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Computer-aided diagnosis (CADx) has gained significant attention in helping 

radiologists in the interpretation of mammograms to assist in diagnostic decision-

making. A more effective CADx increases the probability of cure. An effective 

mammogram classification technique benefit to the research of computer aided 

mammography for a better diagnostic assistance. However, the effectiveness of 

classifiers depends on the training data sets that are often small in data size and 

static, which does not adapt to changes. The main aim of this thesis is to propose an 

effective associative classifier using rule refinement technique that adapts changes in 

databases for building an effective CADx model in the classification of mammogram 

images.  

 

 

The classifiers using Association Rule (AR) mining gain popularity compared to 

traditional classifiers due to their nature in reflecting close dependencies among 

single or multiple features for composing rules with its excellent interpretation. The 

existing associative classification techniques that are used in Computer Aided 

Diagnosis (CADx) have proved their efficiency in mammogram classification. The 

research aims to propose an improved associative classification model with its first 

step preprocessing that uses segmentation technique with filter that includes certain 

areas of the image for mammogram peripheral enhancement.  The feature extraction 

is used to extract the most prominent features from mammogram images that 

represent various classes of the images to be used by classification techniques. A 

feature selection technique named Correlation Feature Selection (CFS) that involves 

a heuristic search is adopted for dimensionality reduction of feature space to improve 

efficiency and at the same time maintain the effectiveness of classification. The 

thesis discovers useful and interesting relations between features and class in the 

form of rules to build an efficient associative classifier from a large collection of 

mammogram images using association rule mining technique. An Associative 

Classifier that uses rules Highest Average Confidence (ACHAvC) is proposed for an 

effective classification of mammography. The classifier ACHAvC has achieved high 
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accuracy of 90% and specificity of 90%, however the sensitivity is 78.5% and not 

commendable in medical domain. 

 

 

The effectiveness of an associative classifier depends largely on the generated rules 

based on training data. In previous works such as HiCARe, SACMINER, MINSAR, 

including ACHAvC the training data have been limited, which may produce the 

classification rules that are static and cannot adapt to a changing charecteristic of test 

images, as such it may not produce complete and accurate rules for classification.  

The classification performance can be further improved if the static rules are updated 

dynamically. The availability of radiologist ground truth for every case could be 

used to validate the classification result and refine the set of rules generated. A 

method Rule Refinement based on Incremental Modification (RRIM) is proposed 

that dynamically refines the rules every time when it is validated with the experts 

ground truth. As such these refined rules that adapt the changes in the data are then 

used for classification to further enhance the performance of the classifier ACHAvC 

with a reduced minimal error and with improved prediction accuracy. 

 

 

The Performance of the proposed methods are evaluated for accuracy, sensitivity and 

specificity for the mammogram image data set, taken from the digital database for 

mammography from the University of South Florida, Digital Database for Screening 

Mammography (DDSM).  The proposed method has achieved an overall 

classification accuracy of 96%, with sensitivity 92.56% and specificity 96.94% in 

testing stage which is comparatively better than the three benchmark approaches 

HiCARe, SACMINER, MINSAR that are chosen for the proposed research with 

accuracy of (91%, 85%, 79%), sensitivity (95%, 84%, 87%) and specificity (84%, 

86%, 67%). 
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Bantuan diagnosis komputer (CADx) mendapat tumpuan penting bagi membantu 

ahli radiologi mentafsir mamogram untuk membuat keputusan diagnostik. CADx 

yang lebih efektif meningkatkan kebarangkalian untuk tahap kesembuhan. Teknik 

pengkelasan mamogram yang efektif memberi manfaat kepada penyelidikan 

mamografi berasaskan komputer untuk memberi bantuan diagnostik yang lebih baik. 

Walau bagaimanapun, keberkesanan pengkelasan ini bergantung kepada set data 

latihan yang sering kali bersaiz kecil dan statik, yang mana tidak peka kepada 

perubahan. Tujuan utama tesis ini adalah untuk mencadangkan satu pengkelasan 

menggunakan teknik peraturan perbaikan bersekutu yang peka kepada perubahan 

yang berlaku di pangkalan data bagi membina model CADx yang berkesan untuk 

klasifikasi imej mamogram. 

