperatures of (a-h) routes for LiCoO$_2$ gel-precursor powders, with different starting reagents and acids such as citric or maleic or succinic or tartaric acid as gelating agents</td>
<td>122</td>
</tr>
<tr>
<td>6</td>
<td>Formation temperatures of Li$_2$Ni8O${10}$ for (a-h) routes, by taking different starting reagents. The molar ratio of citric or maleic or succinic or tartaric acid (gelating agent) to total metal ions was 1:5</td>
<td>159</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic components of the electrochemical cell (Booklet energy information center, 1995)</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Characteristics discharge curves (Linden, 1984)</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Relationship between the equivalent weight (anode plus cathode) and the theoretical specific energy on weight basis of various electrochemical systems (Gabano, 1983)</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Lithium intercalation mechanism (Armand et al, 1980)</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>(a) Structure of stage 1, 2 and 3 compounds and (b) In-plane structure of LiC₆ (Dahn et al, 1994)</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>Approximate voltages of transition metal (di) oxides in non-aqueous lithium cells. Relation between the operating voltages and the number of d-electrons can be seen (Ohzuku et al, 1997)</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>The experimental method for the preparation of the final compounds (In-Hwan Oh et al, 1997)</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>X-ray diffraction patterns of the gel-derived material calcined at 650 °C at the various molar ratios of maleic acid to total metal ions of (a) 0.75, (b) 1.0, (c) 1.5 and (d) 2.0 (In-Hwan Oh et al, 1997)</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Schematic diagram of a DTA apparatus (Pope and Judd, 1977)</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>Differential thermal analysis of the gel precursor at an air flow rate of 40 cm³ min⁻¹ and a heating rate of 5 °C min⁻¹ (In-Han Oh et al, 1997)</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>Thermogravimetric analysis for (a) the mixture of metal acetate (Li Mn acetate = 1 2, (b) sole adipic acid, and (c) the gel precursor pretreated in a vacuum dryer at 100 °C prior to thermal analysis in air at the heating rate of 5 °C min⁻¹ (Yun-Sung Lee et al, 1998)</td>
<td>53</td>
</tr>
</tbody>
</table>
The particle size distribution of LiMn$_2$O$_4$ when calcined (a) at 50 and (b) at 800 °C .. 55

SEM images of the LiCoO$_2$ powders when calcined (a) at 500 °C, (b) at 600 °C and (c) at 700 °C for one hour in air (In-Hwan Oh et al, 1997) .. 59

Schematic representation of the fabricated cell 61

It shows charge-discharge curves with the number of cycles for the Li/ 1 M LiBF$_4$ –n EC/DEC/LiMn$_2$O$_4$ cell using LiMn$_2$O$_4$ powder calcined at 750 °C. Cycling was carried out Galvan statically at constant charge-discharge current density of 1 mA/cm2 between 3.6 and 4.3 V (Young-Sung Lee et al, 1998) .. 63

Synthesis procedure for polycrystalline LiMn$_2$O$_4$ powders by sol-gel method when maleic acid was used as a gelating agent .. 68

LiMn$_2$O$_4$ at different stages of preparation (a) solution, (b) precursor powder and (c) Final compound 70

LiCoO$_2$ at different stages of preparation (a) solution, (b) precursor and (c) Final compound .. 74

Li$_2$Ni$_8$O$_{10}$ at different stages of preparation (a) solution, (b) precursor powder and (c) Final compound 77

X-ray diffraction pattern of the LiMn$_2$O$_4$ at the lowest formation Temperature in this study (when calcined at 208 °C). The molar of maleic acid (gelating agent) to total metal ions was 1.5 81

X-ray diffraction patterns of LiMn$_2$O$_4$ for the lowest formation temperature route (f) from Table 4, when calcined (a) at 208 °C, (b) at 400 °C, (c) 600 °C and (d) 800 °C. The molar ratio of maleic acid (gelating agent) to total metal ions was 1.5 82

XRD patterns of LiMn$_2$O$_4$ reported in the literature from citrate precursor as a function of annealing temperature (Prabaharan et al, 1995) .. 83

