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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
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NEW DEVELOPMENTS IN CONVERGENCE OF WAVELET
EXPANSION OF FUNCTIONS LP(R%), SOBOLEYV SPACE H5(R?) AND
LP(S?)

RAGHAD SAHIB ABBAS SHAMSAH

March 2019

Chairman : Hishamuddin Zainuddin, PhD
Faculty : Institute for Mathematical Research

In this work, we highlight to some methods that can develop the convergence of
wavelet expansions under some new forms of partial sums operators. We improve
some requirements on classical wavelet expansions on R? domain. In addition, it is
interesting to consider the spherical wavelets which are defined by polar coordinates
on R domain, and establish a convergence of unique expansions called spherical
wavelet expansions.

We introduce a generalization of wavelet expansions principle in two dimensions
with new conditions under some associated operators which are Wavelet Projection
Operator, Hard Sampling Operator and Soft Sampling Operator. The expansions can
be generalized to expand functions for different types of functional spaces such as
LP(R2), Sobolev space HS(R?) and LP(S2). The wavelet expansions are analyzed
by two methods of analysis which are classical multi-resolution analysis and spher-
ical multi-resolution analysis. We investigate the sufficient conditions for a wavelet
function and its expansions to achieve the convergence of wavelet expansions of the
function under its related operators. For instance, after imposing a minimal regu-
larity on the wavelet functions we can establish the rapidly decreasing property in
two and four dimensions, that is, the expansion of any wavelet function is depen-
dent on four integer parameters ( j;;j;ki;ks) in analyzing the wavelet. It is im-
portant as well to take the boundedness property of wavelet expansions of functions



into consideration. A special technique is established to achieve the convergence of
wavelet expansions of LP(R?) and LP(S2) functions by limiting the operator s mag-
nitude with another bounded operator such as Hardy-Littlewood maximal operator
and spherical Hardy-Littlewood maximal operator. While other techniques like use
the boundedness condition of Zak transform and the structure of Meyer wavelet, are
used to prove the convergence of wavelet expansions of Sobolev spaces functions
with using high-regularity wavelet function. Some basic properties of wavelet func-
tions as well as sharp examples are also given.

The performance of some partial sums operators developed by improving the condi-
tions of their wavelet expansion. The two dimensional wavelet expansions of func-
tions for some functional spaces converged in the two cases of classical wavelet and
spherical wavelet expansions. Depending on some required properties for wavelet
and its expansions, the convergence appeared almost everywhere along the Lebesgue
set points of LP(R?) and LP(S2) functions. On the other hand, new type of conver-
gence produced by making equivalent between the wavelet expansion and Fourier
expansion of Sobolev space functions HS(R?). By this, the partial sums operator
behaved likes a truncated parts of inverse Fourier transformation, such that the con-
vergence appeared uniformly at the singularity points of the partial sums operator
kemel.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperduan untuk ijazah Doktor Falsafah

PERKEMBANGAN BAHARU DALAM PENUMPUAN
PENGEMBANGAN GELOMBANG-KECIL BAGI FUNGSI DALAM
RUANG LP(R?), RUANG SOBOLEV H5(R?) DAN LP(S2)

Oleh

RAGHAD SAHIB ABBAS SHAMSAH

Marc 2019

Pengerusi : Hishamuddin Bin Zainuddin, PhD
Fakulti : Institut Penyelidikan Matematik

Dalam penyelidikan ini, kami ingin menekankan beberapa kaedah yang boleh mem-
bangunkan pengembangan gelombang-kecil di bawah beberapa bentuk baharu oper-
ator penjumlahan separa. Kami menambahbaik beberapa keperuan ke atas pengem-
bangan gelombang-kecil klasik pada domain R?. Sebagai tambahan, adalah juga
menank untuk pertimbangkan gelombang-kecil sfera yang dapat ditakrif dengan ko-
ordinat kutub dalam domain R? dan menentukan penumpuan pengembangan unik
yang dipanggil pengembangan gelombang-kecil sfera.

Kami perkenalkan pengitlakan prinsip pengembangan gelombang-kecil dalam dua
dimensi dengan syarat-syarat baharu di bawah beberapa operator berkaitan iaitu Op-
erator Unjuran Gelombang-Kecil, Operator Pensampelan Keras, dan Operator Pen-
sampelan Lembut. Pengembangan ini dapat ditlakkan untuk mengambang fungsi
bagi ruang fungsian berbeza seperti LP(R?), ruang Sobolev H5(R2) dan LP(S2).
Pengembangan gelombang-kecil dianalisis dengan dua kaedah analisis iaitu anali-
sis multi-resolusi klasik dan analisis multi-resolusi sfera. Kami mengkaji syarat-
syarat cukup untuk fungsi gelombang-kecil dan pengembangannya bagi mencapai
penumpuan pengembangan gelombang-kecil di bawah operator-operator berkaitan.
Sebagai contoh, setelah mengenakan kenalaran minimum fungsi gelombang-kecil,
kita akan perolehi cini penurunan deras dalam dua dan empat dimensi iaitu pengem-
bangan sebarang fungsi gelombang-kecilakan bergantung kepada empat parame-

iii



ter integer ( ji; j23Kki;ky) dalam menganlisis gelombang-kecil. Adalah juga pent-
ing untuk mengambilkira ciri keterbatasan pengembangan gelombang-kecil yang
tedibat. Satu Teknik khas ditentukan untuk mencapai penumpuan pengembangan
gelombang-kecil bagi fungsi-fungsi LP(R?) dan LP(S?) dengan menghadkan mag-
nitude operator dengan operator terbatas lain seperti operator maksimum Hardy-
Littlewood dan operator maksimum Hardy-Littlewood sfera. Sementara itu teknik
selainnya menggunakan syarat keterbatasan jelmaan Zak dan struktur gelombang-
kecil Meyer bagi membuktikan penumpuan pengembangan gelombang-kecil fungsi
ruang Sobolev dengan menggunakan gelombang-kecil kenalaran tinggi. Beberapa
sifat asas bagi gelombang-kecil serta contoh-contoh jelas ada diberikan.