Pengkelasan menggunakan Association Rule (AR) lebih terkenal berbanding 

pengkelasan secara tradisional di mana sifatnya yang mencerminkan kebergantungan 

antara ciri-ciri tunggal atau pelbagai untuk menghasilkan peraturan dengan tafsiran 

yang sangat baik. Langkah proses awal menggunakan teknik segmentasi dengan 

penapis yang merangkumi bahagian-bahagian tertentu imej untuk meningkatkan 

periferal mamogram. Ciri pengekstrakkan digunakan untuk ekstrak ciri-ciri yang 

paling tepat dari imej mamogram yang mewakili pelbagai kelas imej untuk 

digunakan oleh teknik pengkelasan. Teknik pemilihan ciri bernama Korelasi Ciri 

Pemilihan (CFS) yang melibatkan carian heuristik digunakan untuk pengurangan 

dimensi ruang ciri bagi meningkatkan kecekapan dan pada masa yang sama 

mengekalkan keberkesanan klasifikasi. Tesis mendapati hubungan yang berguna dan 

menarik antara ciri-ciri dan kelas untuk membina pengkelasan bersekutu yang efektif 

daripada koleksi imej mamogram yang banyak dengan menggunakan teknik 

penyatuan. Pengkelasan bersekutu yang menggunakan peraturan Highest Average 

Confidence (ACHAvC) dicadangkan untuk klasifikasi mamografi yang efektif. 

Pengkelasan ACHAvC mencapai 90% ketepatan dan 90% kekhususan, akan tetapi 

kepekaan yang agak kurang iaitu 78.5% dan tidak diterima di bidang perubatan. 
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Keberkesanan pengkelasan bersekutu bergantung kepada peraturan yang dihasilkan 

berdasarkan data latihan. Dalam kerja-kerja penyelidikansebeleum ini seperti 

HiCARe, SACMINER, MINSAR termasuk ACHAvC, data latihan adalah terhad, 

yang mana boleh menghasilkan peraturan klasifikasi yang statik dan tidak peka 

kepada ciri-ciri  imej ujian yang berubah-ubah, oleh itu ia tidak boleh menghasilkan 

peraturan yang lengkap dan tepat untuk pengkelasan. Prestasi klasifikasi boleh 

diperbaiki jika peraturan statik dikemaskini secara dinamik. Kepakaran ahli radiologi 

boleh digunakan bagi setiap kes untuk megesahkan hasil klasifikasi dan menghalusi 

set peraturan yang dijana. Kaedah Rule Refinement berdasarkan Incremental 

Modification (RRIM) dicadangkan untuk memperbaiki peraturan secara dinamik 

setiap kali ia disahkan oleh pakar. Oleh itu peraturan-peraturan yang diperbaiki ini 

akan peka kepada perubahan yang berlaku pada data dan ianya digunakan untuk 

meningkatkan lagi prestasi pengkelasan ACHAvC dengan ralat yang minimum dan 

ketepatan ramalan yang lebih baik.  

Prestasi kaedah yang dicadangkan dinilai dengan ketepatan, kepekaan dan 

kekhususan terhadap set data imej mamogram, yang diambil dari pangkalan data 

digital mamografi dari University of South Florida, Pangkalan Data Digital untuk 

Saringan Mamografi (DDSM). Kaedah yang dicadangkan telah mencapai ketepatan 

pengkelasan keseluruhan 96%, dengan 95.56% kepekaan dan kekhususan 96.94% 

dalam peringkat ujian di mana ia jauh lebih baik berbanding tiga kaedah lain yang 

diguna sebagai penanda aras yang mana ketepatannya (91%, 85%, 79%), kepekaan 

(95%, 84%, 87%) dan kekhususan (84%, 86%, 67%). 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Breast cancer is the most common leading cancer among women worldwide. In the 

western and developing countries, including Malaysia, breast cancer has become a 

major health problem. The most recent estimate by Forouzanfar et al. (2010) 

indicates that more than 1.6 million new cases of breast cancer occurred among 

women worldwide in 2010.  Early detection of breast cancer is possible only when 

regular screening examinations are carried out (Anderson & Jakesz, 2008). All types 

of breast cancer diagnosis depend on a biopsy using mammography findings. A 

mammogram is a special type of x-ray photograph that uses high-resolution film, 

high contrast and low dose x-ray for imaging the breasts (Vainio & Bianchini, 2002). 