XRD patterns of LiMn$_2$O$_4$ reported in the literature from oxalate precursor as a function of annealing temperature (Prabaharan et al, 1995) .. 84
24(a,b) Differential thermal analysis for LiMn$_2$O$_4$ of (a,b) routes from Table 4, at the stage of gel precursor powder. 88

24(c,d) Differential thermal analysis for LiMn$_2$O$_4$ of (c,d) routes from Table 4, at the stage of gel precursor powder. 89

24(e,f) Differential thermal analysis for LiMn$_2$O$_4$ of (e,f) routes from Table 4, at the stage of gel precursor powder. 90

24(g,h) Differential thermal analysis for LiMn$_2$O$_4$ of (g,h) routes from Table 4, at the stage of gel precursor powder. 91

25(a,b) Thermogravimetric analysis of (a,b) routes from Table 4, gel precursor powders of LiMn$_2$O$_4$ at a heating rate of 10 $^\circ$C min$^{-1}$

25(c,d) Thermogravimetric analysis of (c,d) routes from Table 4, gel precursor powders of LiMn$_2$O$_4$ at a heating rate of 10 $^\circ$C min$^{-1}$

25(e,f) Thermogravimetric analysis of (e,f) routes from Table 4, gel precursor powders of LiMn$_2$O$_4$ at a heating rate of 10 $^\circ$C min$^{-1}$

25(g,h) Thermogravimetric analysis of (g,h) routes from Table 4, gel precursor powders of LiMn$_2$O$_4$ at a heating rate of 10 $^\circ$C min$^{-1}$

26(a) EDAX spectrum of LiMn$_2$O$_4$ sample at 500 $^\circ$C 98

26(b) EDAX spectrum of LiMn$_2$O$_4$ sample at 800 $^\circ$C 99

27(a) Particle size distribution of a sample LiMn$_2$O$_4$ when calcined (a) at 300 $^\circ$C 101

27(b,c) Particle size distribution of LiMn$_2$O$_4$ sample when calcined (b) at 500 $^\circ$C and (c) at 800 $^\circ$C 102

32(a,b) Particle size distribution of LiMn$_2$O$_4$ sample after ground when calcined at 800 $^\circ$C 103

29 Dependance of specific surface area of LiMn$_2$O$_4$, obtained at the lowest formation temperature route (f) from Table 4 when it was calcined at various temperatures. 103
30(a,b) SEM images for LiMn$_2$O$_4$ powder at the lowest formation temperature route (f) from Table 4, at 500 magnification. When calcined (a) at 500 °C and (b) at 800 °C.

30(c,d) SEM images for LiMn$_2$O$_4$ powder at the lowest formation temperature route (f) from Table 4, at 1000 magnification. When calcined (c) at 500 °C and (d) at 800 °C.

30(e,f) SEM images for LiMn$_2$O$_4$ powder at the lowest formation temperature route (f) from Table 4, at 1500 magnification. When calcined (e) at 500 °C and (f) at 800 °C.

30(g,h) SEM images for LiMn$_2$O$_4$ powder at the lowest formation temperature route (f) from Table 4, at 2000 magnification. When calcined (g) at 500 °C and (h) at 800 °C.

31(a) First charge/discharge curve of LiMn$_2$O$_4$ cell.

31(b) Second charge/discharge curve of LiMn$_2$O$_4$ cell.

31(c) Third charge/discharge curve of LiMn$_2$O$_4$ cell.

31(d) Forth charge/discharge curve of LiMn$_2$O$_4$ cell.

31(e) Fifth charge/discharge curve of LiMn$_2$O$_4$ cell.

32(a,b) X-ray diffraction pattern of the LiCoO$_2$ powders calcined (a) at 200 °C and (b) at 400 °C. The molar ratio of succinic acid (gelating agent) to total metal ion was 1.5.

32(c,d) X-ray diffraction pattern of the LiCoO$_2$ powders calcined (c) at 600 °C and (d) at 800 °C. The molar ratio of succinic acid (gelating agent) to total metal ion was 1.5.

33(a-d) X-ray diffraction pattern of the LiCoO$_2$ precursor powders. When calcined (a) at 200 °C, (b) 400 °C, (c) at 600 °C and (d) at 800 °C. The molar ratio of succinic acid (gelating agent) to total metal ions was 1.5.