Kelakuan sebahagian operator penjumlahan separa dibangunkan dengan menam-
bahbaik syarat-syarat pengembangan gelombang-kecil mereka. Pengembangan
gelombang-kecil dua dimensi fungsi bagi sebhagian ruang fungsian menumpu
bagi dua kes pengembangan gelombang-kecil klasik dan gelombang-kecil sfera.
Bergantung kepada beberapa syarat yang dipedukan untuk gelombang-kecil dan
pengembangannya, penumpuan hamper menyeluruh muncul sepanjang titik-titik set
Lebesgue bagi fungsi LP(R?) dan LP(S2). Selain itu, satu jenis penumpuan baharu
dibangunkan dengan mengambil kesetaraan antara pengembangan gelombang-kecil
dengan pengembangan Fourier bagi fungsi-fungsi ruang Sobolev HS(R?). Dengan
cara ini, operator penjumlahan separa akan berkelakuan seperti bahagian terpeng-
gal transformasi Fourier songsang supaya penumpuan muncul sekata pada titik-titik
singular bagi inti operator penjumlahan separa.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter will discuss the terminology and the notation utilized for the rest of the
thesis. The reader can read through this chapter for the main fundamental concepts
and ideas, and refer back to this chapter if needed to support the results and provided
them.

1.2 Function Representation

There are several different ways to represent a mathematical function, often through
a formula, a graph, or an algorithm. In the subsequent chapters, a set of basis func-
tions will be proposed as representative of the functions on two-dimensional model
of certain function spaces. This representation method is similar to the manner by
which a vector can be expressed as a linear combination of basis vectors. Any space
function spanned by the basis functions can be constructed as a distinct sequence of
basis function coefficients. Projection refers to the process of converting a mathe-
matical function to a basis representation, while reconstruction refers to the reverse
process of creating a function using the basis function coefficients. Naturally, the
amount of contribution that a basis function makes to the basis representation is de-
termined by a basis function coefficient. Furthermore, the similarity between the
mathematical function and a basis function is measured by a basis function coeffi-
cient. Thus, a basis properties and limitations are determined by the characteristics
of its basis functions and its span. The next section will discuss important basis
functions that are useful in this research.

1.3 Wavelet Functions

Sweldens (1995) exemplifies wavelets as:

. . . building blocks that can quickly de-correlate data.



The description given by Sweldens integrates the three major features of wavelets.
First, wavelets are considered to be analogous to building blocks. They serve as the
basis for which one can represent functions via a linear combination of wavelet basis
functions. Furthermore, the basis functions of wavelets possess structures that are
very similar and therefore look like blocks. In fact, a first generation wavelet’s basis
functions are shifts and dilations of a mother wavelet function.

Second, the use of the word quickly refers to the existence of fast algorithms that
can be used for function synthesis and analysis. These algorithms are able of trans-
forming a function between its wavelet representation and its original representation
in time that is linearly dependent on the function s size. It complemented this speed
efficiency by considering the wavelets. Then, one can obtain the basis function co-
efficients using inner products between the function and the dual basis functions.

Finally, wavelets are able to decorrelate data in the function s space for that the
wavelet representation to be more compact in comparison to the original repre-
sentation of function. The wavelet basis function coefficients mostly are known to
be small in magnitude because they centrate most of the energy in a few coeffi-
cients. Natural signal functions, unlike random noise, are correlated in frequency
and space. For example, two neighboring pixels in an image are typically similar
relative to compared to those pixels that are spaced farther apart. Similardly, in the
frequencies domains, natural signal functions have a tendency to explain a correla-
tion structure that shows localization in space, and decay towards the two ends of
the frequency spectrum. This structure can be used so that compact representations
can be obtained, where the greater number of the wavelet coefficients are nearer to
zero in terms of magnitude. The concept of wavelets is to formulate basis func-
tions that are able to capture local differences within a signal function. Thus, a large
wavelet coefficient is indicative of a large degree of difference between the wavelet
basis function and the mathematical function. Compact representations are more
ideal because accurate approximations can be obtained by ignoring those with small
coefficients. Thus, the approximation preserves its distinguished features while it
discards the insignificant details.

1.3.1 First Generation of Wavelet

The classical or first generation wavelet can be characterized by three simple opera-
tors that are implemented within an appropriate mother wavelety 2 L-Z(R): trans-
lation ty by k defined by (tyy )(x) y (x— k), dilation r,j by 2J defined by

. 4
(r2 j¥)(x) y (2Jx) and multiplication by 22. The wavelet basis functions are



considered to be dyadic scales and translates of a mother wavelety so that

¥ k(%) 2%y (2Ix—K); (1.1)

serves as an orthonormal basis of L2(R), where j2 Z is used to define the basis
functions scale or dilation and k2 Z is used to determine the translation on level j.
If y represents a 2-dimensional classical wavelet function, then y ;  (x;y) can take
on the following forms:

Yik(X5Y) Y jyiky (X2Y ik ()3 (1.2)

yix(xsy 201 2 2y Qiix—Kk)y 22y - ky); 1.3)
suchthatj (ji3j2),k (ki3ko) and jik 2 Z2.

Proposition 1.1 One can normalize the classical wavelet basis functions fy ;g
such that

ky jxka  kyky 13
for all j;k2 Z.
Proof:
The proof can be directly obtained from the wavelet basis function s structure ll
Example 1.1 If
( 1; if

y (%) { —1; if
| 0 elsewhere;

Nl= S
IA A
M A
o DN

then y represents an orthonormal wavelet for I>(R). This is known as the Haar
wavelet. Proving thatfy ;, : j;k2 Zg is an orthonormal system in L2(R) is easy.
Example 1.2 Lety be a wavelet function such that

y (x)  cr(x);

where y represents the Fourier transform of y and cj is its characteristic func-
tion defined on I  [—2p;—p]l [p;2p]: To demonstrate that y has an orthonormal
wavelet basis for L2(R), a simple calculation can be conducted:

_d C i
¥ j(x) 272y (27 Ix)el? e,



For j 6 1 this equality illustrates that the intersection of supports of (y j;k) and
(y l;m> measures zero; hence,

O vim) g (05 im)) 0

since,

S 1 ; 1 .
<y j;k;YI;m> /Yj;kYI;de / /pZ:/Yj;k(X)elXXdX\ /pZ:/YI;m(X)elXXdX\dX;
4 o\ 2Py JANETT )

1 _ 1
E /y j;k(X)YI;m(X)dX E <y j;k;YI;m>:
R

Hence,
1 . 1 .
E <y j;k’YI;m> E/y j;k(X)YI;m(X)an
R

1 s . .. 7] -
2—/(2 12y (273x)el2 kax)(2 L2y (2-1x)ei2 lmXX)dx;
p

R

1 =1 oo [ . oy on
2—/ Z/y(kx)e_12 Jloxx o2 kaxdx\ /2 lz/y(mx)e_12 T gi2 lmxxdx\ dx;
R R

)

zjzz—lflzz (zy(kx)dx) (zy(mx)dx) dx O:
Let j 1, we can write
1

1 - i
E <y kY j;m> Elzy j;k(X)y jm(x)dx;

1 . . - r W X T
2—/(2 12¢ (27 Ix)ei2 “‘“)(2 J2y (2-ix)ei2 JmXX)dx;
pR

thus,

<yJ,k’yJ,m> 2_2 J/ ‘y 27 Ix ‘ ez J(l‘_“‘)""dx

since,iy (2_JX)|2 L,leth 2 Jx,x 2Jh anddx 2idh:

1 1 (—p 2p )
E<y 6 jim) » { / ei(k—m)xh gp / ei(k—m)xh g } G’
(—Zp p )

where dy., is a kronecker delta function.