This helps to detect and diagnose breast cancer effectively in its early stage. Digital 

Mammography is the most excellent gold standard screening method for breast 

cancer detection in its early stage (Vainio & Bianchini, 2002). Several studies have 

found that women with a family history may benefit from regular breast cancer 

screening, reporting higher cancer detection rates (Halapy et al., 2004; Kerlikowske 

et al, 2000). A mortality benefit from screening mammography in women at average 

risk of developing breast cancer has been established (Nelson et al., 2009; Canadian 

Task Force on Preventive Health Care, 2011); Studies have demonstrated that digital 

mammography has higher cancer detection rates in women who are more likely to 

have their cancer missed by screen-film mammography (Burrell et al., 1996; D‘Orsi 

& Newell, 2007; Ikeda et al., 1992; Rosenberg et al., 1998). However, not all breast 

cancers are detectable accurately using mammograms even though they are very 

sensitive due to its difficulty in reading that requires abundant experience (Joseph 

Y.L, 1999). Several researches have shown that 20% to 40% of breast cancer 

detection failure rate is due to image complexity structure and radiologist fatigue 

(Harvey J et.al, 1993; Beam.C et.al, 1996; Elmore.J et.al, 1994). Due to this, about 

65% of cases that are referred to surgical biopsy are just the normal (Kopanas, 1992; 

Knutzen, 1993). Additionally, mammogram interpretation is a high demanding job.  

About 10% of normal mammograms are misidentified by physicians as abnormal 

leading to more stressful tests and unnecessary diagnostic procedures for a normal 

patient moreover the misinterpretation of abnormal mammograms results in high rate 

of death (Jackson, 1993).  

Computer-aided diagnosis (CADx) has gained significant attention in helping 

radiologists in the interpretation of mammograms to assist in diagnostic decision-

making (Yusof, N.M et.al, 2007). A more effective CADx invariabily increases the 

probability of cure. In particular, the CAD system for automated 

detection/classification could provide a second opinion that improves the chances of 

detecting tumors and also reduces the human workload associated with the 

diagnosis. Such a system is capable to automatically classify and suggest the 

pathological terms for a new mammography image. These suggested terms are 

presented to doctors as additional information to assist them in the diagnosis of 
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breast cancer.  As such, it is vital to select a tool for revealing unknown information 

using the features extracted from images. An effective mammogram classification 

technique benefit to the research of computer aided mammography for a better 

diagnostic assistance. The classifiers using the Association Rule (AR) mining gain 

popularity compared to traditional classifiers due to their nature in reflecting close 

dependencies among single or multiple features for composing rules with its 

excellent interpretation. However the classification rules are stagnant on the training 

set and not adaptable to a changing distribution of test images. The classification 

performance can be improved if the static rules are updated dynamically.  The main 

aim of this thesis is to propose an effective classifier using rule refinement technique 

that updates rules incrementally to adapt changes in databases. As such the database 

becomes more knowledgeable and helps in optimizing the performance of an 

associative classifier,  thus can be used in a hierarchically CADx system that classify 

the mammogram images firstly according to its features, after indicates if there is a 

lesion and finally what kind of lesion is.  

This chapter consists of five sections. The Section 1.2 outlines the motivation to 

carry out this work and the background for the research. Subsequently,  In Section 

1.3,  the research problem statement is presented. The Aim and objectives of the 

research are explained in the sections 1.4 and 1.5 respectively. In addition, section 

1.6 presents the significance of the research work.  Following this, the sections 1.7 

and 1.8 presents the research contributions and organization of this work. 

1.2 Motivation of the work 

The advancement in digital images has created a new breakthrough in every field. 