34(a,d) From literature, calcined at various temperatures (a) at 500 °C, (b) 600 °C, (c) at 650 °C and (d) at 700 °C when maleic acid was used as gelating agent (In-Hwan Oh et al., 1997).

35(a,b) Differential thermal analysis for LiCoO$_2$ of (a,b) routes from Table 5.
35(c,d) Differential thermal analysis for LiCoO₂ of (c,d) routes from Table 5, at the stage of gel precursor powder

35(e,f) Differential thermal analysis for LiCoO₂ of (e,f) routes from Table 5, at the stage of gel precursor powder

35(g,h) Differential thermal analysis for LiCoO₂ of (g,h) routes from Table 5, at the stage of gel precursor powder

36(a) Thermogravimetric analysis for LiCoO₂ of (a) route from Table 5, at the heating rate of 10°C min⁻¹

36(b,c) Thermogravimetric analysis for LiCoO₂ of (b,c) routes from Table 5, at the heating rate of 10°C min⁻¹

36(d,e) Thermogravimetric analysis for LiCoO₂ of (d,e) routes from Table 5, at the heating rate of 10°C min⁻¹

36(f,g) Thermogravimetric analysis for LiCoO₂ of (f,g) routes from Table 5, at the heating rate of 10°C min⁻¹

36(h) Thermogravimetric analysis for LiCoO₂ of (h) route from Table 5, at the heating rate of 10°C min⁻¹

37(a) EDAX spectrum of LiCoO₂ powder for the lowest formation Temperature route (c) from Table 5 at 500 magnification when it was calcined at 500°C

37(b) EDAX spectrum of LiCoO₂ powder for the lowest formation Temperature route (c) from Table 5 at 500 magnification when it was calcined at 800°C

38(a,b) Particle size distribution of LiCoO₂ sample (a) at 300°C and (b) at 800°C. The molar ratio of succinic acid (gelating agent) to total metal ions was 1:5

39 Particle size distribution of LiCoO₂ after grinding when sintered at 800°C

40 Dependence of the specific surface area of LiCoO₂ with calcination temperature, for the lowest formation temperature route (c) from Table 5 when succinic acid was used as gelating agent
41(a, b) SEM images of LiCoO₂ powders for the lowest formation temperature route (c) from Table 5 at 500 magnification when it was calcined (a) at 500 °C and (b) at 800 °C

41(c, d) SEM images of LiCoO₂ powders for the lowest formation temperature route (c) from Table 5 at 500 magnification when it was calcined (c) at 500 °C and (d) at 800 °C

41(e, f) SEM images of LiCoO₂ powders for the lowest formation temperature route (c) from Table 5 at 500 magnification when it was calcined (e) at 500 °C and (f) at 800 °C

41(g, h) SEM images of LiCoO₂ powders for the lowest formation temperature route (c) from Table 5 at 500 magnification when it was calcined (g) at 500 °C and (h) at 800 °C

42(a) First charge/discharge curve of LiCoO₂ cell

42(b) Second charge/discharge curve of LiCoO₂ cell

42(c) Third charge/discharge curve of LiCoO₂ cell

42(d) Fourth charge/discharge curve of LiCoO₂ cell

42(e) Fifth charge/discharge curve of LiCoO₂ cell

43(a) X-ray diffraction pattern of Li₂Ni₈O₁₈ for the lowest formation temperature route (f) from Table 6 (when calcined at 214 °C) molar ratio of maleic acid (gelating agent) to total metal ion was 1:5

43(b, c) X-ray diffraction patterns of Li₂Ni₈O₁₀ when calcined (b) at 400 °C and (c) at 600 °C. The molar ratio of maleic acid (gelating agent) to total metal ions was 1:5

43(d) X-ray diffraction pattern of Li₂Ni₈O₁₈ when calcined (d) at 800 °C. The molar ratio of maleic acid (gelating agent) to total metal ions was 1:5

44(a-d) Shows the comparative X-ray diffraction patterns of the gel-Derived materials of Li₂Ni₈O₁₀ when calcined (a) at 214 °C, (b) at 400 °C, (c) at 600 °C and (d) at 800 °C. The molar ratio of maleic acid (gelating agent) to total metal ions was 1:5
45(a,b) Differential thermal analysis for Li$_2$Ni$_8$O$_{10}$ of (a,b) routes from Table 6, at the stage of gel precursor powder 155