1.3.2 Classical Wavelet Expansions

The function f can be represented by using wavelets basis function as an infinite
series expansions of scaled and shifted versions of wavelet y 2 I2(R), each one
multiplied with a suitable coefficient is known as wavelet coefficient. Obviously,
one can analyze the functions f(x), with an arbitrary high precision, using a linear
combination of the wavelets y j.x(x), i.e.

f(x) ~ ajky jik(x)3 (1.4
i k-

where the summation first presented is over scales (from small to large) and, at every
scale, all translates are summed over. One can obtain the coefficients as

age (Byj) [ 1)y jady

The set of all wavelet basis functions y ;i for a fixed j can generate the subspace
W; C L2(R) as in the following expression:

W (Y2 P®:y e 22y 2x-Rsjik2 2]

It is noticeable how wavelets provide a time and scale representation of the multi-
resolution analysis, where indices k and j represent the time location and scale of
wavelet function, respectively. The wavelet expansion presented above is close to a
Fourier series with the following dissimilarities:

The wavelet expansion series is double indexed, which is indicative of scale
and location.

The basis functions have the property of time-scale (time-frequency) localiza-
tion. It gives the ability to study function’s features with details identified by
their scale. This property is important for functions that are:

1. Non-stationary (functions with time-varying parameters and not peri-
odic).

2. Having features at different scales.

3. Having singularities.



With the use of an intermediate scale jj, one can break down Equation (1.4) as two
sums

Jo
f(x) ~ (£3¥ i)Y ja(®) (£3¥ jk) Y jx(®): (1.5)
i Jok — i- k-

It is well known that for each wavelet function y (x) 2 LZ(R) there exist an auxiliary
function f (x) 2 L2(R) be called scaling wavelet function and meeting its certain
properties.

[tmay 15
R

Kf (x)k? / if (pitdy 1:
R

The function f j(x) is referred to as a scaling basis function that are defined to be
similar in work to wavelet basis function y j,(x), i.e.

fa  2'2 2ix—K:

The set of all scaling basis functions at a fixed j can generate a subspace Vj C I2(R)
as a following definition:

v {fj;k(x)sz(R):fj;k(x) 292 (2ix—ky; k2 Z}:

The second sum for Equation (1.5) may be expressed as a linear combination of
f joiko such that we impose here j, is the intermediate scale level of analysis and
contains the other level before it i.e.

Jo

(B8 ) £ jps(® (£33 ja)¥ 2093 (1.6)
k — j — k -
Consequently,
(0~ (B gr™ (BY a0y @ (A7)
k — J ok —

This process is known to as the wavelet multi-resolution analysis. According to
Equation (1.6), it is possible to analyze all the features of f(x) that are smaller than
the scale 2J0 using a linear combination of the scaling function s f (x) translates
(over k) at the fixed scale 290, This analysis can be reformulated using the projection



operator Pj0 f(x) on subspace Vjo’ i.e.
P, () (£ sy £ joa(®03 (1.8)
kK —

where Vj, is a subspace of I2(R) generated by scaling basis functions f okatj 0
as:
Vi {fox02 2R :fop0  f(x—K5k2 Z]:

The projection operator  ; f(x) on subspace Wj can be defined as

() (£3¥ jk) ¥ j(®):
J ok —
Since jo is arbitrary starting scale, we also analyze the function at level j, 1 by
using the projection operator

Pj0 1f(x) Pj0 f(x) io f(x):
Thus, Equation (1.7) becomes
Pif(x) P f(x)  f(x);

where jj is arbitrary starting scale. In general the projection operator on sub space
V; 1 is
J

P; 1f(x) Pjf(x) (X3 1.9)

where P; f(x) is the projection of function on subspace V; and ;f(x) is the projec-
tion of function on subspace W; such that (R & s V; & Wj. This equation
can be used to characterize the basic structure of orthogonal wavelet decomposi-
tion of Equation (1.4). It was previously mentioned that P; f(x) on subspace V; has
all information about features of f(x) that are considered larger than the scales 21,
Equation (1.9) makes this evident when one moves from the scale 2Jin subspace V;
to the next scale that is bigger2J 1 in the next subspace V; 1. Then, some details are
added to P; f(x), which is given by ;f(x) in the subspace Wji.e. W; V; 16YV;.
Thus, one can say that ;f(x), or consequently the functions wavelet expansion at
any scale 2J, can characterize the difference observed between the projection at two
varying scales 2J and 2J 1, or equivalently at two varying resolutions. The following
Figures 1.1 and 1.2 illustrate this process:



u
» U
w

Figure 1.1: Sketch Illustrates the Decomposition of Subspace V;



Figure 1.2: Sketch Illustrates the Linear Combination of Projection Operator
P;f(x) at 4-Levels of Multi-Resolution Analysis



The following definition can be used to summarize the above process:

Definition 1.1 The wavelet multi-resolution analysis (MRA) refers to the represen-
tation of a function within the nested structure. It is made up of a sequence of closed
sub-spaces fVjg ;> 7 of the Hilbert spaces L2(R). One can then use these subspaces
to characterize a function s behavior at varying resolutions or scales if the properties
listed below are satisfied:

a) V;CV; gsforall j2 Z.

b) f(x)2 Vjifand only if £f(2x) 2 V; ; forall j2 Z.
o Uj; _ Vj IAR), (MRAis dense in L*(R)).

d) ﬂj _V; fog:

e) The existence of a function f 2 V, implies that ff (x — k) : k2 Zg is an or-
thonormal basis for V.