Medical imaging has developed into one of the most important fields due to its 

continuous growth in computerised medical image visualisation and advances in 

analysis methods. However, exploring the ever increasing quantities of medical 

images for manual diagnosis is cumbersome and time consuming. Also, factors like 

image quality and eye fatigue may affect the diagnostic results. Furthermore, most 

often radiologists  have to deal with urgent cases where they need to analyze and 

evaluate the images comprehensively in a shorter period of time,  thus abnormality 

may be unobserved (Sampat et.al, 2005).   

Assisting the radiologists to classify conspicuous cases may help to improve 

accuracy in the interpretation of medical images and deliver a better diagnosis. Two 

different radiologists interpretation of the same mammogram could enhance the 

prediction accuracy of mammographic screening more than 30% (Skaane, P., et.al, 

2013). Nevertheless, this double reading could increase the radiologists cost, work 

load and makes it unfeasible.  Also there are possibilities for a slight overlap on 

different judgements given by different radiologists for the same diagnosis. Hence, 

by making use of computer based systems along with the knowledge of radiologist‘s 

feedback could be useful to detect the abnormalities and thus making better 

diagnostic decisions; this process is called Computer Aided Diagnosis (CADx).  

Therefore, it is important to develop a computer-aided diagnostic system to aid 
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radiologists in finding the abnormalities effectively and to reduce the number of 

unnecessary biopsies.  

1.3 Problem Statement 

Many CADx based systems were used by the radiologist for the diagnosis of breast 

masses. In order to automate the classification system for CADx, there are some 

limitations in the process of breast mass diagnosis (Jalalian. A et.al, 2013). Accurate 

segmentation of a breast mass could be one of the important step for the diagnosis of 

breast cancer in mammography. The  mammograms may contain some labels namely 

the background and that must be removed before subsequent tasks such as feature 

extraction and classification step. In full-field digital mammograms background 

region is totally black and uniform. Therefore, the background is composed of all 

pixels with an intensity equal to zero. However,  mammogram contains many 

artifacts (Mustra, M., & Grgic, M. , 2013) and due to this nature the dark regions of 

the border might be set to background which are likely to be ignored during the 

segmentation process. As such these segmentation techniques may result in some 

missed parts of the peripheral region when applied to mammogram images. Hence a 

filter that scales the gray level of the border regions to brighten the mammogram 

image is required to enhance the details of images and helps to obtain a better 

segmented output. 

A mammogram uses a machine that takes a lower dose x-ray by flattening the breast 

between 2 plates to look only at the breast tissue that spreads apart. However, this 

flattening of the breast is subject to the deformation due to heavy force applied 

during compression that leads to a difference in the thickness of the breast 

(Kallenberg, Michiel GJ, et al., 2012). Hence a smoothly varying correction function 

is required to expand the perceptibility of the peripheral area. Peripheral 

enhancement is a technique t+hat greatly reduces the dynamic range of the 

mammogram (He, W. et.al, 2014).  

In the context of mammogram classification, there are some traditional classification 

methods such as Decision Trees (Devi R.D.H et.al, 2015); Sequential Minimal 

Optimization (SMO) (Sharma, V., & Singh, S., 2014), Radial Basis Function 

(Pratiwi, M., Harefa, J., & Nanda, S., 2015) proved with good prediction accuracies. 

However, a few other traditional classification methods produced using neural 

network and probabilistic approaches, are difficult to understand (Setiawan, A. S., 

Wesley, J., & Purnama, Y. 2015). Methods using Naive Bayes generate strong feature 

independence assumptions (Karabatak, M., 2015). Therefore, the prediction 

accuracies using traditional methods may not be commendable. Hence there is a 

need to build an efficient classifier that generates strong associations between 

features and reveals hidden relationship that can be missed by other classification 

algorithms. The existing associative classification techniques HiCARe (Riberio et.al, 

2008), SACMINER (Watanabe et.al, 2011), MINSAR (Traina AJ et.al, 2012), that 

are used in Computer Aided Diagnosis (CADx) are static and do not adapt to 

changes in the database over the time.  The classification association rules generated 

using training samples form the base knowledge to come up with a target output for 
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new images. However, these existing rules are stagnant and cannot adapt to a 

changing distribution of test images. Hence the process of knowledge (rule) 

refinement is required to have an effective knowledge base that dynamically adapts 

to changes for a more accurate classification. The information about the lesions for 

each patient that are provided in the ground truth by the experts are used for rule 

refinement. 