45(c,d) Differential thermal analysis for Li$_2$Ni$_8$O$_{10}$ of (c,d) routes from Table 6, at the stage of gel precursor powder 156

45(e,f) Differential thermal analysis for Li$_2$Ni$_8$O$_{10}$ of (e,f) routes from Table 6, at the stage of gel precursor powder 157

45(g,h) Differential thermal analysis for Li$_2$Ni$_8$O$_{10}$ of (g,h) routes from Table 6, at the stage of gel precursor powder 158

46(a) Thermogravimetric analysis of Li$_2$Ni$_8$O$_{10}$ for (a) route from Table 6, at a heating rate of 10 °C min$^{-1}$ 160

46(b,c) Thermogravimetric analysis of Li$_2$Ni$_8$O$_{10}$ for (b,c) routes from Table 6, at a heating rate of 10 °C min$^{-1}$ 161

46(d,e) Thermogravimetric analysis of Li$_2$Ni$_8$O$_{10}$ for (d,e) routes from Table 6, at a heating rate of 10 °C min$^{-1}$ 162

46(f,g) Thermogravimetric analysis of Li$_2$Ni$_8$O$_{10}$ for (f,g) routes from Table 6, at a heating rate of 10 °C min$^{-1}$ 163

46(h) Thermogravimetric analysis of Li$_2$Ni$_8$O$_{10}$ for (h) route from Table 6, at a heating rate of 10 °C min$^{-1}$ 164

47(a) EDAX spectrum of Li$_2$Ni$_8$O$_{10}$ powder when calcined (a) at 500 °C. The molar ratio of maleic acid (gelating agent) to total metal ions was 1.5 165

47(b) EDAX spectrum of Li$_2$Ni$_8$O$_{10}$ powder for the lowest formation Temperature route (f) from Table 6 when it was calcined at 800 °C 166

48(a,b) Particle size distribution of Li$_2$Ni$_8$O$_{10}$ samples when calcined (a) at 400 °C and (b) at 600 °C when the molar ratio of maleic acid (gelating agent) to total metal ions was 1.5 168

49(a,b) Particle size distribution of Li$_2$Ni$_8$O$_{10}$ (a) without grinding at 800 °C and (b) when ground after calcination at 800 °C 169

50 Dependence of the specific surface area of Li$_2$Ni$_8$O$_{10}$ at the various calcination temperatures from the lowest formation route in this study when maleic acid was used as gelating agent and the molar ratio of acid to total metal ions was 1.5 170
51(a, b) SEM images for Li$_2$Ni$_8$O$_{10}$ powder at the lowest formation temperature route (f) from Table 6 at 500 magnification when it was calcined (a) at 500°C and (b) at 800°C

51(c, d) SEM images for Li$_2$Ni$_8$O$_{10}$ powder at the lowest formation temperature route (f) from Table 6 at 1000 magnification when it was calcined (c) at 500°C and (d) at 800°C

51(e, f) SEM images for Li$_2$Ni$_8$O$_{10}$ powder at the lowest formation temperature route (f) from Table 6 at 1500 magnification when it was calcined (e) at 500°C and (f) at 800°C

51(g, h) SEM images for Li$_2$Ni$_8$O$_{10}$ powder at the lowest formation temperature route (f) from Table 6 at 2000 magnification when it was calcined (g) at 500°C and (h) at 800°C