Note: A is dense in the space X if A X, where A A [Jflim,a, :8n> 0;a, 2
A g:

Sometimes, the functions ff (x —Kk) : k2 Zg under condition (e) are assumed to be a
Riesz basis for V.
For more details, one can read Hemandez and Weiss (1996); Meyer (1990).

Definition 1.2 (Riesz basis functions): A countable set of elements ff ;. (x) : jik2
Z.g represents a sequence of Riesz basis functions for the multi-resolution analysis
(MRA) of I2(R). In other words, for every f 2 V; there are countable infinite se-

quences fa j4gi107 2 12(R) in such a way that

f(x) a j;kf j;k(X);

BRZ
and the inequalities that are presented below hold true

a2

| Jsk| ’

sk
) 5 ) (1.10)
A apl <l ajudf jk(OK; <B |
sk BKRZ sk
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with0) A6 B that are constants independent of f.

For more details, one can read Wojtaszczyk (1997).

1.3.3 Second Generation of Wavelet

Spherical wavelets which are second generation wavelets overcome the limitations
of first generation wavelets and allowed for the representation of functions in L2
within the space of functions having finite energy, in a very general L2(R®) setting.
Thus, first generation wavelets are actually a subset of second generation wavelets
on R", and where one uses the Lebesgue measure.

The wavelet basis functions were designed on the sphere with the use of multi-
resolution analysis (MRA) defined on SZ, in generating bi-orthogonal bases. The re-
sults of this analysis is known as spherical multi-resolution analysis (SMRA), which
led to a subdivision of surface of S2 into subsets having an unequal area through the
successive partitioning of triangles. There is always an attempt to refine a partition
and not coarsen it.

A given function f(w) has undergone expansion at multiple detail levels on LP(S2)
when using two sets of biorthogonal functions y 3“,1 and f j, defined on the sphere

S2, K(j) CK(j 1) and M(j) C K(j 1) are able to form a general index sets
that have been given definition over the scaling functions and wavelet functions on
level j, in such a way that, for every j2 N;k2 K(j);12 K(j 1) and m2 M(j).
These two sets of functions f'y ;“,l g and ff j,g are used to form a Riesz basis function

for L2(S?) defined in Definition 1.2. Tt is not necessary for y 3‘,‘1 to be dilations and

translations of the original wavelety and to form a basis in each W;.

Therefore, the V; and W; are Banach spaces. Based on the definition of a dual Banach
space, the following represents the dual spherical multi-resolution analysis

SMRA fVj;0<j<J jCNg;

that is produces the dual spaces V; and Wj. The dual scaling functions f f ik provide
a basis of the spaces V;. ff K8 need to be on the same level and biorthogonal to the

primary scaling functions ff ;;;g, for that every dual scaling function f ik comple-
ments a scaling function f j; . By a similar manner, for a given wavelet function
y 3“,1, there exists a dual wavelet y 3“.1, such that the dual and primary wavelet basis

11



functions are biorthogonal as following:

/y“y M dw dy 4 Ay
(1.11)

s2

Based on the nested structure of the spaces Vj, it follows that the scaling functions
f ju satisfy the following refinement relationship. Every f j,c can be written as linear
combination of scaling functions f ; 1 that are situated at the next finer level:

f i hjafj 133 (1.12)
2K(j 1)

where fhj, g represents scaling function’s scaling filter coefficients. The spaces of
functions f'V;go< j<j are defined by Equation (1.12) as follows:

Vi spanff 5 :0 < j < J;k2 K(j)g: (1.13)

Forf . jiko A0 analogous relationship with dual scaling function filter coefficients h; iskal
holds true. The following assumes that all filters are uniformly bounded and of ﬁmte
extent. This is also implies that at each level of analysis j there exist infinite index
sets I( jsk) and K( j;1) with

L(jsk)  f12 K(j 1jhju 6 0g;
K(js1) fk2 K(j)jhjg 6 Og:

For the dual scaling functions, these analogous index sets L( j;k) and K( j;1) exist.
Unless otherwise specified, the assumption is that 1 runs over I( j;Kk), 1 runs over
L(j;k), kruns over K( j;1) and k runs over K( j;1).

The wavelet basis functions f'y 3“,1 jO  j6 J;m2 M(j)g are known to span the vari-
ous spaces W;, with
VioW; Vs

and form a basis for the spaces V; and W; in which
(@5 VP& (&) W) LXS): (1.14)

Based on the definition of the y 3“1 over the subspace W; C'V; 1, wavelet basis func-
tion filter coefficients g,y are found with

Yﬁ gj;m;lfj 1;1¢ (1.15)
2K(j 1)

Dual wavelet basis functions y ;nl exist analogous to the primary wavelet basis func-

12



tions y 3“1 These also cover the difference spaces W; , with Vi &W;  V; 1. Dual
wavelet basis function filter coefficients g jil;m A€ used in defining the y 3“1 as linear
combinations of dual scaling functions f i Like K( j;1) and K( j;1), the definition

of index sets M( j;1) and M( j;1) is likewise given, and 1( j;m) and L( j;m) represent
index sets that run over the nonzero wavelet basis function filter coefficients. Unless
otherwise specified, the following assumes that 1 runs over L( j;m) and 1 runs over
L( j;m) and m runs over M( j;1) and m runs over M( j;1). For more details one may
refer the reader to Nielson et al. (1997); Sweldens (1998); Rosca and Antoine (2010).

A multi-resolution analysis (SMRA) is used in the second generation setting to give
a definition to the wavelet basis functions on I2(S2). Therefore, one can define the
spherical multi-resolution analysis (SMRA) of the space LZ(SZ) as follows:

Definition 1.3 A spherical wavelet multi-resolution analysis SMRA
{Vj CI2SHjo<j<J2 N} represents the function of space as a sequence
of nested subspaces fVjgo j<j of L2(S?) space by employing wavelet functions, if
it meets the following requisites:

a) V;j CVj 1.
b) Uj oV; [L?(S?), (SMRAs dense in L* (S%)).

¢) There is a scaling function f (w) 2 V present, where the sequence ff j,; j >
0;k2 K(j)g serve as a Riesz basis for V;. For more details, one can refer to
Rosca (2005b).

1.3.4 Regularity of Wavelet Functions

In this subsection we redefine the expression of the regularity for Daubechies (1992),
pp 153-155 and Bownik and Dziedziul (2015) as:

Definition 1.4 The set of wavelet basis functions f'y j,g(x) 2 LZ(R“) is considered
as r-regular functions for (r 2 N), if y is selected in such a way that:

(1.16)

ly (%) ] < :
|stk(X)| = [1 ‘ZjX—an
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Furthermore, the derivatives ?y are bounded by
i |~ i N\
Ba;n/z 12(1 pix—k)"| "y uoolax (1.17)
Rn

forn2 N,a fajs;ajp;:;ang there is a multi-index satisfying jaj6 r, (j;k) 2 Z
and cp; Bj ;i are constants.