1.4 Research Aim 

The main aim of the proposed research work is to propose an efficient classifier in 

order to build an effective CADx model for the classification of mammogram images 

based on refined classification association rules with the validated apperances of 

instances over time.  

1.5 Research Objectives 

The primary focus of this research work is to propose methods and algorithms for 

improving the performance of mammogram classification. The following objectives 

are set to accomplish this. 

1. To improve an effective segmentation technique with a filter that includes 

specific areas of the image for mammogram peripheral enhancement. 

2. To propose a classification model using generated association rules for an 

effective mammogram image classification of new instances.  

3.   To propose a dynamic rule refinement strategy of the association  rules 

based on experts ground truth  for an effective classification of 

mammography images  

 

 

1.6 Significance of Study 

This study will be a significant endeavour in promoting assistance to radiologists in 

their interpretation of mammogram images with the following benefits.  

 Factors like image quality, eye fatigue do not affect the diagnostic results. 

   Reducing the number of missing detection cases, combined with an 

enhanced technique have resulted in the effective diagnosis and potential 

survival. 

 Evaluates the mammogram images comprehensively in a short time. 

 Easy analysis of disease specific information among patients using 

different modalities is possible.  

 Adapt to changes by learning from prior known cases to arrive at correct 

conclusions   
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 Automated classification technique of abnormalities assists radiologists in 

their interpretation of mammogram images and overcomes the 

inconsistencies in manual grading. 

 

1.7 Research Contributions of the Thesis 

The technical and social contributions of the proposed research are as follows: 

 Enhancing the preprocessing technique using peripheral enhancement that 

uses the modified segmentation technique 

 Proposed a new Associative Classifier that uses a predefined weight as 

highest average confidence based on a category for classification decision. 

 Enhancing the Association Rule based classifier that dynamically refines 

the classification rules 

 

 

1.8 Organization of the Thesis 

The Organization of the thesis comprises of eight chapters and shown in Figure 1.1. 

The detailed descriptions of each chapter are provided below: 

Chapter 1 presents the introduction, motivation, aim, objectives, significance, 

contribution of the research and the organization of the thesis.  

Chapter 2 discusses appropriate related works for Segmentation, Enhancement, 

Feature Extraction methods, Feature Selection methods, Data Mining Algorithm 

techniques, and Classification. Soft computing theories such as rule refinement 

techniques increment learning are also presented in this chapter.   

Chapter 3 presents the overall implementation methodology with a detailed 

framework for the interpretation of the proposed automated classification of 

mammogram. 

Chapter 4 presents the preprocessing, feature extraction and feature selection 

processes to identify more discriminating features irrespective of its excessive 

dimensionality. The selected features are effective in mammogram diagnosis to 

facilitate the improvement in the performance of a medical diagnostic process in 

minimizing the failure rate of the diagnostic process.  Also the proposed system 

results are compared with the existing methods. 

Chapter 5 focuses on generating Association Rules (AR) for an effective 

construction of different classifiers using association rules. Generated rules are used 

to build a classification model and is evaluated to study its predictive capability. The 
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proposed Associative Classifier using Highest Average Confidence (ACHAvC)  is 

compared with other traditional classifiers. 

Chapter 6 focuses on association rule refinement for the performance optimization 

of classification models. The refined rules are used to optimize a classification 

model, which is evaluated with different prediction models to study its predictive 

capability.  

Chapter 7 provides the conclusions of the research work and future work is 

described briefly.  
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Figure 1.1: Organization of the thesis 
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1.9 Summary  

This work is an integration of Computer Science and Medical Science, and highly 

contributes to the specified problem domains. This chapter gives a gist about the 

thesis, challenges faced, motivation for this work and major contributions. In the 

coming chapters more detailed technical explanation and experimental analysis are 

given. 
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