52(a) First charge/discharge profile of a Li$_2$Ni$_8$O$_{10}$ cell

52(b) Second charge/discharge profile of a Li$_2$Ni$_8$O$_{10}$ cell

52(c) Third charge/discharge profile of a Li$_2$Ni$_8$O$_{10}$ cell

52(d) Forth charge/discharge profile of a Li$_2$Ni$_8$O$_{10}$ cell
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>ampere-hour</td>
</tr>
<tr>
<td>Ah/L</td>
<td>ampere-hours per liter</td>
</tr>
<tr>
<td>Å</td>
<td>angstrom</td>
</tr>
<tr>
<td>A</td>
<td>ampere</td>
</tr>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>Ah</td>
<td>ampere-hour</td>
</tr>
<tr>
<td>Ah/kg</td>
<td>ampere-hours per kilogram</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>Cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>C</td>
<td>coulomb</td>
</tr>
<tr>
<td>Cr</td>
<td>chromium</td>
</tr>
<tr>
<td>Co</td>
<td>cobalt</td>
</tr>
<tr>
<td>Cl</td>
<td>chlorine</td>
</tr>
<tr>
<td>Cu</td>
<td>copper</td>
</tr>
<tr>
<td>Co(NO₃)₂ · 6H₂O</td>
<td>cobaltous(II) nitrate hexahydrate</td>
</tr>
<tr>
<td>C₆H₈O₇ · H₂O</td>
<td>citric acid</td>
</tr>
<tr>
<td>C₄H₆O₄</td>
<td>succinic acid</td>
</tr>
<tr>
<td>CH(COOH)(OH)COOH</td>
<td>maleic acid</td>
</tr>
<tr>
<td>(CHOHCOOH)₂</td>
<td>tartaric acid</td>
</tr>
<tr>
<td>DEC</td>
<td>diethyl carbonate</td>
</tr>
<tr>
<td>DTA</td>
<td>differential thermal analysis</td>
</tr>
<tr>
<td>DMC</td>
<td>dimethyl carbonate</td>
</tr>
</tbody>
</table>
E₀ standard potential (in volts)
EC ethylene Carbonate
EPDM ethylene propylene diene monomer
F faraday constant (96,500 C or 26.8 Ah)
Fe iron
g gram
ΔG Gibbs free energy change
I current
IR Internal resistance of a cell
Kg kilogram
Li-ion lithium-ion
LiNO₃ lithium nitrate
Li₂CO₃ lithium carbonate
Li₂Ni₈O₁₀ lithium nickel oxide
LiCoO₂ lithium cobalt oxide
LiMn₂O₄ lithium manganese oxide
LiClO₄ lithium perchlorate
LiMoS₂ lithium transition metal sulphide
LiMeSe₂ lithium transition metal selenide
LiMeO₂ lithium transition metal oxide
LiMoO₂ lithium metal oxide
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFeO₂</td>
<td>lithium iron oxide</td>
</tr>
<tr>
<td>LiBF₄</td>
<td>lithium-tetrafluoroborate</td>
</tr>
<tr>
<td>LiCF₃SO₃</td>
<td>lithium trifluoromethane-sulfonate</td>
</tr>
<tr>
<td>LiTi₂O₄</td>
<td>lithium titanium oxide</td>
</tr>
<tr>
<td>LiV₂O₅</td>
<td>lithium vanadate oxide</td>
</tr>
<tr>
<td>LiCoV₂O₄</td>
<td>lithium cobalt vanadate oxide</td>
</tr>
<tr>
<td>LiNiV₂O₄</td>
<td>lithium nickel vanadate oxide</td>
</tr>
<tr>
<td>mAh</td>
<td>milli-ampere hour</td>
</tr>
<tr>
<td>m²</td>
<td>square meter</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meter</td>
</tr>
<tr>
<td>M(mole)</td>
<td>amount of substance</td>
</tr>
<tr>
<td>Me</td>
<td>transition metal</td>
</tr>
<tr>
<td>mAh/g</td>
<td>milli-ampere hour per gram</td>
</tr>
<tr>
<td>Mn</td>
<td>manganese</td>
</tr>
<tr>
<td>Mo</td>
<td>molybdenum</td>
</tr>
<tr>
<td>MCFC</td>
<td>molten carbonate fuel cells</td>
</tr>
<tr>
<td>“n”</td>
<td>no of electrons involved in</td>
</tr>
<tr>
<td></td>
<td>the electrochemical reaction</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>Ni</td>
<td>nickel</td>
</tr>
<tr>
<td>Ni-Cd</td>
<td>nickel cadmium</td>
</tr>
<tr>
<td>Ni(NO₃)₂·6H₂O</td>
<td>nickel (II) nitrate hexahydrate</td>
</tr>
<tr>
<td>O</td>
<td>oxygen</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene fluoride</td>
</tr>
</tbody>
</table>