1.4 Functional Spaces

1.4.1 Vector spaces

This section will provide a definition of vector spaces. The exact definition is given
below:

Definition 1.5 A vector space over a field K Ror Cis considered a set'V together
with two operations and -, that meet the eight axioms listed below. Elements of
V are often referred to as vectors and elements of K are commonly referred to as
scalars.

Let u;v and w represent arbitrary vectors in V, and a and b represent scalars in K.
They satisfy the following axioms:

Associativity of addition,u (v w) (u v) w
Commutativity of addition,u v v w

Identity element of addition, an element 0 2 V, called the zero vector, exists
suchthatv 0 vforeveryv2 V:

Inverse elements of addition, there exists an element —v 2 V, for every v 2
V. This is called the additive inverse of v, and it works in such a way that
v (-v) O:

Scalar multiplication’s compatibility with field multiplication, a(bv) (ab)wv:

Identity element of scalar multiplication, 1-v v, where 1 represents the mul-

14



tiplicative identity in K.

Distributivity of scalar multiplication with respect to vector addition, a(u
V) au aw:

Distributivity of scalar multiplication based on field addition, (a b)v av
bwv:

A function space is one of vector spaces. Furthermore, its vectors are functions. It
commonly uses those that are defined by an inner product or a norm, they also have
a distance between two vectors. This is especially true in the case of Hilbert spaces
and Banach spaces, which are essential in this study.

Example 1.3 Given the function space [x;y] and let x;y2 R withx y. Consider
[x;y] is made up of functions f : [x;y] K that are continuous on [x;y]. One can

define the addition and scalar multiplication as follow.

Iff;g2 [xsyl,thenf g2 [x;y]is the function given by

(f g99(w f(w gw;

foru?2 [x;y]:
Ifa2 Kand f2 [x;y],thena f2 [x;y]is the function given by

(af)(uw) af(w;

foru?2 [x;y]:

1.4.2 Normed Spaces

One can define a normed space as:

Definition 1.6 Let X represent a vector space over R or C with a norm. Further-
more, a normon X is a functionk:k: X [0; ) such that:

1. Forall x2 X, kxk 0. Ifx2 X,thenkxk 0iffx O0:

2. Foralla 2 Randforall x2 X, ka xk ja jkxk:

3. Forallx;y2 X, kx yk6 kxk kyk:

Example 1.4 R" is a vector space over R, let

15



]
I : I 2 R™: This length function satisfies the a norm’s
ey
required properties and is referred to as the Euclidean norm on R". Therefore, R" is
a normed space. Moreover, this is not the only norm that is definable on R". Thus, by
selecting various norms for a particular vector space, different normed spaces can
be obtained. For example, (R";k:k;), (R";k:k;) and (R";k:k ) all represent various
normed spaces.

1,
n s
kxk; ( 1in.]) ' X
1

Definition 1.7 (Convergence in A Normed Space): Given (X;k:k) as a normed
space. Consider a sequence (f,) 2 X, f, that will then converge to some f 2 X,
if for each e 0, there is a number n that exists such that for eachn N, we will
have kf, — fk e, i.e. I}im faS e .

1.4.3 Banach Spaces

Definition 1.8 A normed space (X;k:k) can be referred to as a Banach space if
in that space, every Cauchy sequence (xp)p N 2 X converges to an element of the
space, i.e. consider (xp),2N as a sequence in Banach space X and consider x 2 X.
The sequence (xp),2 N converges to x if 8¢ 0, 9a 2 N in such a way that §Sn2 N
and n > a, that satisfies ks, —xk  e:

Theorem 1.1 (Debnath and Mikusinski (2005)) Let (xp),,2 N be a sequence of Ba-

nach space and leth, x; :: xp. The series Xp converges, that is, there is a
n 1

convergent sequence (hy) N if  kxpk . If lim hy, is denoted by Xn, then
1 n 1

n n

k x| < kxk
1

n 1 n

Proof:
For j n, we have

16



forj n N:
It follows that (h,) > N is a Cauchy sequence, and hence it is convergent. If

limh, h:
n

By applying the following triangle inequality
" 1" 1 " 1
kx ykp  x wiix w0 < niix vl iviiis oy
il il il
where || - ||} is the p-th power of the p-norm function || - || , we obtain

jlhn|| — [[hl[| < [[hy — his;

so that
lim khyk Kkhk:
n

Since
n

khp|| < kx|l < kxik;
i1 i1

since we denote lim h, by Xp and by taking the limit we have
n

n 1
k xf|<  kxpk
n 1 n 1

Example 1.5 Let the sequence (fy),oN 2 ([0;1];k:k ), where

sin(2p nx)
fn TR 8™ .
n

The Figure 1.3 shows the first few terms of the sequence. We notice that the terms
seem to converge to the zero function.

1 1
kf, — 0k —2ksin(2pnx)k — e
n n

Since, ksin(2pnx)k sup,nJsin(2pnx)j 1,forallm N

oF
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Figure 1.3: The First Few Terms of the Sequence (f,)xN:

Example 1.6 Let the space 1P, for16 p . Then 1P can defined as:

|
| . .

1P {X (Xn)DZN‘ xnj® };
n 1

P
kxky, ( jxnjp) :
n 1

For p , the space l is defined by

with the norm

|
1 {x (Xn) 2 N | SUP jXni }
M2 N

18



with the norm
kxk sup jXnj:
n2N

Theorem 1.2 (Debnath and Mikusinski (2005)) The space 1P is Banach spaces for
16 p6

Proof:
We prove this, for instance, in the case of the space 12. From the inequality

. 2 R S,
Jfn gnj” <2jfaj”  2jgnj";
note that 12 is equipped with the operations

(fmeN  (@)meN  (fa g)m2Ns

where (£)n2N3(8n)m2n 2 125 since a(f)pan  (afy)mn, fora2 Kand (fu)n 2
12 is a vector space. To show that 12 is complete. Let ( fo)n2 N be a Cauchy sequence
in 12. The proof of the completeness will be obtained by three steps:

Step 1. We seek a candidate limit f for the sequence ( f,),,2 n. We have

kf,— fuky e;

forall n;k N, thatis

jfi — fil® e (1.18)
il
Thus foreachi2 N and forevery n;k N
Jha — foij  e:
That is, the sequence ( f;);» N is convergent Cauchy sequence in R
lim fni fi:
n

Step 2. We show that f belong to the desired space (here 12).
The sequence f (i) N belongs to 12. Let m2 N from the Equation (1.18).

m

ifa— fuii® %
il
forall n;k N. Letk , then we have
" 2 2
Ji—fhijo  e%;
il
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foralln N. Since forall m2 N this is true , we obtain

it — fui® €% (1.19)
il

foralln N. This means that the sequence f,, — f, and the sequence f f—f, f,
belongs to 12, forn N.
Step 3. We show that

kf,— fk 0;

thus, f,, converges to f in the normed space 12,
The Equation (1.19) is equivalent with

foralln N, and so it follows that lim f, f in the normed space 12.
n
|

Theorem 1.3 (Holder s Inequality): Forp 1,q 1 and% %1 1. If (f,) 2 1P
and g, 2 19, then

1 1

1Y q
Jfagn ( jfnjp) ( jgnjq)
nl n 1 nl
Proof:

See Debnath and Mikusinski (2005) H

Definition 1.9 (Orthogonality and Biorthogonality): Recall dj; i is the Kronecker
delta function given by,

nf 8B 5} 0P
dj;j0 {0 otherwise:

The elements of sequence fx; g‘j“ 1 in a Banach space X are orthogonal if

(xisxpo)  dgge

The sequences f ng‘j“ 12 X and f ong‘j‘(‘) 1 2 X (X'is a dual of Banach space X in
which it is a Banach space of continuous linear maps X  R) are biorthogonal if

(i) i

for j; j°2 Z:
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1.4.4 Hilbert Spaces

Definition 1.10 Hilbert space H refers to a vector space ( possibly infinite dimen-
sional) that has an inner product hf;gi so that the norm is defined by kfk,

1
hf; fi 2. For example, an infinite-dimensional Hilbert space is represented by 12,
having a set of all functions f : R Rin such a way that there is a finite integral of
f ([rif(x) j2dx ) over the whole real line. The inner product in this case is then

hf; gi / £(x)g(x)dx

A Hilbert space will always be a Banach space, but the opposite is not always true.
For more details refer the reader to Sasane (2017).

145 C, Class

Definition 1.11 Let C( ) to be a function space defined on a set of numbers
the set of functions f f(x)g2 C( ) represent the class C, if the following conditions
hold:

1. £(x) are infinitely smooth functions, i.e. 2 f is uniformly continuous in the
closure set ,8a 2 N.

2. f(x) are compactly supported, i.e. f2 C. , f2 C.( ) and suppf fgis a
compact subset of

Note: The closure set is the set together with all of its limit points.

1.4.6 Schwartz and Dual Spaces

Schwartz theory is described in this section with several facts:

Definition 1.12 A set of functions fy g 2 C (R) is called the Schwartz class (R)
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if for every indices s ;a 2 Z , there exists a positive constant C, ;s such that

| S
sup |Xa y S(X)
xR X

|
i Cass : (1.20)

Definition 1.13 Let f 2 (R). Then Fourier transform operator F : (R) (R)
defined as

f(x) (2p):21 / f(x)e ™) gx: 1.21)
R

Itis knownthat f2 (R) when f2 (R).
The inverse transformation F 1 : (R) (R) is given by

f(x) (2p);f1 / f(x)el™dx; (1.22)
R

Definition 1.14 (Dual Space): The space of continuous linear functional on
Schwartz class (R) s testing functions can be represented by %R) and is then
referred to as a dual space or a class of tempered distribution. Thus, whenv2 YR)
and f 2 (R), the functional v on function f is denoted by hv; fi.

Example 1.7 Lety 2 )R), a functional y 2 XR) is called the Fourier image of
y,if

hy;fi  (f3y);
8f2 (R):

We now recall the explanation of distribution theory. The main motivation behind
distribution theory is extending the common linear operators on functions like the
convolution, dervative and the Fourer transform. This is performed so that they
can also be applicable to the non-smooth, singular, or non-integrable functions that
regularly seen in both applied and theoretical analysis.

The distribution theory also aims to define appropriate structures on the spaces of
the involved functions to make sure that suitable approximating functions converge,
as well as the continuity of certain operators. For instance, the limit of derivatives
has to be the same as the derivative of the limit, as well as some definitions for the
limiting operation.

A distribution on R represents a linear mapping that takes a smooth function (hav-
ing compact support) on R and tums it into a real number. For instance, the delta

22



distribution refers to the map,
f  £(0);

while on R, any smooth function g brings about a distribution

f / fg:
R
Thus, putting a formal definition for distribution is important.

Definition 1.15 A distribution refers to a linear continuous functional on the smooth
functions vector space with compact support on an openset U C R. Thus, fCYU )g
is denoted to the set of all distributions on U which is a linear continuous mapping
Cu) C

1.4.7 Sobolev Space

Within the one-dimensional case (functions on R), one can define the Sobolev space
H?5P as the subset of functions f in LP(R) in such a way that the function f as well
as its weak derivatives going up to some order s have a finite LP norm, for any given
p,for(16 p6 ).

Definition 1.16 For — S and p 2, the Sobolev spaces H%? is defined as
follows:

H2R) {2 (R:ikfkgo |

where

kfkys / A P’ fx)Pdx; (1.23)
R

for all f;g 2 H%2(R) and dx is the Lebesgue measure on R. The inner product in
H3(R) is defined by

htigi [ (i00) fo0gtoax:

R

Thus, H%? space contains all tempered distributions f such that its Fourier transform
belongs to leoc (R).

For more information about functional spaces, we refer the reader to Debnath and
Mikusinski (2005) and Dorina (2013).
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1.5 Hardy-Littlewood Maximal Operator

In this section the definition of Hardy-Littlewood maximal operator M is re-
described as:

Definition 1.17 Let jBjis a Lebesgue measure of a set B. Foranyx2 R" andr 0let

n p
B(x;r) fy2 R": ( JXi— yijp) rg denote the open ball defined by LP—norm

1
in R" with radius r and centred at point x. For any locally integrable function f
defined on R", we define the Hardy-Littlewood maximal operator M as:

Mt (x) Sulngr( f) (x)j;

Ay is a maximal function with

Ar(£) (%) /f@@

B(x;r)

JB(x;1)j

Bxsr)j  War';

where W, is the volume of unit ball B in R" (i.e. Lebesgue measure of unit ball).
More generally, we start with a fixed ball B(0;1) containing the origin and define a
maximal function using all the family of balls obtained using dilations and transla-
tions of B(0;1).

For more details one can refer to see Grafakos (2014)(pp 85-104).

Example 1.8 On R, let f be a characteristic function of interval [a;b] of a set R as

1; x2 [a;b];
- {0; x2 [a;b]:

Forx2 (a;b),x d bandx—d a,
the Hardy-Littlewood maximal operator of f over all intervals (x —d;x d) is ob-
tained as

x d
TR
wmmsw—/ﬂmm
o\ 2d
x—d
x d

1
sgpﬁ /dy 1:
x—d

24



For x > b, the maximumofd x-—a,

x d
| R A
M(£)(x) sgpﬁ /Jf(y).ldy
x—d

b

1 / b—a
— dy ——:
2jx—aj 2jx—aj

x—(x—a)

For x < a, the maximum ofd b-—Xx,

x d
1
MO sty / fWidy
x—d

x (b—Xx)

/ d b—a
2jb—xj Y 2x—bj
a

1.6 Lebesgue Integrable Functions

Definition 1.18 A function f(x) defined on R™ be Lebesgue integrable if there exists
a sequence of step functions f f,g such that [ f can be defined by

/f(x)dx 1 1/fn(x)dx;

and the following two conditions are hold:

1. 1fjfn(x)jdx ;

n

2. f(x) fa(x) for every x2 R such that  jf,(x)j
1

n 1 n

The space of all Lebesgue integrable functions on R is denoted by L1(R™).
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1.7 Locally Integrable Function

Definition 1.19 (Measurable Set): AsetS is called measurable if the characteristic
function of S is a locally integrable function.

Definition 1.20 (Locally Integrable Function): Let A is an open set in R" and f :
A Cis a Lebesgue integrable function. When the Lebesgue integral of f is finite
on all compact subsets K of A

[itiex
K
then f is called locally integrable and the set f fg is denoted by I.}OC(A ).

Example 1.9 Let[a;b] and [c;d] be any compact intervals of R and f(x;y) 4xyis
a function defined on R®. The function f 2 I_,lloc(K) is locally integrable function for
all K [a;b] x [c;d]2 R? but f 2 L(R?).

/ / jf(x;y)jdxdy / / jxyjdxdy
K

K

b d
/ 2jxjdx / 2jyjdy ¢ H
a Cc
where c is a constant. For explanation, since

b
b? — a2;

b
/ 2jxjdx le
a

a

for0 a<hb:

a

b
b
/2jxjdx —le —(bz—az);
a
fora<b 0:

b 0 b
/ 2jxjdx  — / 2xdx / dx  a> b
a a 0

fora 0 b. Hence,

b

/Z'X'dx b —a%|; ab 0
X a2 b2; ab6 0

a
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d
similar steps can follow with [ 2jyjdy.
C

1.8 Lebesgue Points Set

Definition 1.21 (Lebesgue Points Set): Let f(x) 2 LIIOC(R“), a point x2 R" is a
Lebesgue point of f if the derivative ( lim JB(+r)J | f(y)dy) of Lebesgue integral
r 0 ’ B(x;

o

of function f exists and is equal to f(x), i.e.

lim g5 | (am-rtenay o (1.24)
i B(x;r)

where B(x;r) is a ball centered at x with radius r 0, and jB(x;r)j represents its
Lebesgue measure.

Definition 1.22 Let f 2 Lllo (R"), the set Lebesgue points of the function f is x2 R"
such that

Tim Lo / (F(x—t)— f(x))dt 0
oV

The Lebesgue set points of a locally integrable function are closely related to the set
of points x 2 R" such that the integral of f is differentiable and the condition below
holds:

!in(l) v»ﬁrn fx—tydt f(x);

X r
where W, denotes the volume of the unit ball B(0;1) in R™.

Corollary 1.1 For f 2 I.}OC(R“), the almost every x 2 R" is a Lebesgue point of f.

Proof:
One obtain that for any rational number q, the function ( f(x) — q) is a locally inte-
grable function. Equation (1.24) implies that

. 1 .
}ln(l) W | (f(x—t)—q q—f(x)dt 0;
X} r
. 1 .
I!ln(l) W | (fx—t)—q) —(f(x) —q)dt 0; (1.25)
X} r
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for almost every x 2 R".

Let Gy be a set, such that the statement in Equation (1.25) is not true, it has a zero
measure, and does the setG Uy, Gy

Considerx2 R"nGandlete Oandq2 such that

(fx)—q €2

Thus, one get

/ (F(x—t) — F(x)dt
JXJ r
6 lim L / (f(x—t) —q)dt— 11m L / (f(x) — q)dt:
r 0 Wyr? 0 W, )
xj r Xir
By applying Definition 1.22 the first part of inequality becomes

1 / (f(x—t) —q)dt llm — “{1 / qdt
.]XJ JXJ r Xir
o IWr")
/ fx— e - S
f(x) —
Also, the second part of inequality

e(Wor™) e )

“{1 / (f(x) —q)dt llm V\{lr“ 2 s 3

X r Jxj

Since x2 G, the first part of previous inequality converges to (f(x) —q) 5 asr 0,
while the second part is smaller than 5. Thus,

/ (f(x—t) — £(x))dt 6 (£(x) —q) — g

X r

¢e_¢
r 0 Wr" 2 2

This shows that the Lebesgue set of f is contained in R", and hence almost every
point in R" is a Lebesgue point of f.
|

For more in information we refer the reader to Debnath and Mikusinski (2005).
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1.9 Convergence

1.9.1 Almost Everywhere Convergence

(Almost Everywhere Convergence of Wavelet Expansions ): A wavelet expansion of
LP(R™) functions f, for16 p under a family of partial sum operators fPj; :
jsk2 Z"g, is almost everywhere convergent if

Jim Py £09;

for almost every x in the Lebesgue set of f.

1.9.2 Uniform Convergence

(Uniformly Convergence of Wavelet Expansions): Suppose E is a set and P, f(x)
n

. f;(x) is a partial sums operator; for x 2 E. We say that the sequence of partial
i
sums (Py) 2 N is uniformly convergent to function f(x), if we define

ap  supjPy f(x) — £(x)j;
x2E

then P, f(x) converges to f uniformly if and only ifa, 0asn

Example 1.10 Let a function f(x) XZ, the Fourier series expansion of f(x) con-

verges uniformly on the interval [—p;p]. By doing some calculations, one obtains

that on the interval [—p;p] the Fourier series of f(x) X2 is given by

P L 2 —_"
ot [ e ax Poog CU” cosmo):
—p 3 n 1 I
Hence,
| N n n |
-1 -1
i —f®j 14 T cosmy -4 T2 cosiny)|
| n? n? |
| n1 n 1 |
| n | n
-1 [(—1 | 1
i4 ( 2) cos(nx)i6 4 \( 2) cos(nx)\6 4 't
| n N 1 h | n N1l B | n N 11



1 1]

1 — 1
lim = lim / —de lim (— ) lim ——  0:
NTanam® N x N x|xi/ N N 1

Thus,
lim( sup ij(X)—f(X)j) 0:
N x2[—p;p]

This implies that the Fourier series expansion of f(x) x* converges uniformly.

1.9.3 Absolutely Convergence

(Convergent and absolutely convergent series): A series  jf,j in a nonmed space
n 1
X is characterized as convergent if the sequence of partial sums converges in X, i.e.

there exists f 2 X such that

kfy £, =2 f—fk 0

asn . We then write f. f.If , then the series is characterized
n 1 n 1
absolutely convergent.

(=D"|
n “

Example 1.11 To check the convergence of the series i
n 1

since
1 AR
/ )—(dx In(jxj)j;
1

="

n

from the integral test the alternating harmonic series is absolutely diver-
n 1

gent.

n 2
Example 1.12 To proof the absolutely convergent of the series (_1132 , we need
n 1

to check the convergence of
el
w1l M ’
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to estimate the partial sums,

t
1\ [* 1
lim/lzdx im (-2 wm(1-1) 1
t X t x/|; ¢ t
1

_1yn 2
This series is convergent by the integral test and so the series ( 1;2 is absolute

n 1

convergent.

1.10 Motivation

In numerous applications of mathematics, computer science, engineering, and
physics, problems are encountered when a function is significantly more complex
than the standard functions. Given these issues, this thesis will aim to provide a so-
lution that will minimize the difficulties with the use of wavelet expansions through
one of the partial sum operators. We will construct complicated functions using the
powerful wavelet bases functions of wavelet expansions. They are advantageous be-
cause they only need a smaller amount of coefficients to accurately represent large
data sets and general functions.

The most difficult problems in mathematics deal with complicated high-dimensional
functions, which one can model them using partial sums operator. The main ingredi-
ent to solve these problems is re-finding a new formulas of Wavelet Projections Op-
erator. Furthermore, the simple classical wavelets constructions are only restricted
to simple domains like real line and intervals, that will not be enough for modelling
scientific applications in high-dimensional spaces. This is especially true in physics,
mathematics, and engineering. This is paves an idea to improve the perfformance
of these operators by employing classical wavelet basis functions that are defined
on the R? and R*. Some problems in wavelet theory are noticeable when attempt-
ing to reconstruct the spherical surface functions LP(S2) by wavelet basis functions
in Wavelet Projection Operators. We employ the solutions by generate Spherical
Wavelet Projection Operator with the use of spherical wavelet basis functions de-
fined on S2. They are then considered as keys that can be used to solve mathematical
problems that take place within any dimension of spaces 2.

Furthemmore, the motivation comes from convergence theory. This is due to the fact
that mathematical meaning of wavelet expansion processes of functions are based on
multi-resolutions analysis. This study will present the expansions of functions go to
infinite-level of analysis. Therefore, determining if these processes do not result in
any information loss during the analysis is important matter; for more explicit when
the number of terms of partial sums increases, the partial sums should be nearer and
nearer to a certain function (i.e. convergent). Motivated by this matter, we need to
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establish some conditions on wavelet that are suitable with the above new formula-
tions of partial sums operator. In this thesis, the investigations are conducted mainly
on the developments in convergence issues for partial sums operators of wavelet ex-
pansions of spaces function.

1.11 Problem Statement and Research Objective(s)

The methods that used to converge the wavelet expansion under some kind of partial
sums operators should developed to cover the current gaps of the previous studies,
as well as this, the performance of these operators should optimized such that the
new forms of operators can model some open problems in the sciences. For that the
following objectives are considered:

1. To prove some new properties of wavelet functions defined on (RZ) and (SZ).

2. To derive new form of partial sums operators of wavelet expansion in clas-
sical and spherical forms, that can study the behavior of LP(R?) and LP(S2)
functions almost everywhere.

3. To derive new form of Wavelet Projection operators of Meyer wavelet expan-
sion, that can study the behavior of distributions from Sobolev space H5(R?)
at the singularity points.

4. To find the sufficient conditions on wavelet function and its expansion in the
classical and spherical forms, that are important for convergence of the partial
sums operators.

5. To establish new techniques to achieve the convergence of wavelet expansion
of LP(R?) and LP(S?) functions almost everywhere and Sobolev space func-
tions HS(R?) uniformly, under some Kinds of partial sums operators (Wavelet
Projection Operator, Soft Sampling Operator, Hard Sampling Operator, Spher-
ical Wavelet Projection Operator).

6. To prove the almost everywhere convergence of Spherical Wavelet Projection
Operator of SOHO wavelet expansion of LP(S2) functions.
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1.12 Thesis Organization

Chapter 1 is a review of some background tools that were utilized for our sub-
ject matter. It also introduces the basic definitions that are related to wavelet
expansions. The motivation behind the idea, the problem statement and objec-
tives, and the methods utilized for problem solving are also presented.

Chapter 2 displays the literary works that have previously studied the related
issues to this current study.

Chapter 3 provides improvements in the work of wavelet expansions after
modifying structures of main operators (Wavelet Projection Operator, Soft
Sampling Operator, Hard Sampling Operator, Spherical Wavelet Projection
Operator), These operators have a relationship with wavelet expansions.

Chapter 4 addressed the problems related to the convergence of the some op-
erators ; Wavelet Projection Operator, Soft Sampling Operator, Hard Sampling
Operator of functions in LP(R?) and Sobolev space H5(R2) with the utilization
of two-dimensional classical wavelet expansions.

Chapter 5 interprets the issue of having the almost everywhere convergence
of Spherical Wavelet Projection Operators of LP(S2) functions. In this chapter
spherical wavelet functions with their features are employed.

Chapter 6 presents the conclusion based on the main findings of this thesis
and how it contributes to the field of wavelet analysis. This chapter also gives
the possibility of future works by suggesting a few problems in this area that
future researchers can work on.
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