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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
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December 2018
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Rayleigh-Bénard convection is the heat transfer process due to buoyancy effect
involved that occurred in a horizontal plane of nanofluids layer heated from be-
low. The model for nanofluids includes the mechanisms of Brownian motion and
thermophoresis. The onset of Rayleigh—-Bénard convection in a horizontal rotating
nanofluids layer and in a horizontal nanofluids layer saturated in a rotating porous
medium with feedback control, internal heat source, magnetic field, double—diffusive
coefficients, porosity, anisotropic, viscosity variation and thermal conductivity varia-
tion parameters are investigated theoretically. The confining lower and upper bound-
ary conditions of the nanofluids layer are assumed to be free—free, rigid—free and
rigid-rigid. A linear stability analysis of Rayleigh-Bénard convection is used, then
the eigenvalue is obtained numerically using the Galerkin method and solved using
Maple software. The impact of the feedback control, rotation, internal heat source,
magnetic field, double—diffusive coefficients, porosity, anisotropic, viscosity vari-
ation and thermal conductivity variation parameters on the onset of convection in
nanofluids system are analyzed and presented graphically. It is found that the im-
pact of increasing the effects of feedback control, rotation, magnetic field, Dufour,
porosity, anisotropic and thermal conductivity variation parameters help to delay the
onset of convection in the system, meanwhile elevating the effects of internal heat
source, Soret and viscosity variation parameters hasten the instability of the system.
Further; the lower and upper boundary conditions in the present investigation are ob-
viously found to be more stable in rigid-rigid boundaries compared to free—free and
rigid—free boundaries.
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Olakan Rayleigh-Bénard merupakan suatu proses pemindahan haba yang dise-
babkan oleh daya apungan yang berlaku dalam lapisan mengufuk bendalir nano yang
dipanaskan dari bawah. Model bagi bendalir nano mengandungi mekanisma gerakan
Brown dan thermophoresis. Permulaan olakan Rayleigh-Bénard dalam lapisan men-
gufuk bagi putaran bendalir nano dan dalam lapisan mengufuk bendalir nano dalam
putaran medium berliang dengan parameter kawalan suap balik, sumber penjanaan
haba, medan magnet, pekali resapan ganda dua, keliangan, anisotropik, variasi ke-
likatan dan variasi kekonduksian terma dikaji secara teori. Syarat sempadan bawah
dan atas lapisan bendalir nano diandaikan bebas—bebas, tegar-bebas dan tegar-
tegar. Analisis kestabilan linear bagi olakan Rayleigh-Bénard digunakan, kemu-
dian nilai eigen diperoleh secara berangka menggunakan kaedah Galerkin dan dis-
elesai menggunakan perisian Maple. Kesan parameter strategi kawalan suap balik,
putaran, sumber penjanaan haba, medan magnet, pekali resapan ganda dua, kelian-
gan, anisotropik, variasi kelikatan dan variasi kekonduksian terma ke atas permulaan
olakan dalam sistem bendalir nano dianalisa terhadap pelbagai parameter dan dipa-
parkan secara grafik. Didapati apabila kesan parameter strategi kawalan suap balik,
putaran, medan magnet, Dufour, keliangan, anisotropik dan variasi terma kekonduk-
sian ditingkatkan, ia dapat membantu melengahkan permulaan olakan dalam sistem,
manakala peningkatan kesan sumber penjanaan haba, Soret dan variasi kelikatan
parameter mempercepatkan ketakstabilan dalam sistem. Tambahan lagi, syarat sem-
padan bawah dan atas bagi kajian ini jelas mendapati sempadan tegar-tegar adalah
lebih stabil berbanding sempadan bebas-bebas dan tegar-bebas.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The elementary property of heat transfer consists of the temperature and flow of
heat. The temperature defines as the amount of thermal energy supplied into the
system, while the flow of heat depicts as the migration of thermal energy from one
place to another place. The second law of thermodynamics stated that the heat
transfer initially arises from heated area to cooler area. Consequently, heat transfer
mechanism is the navigation of thermal energy due to the temperature difference,
and the motion of heat transfer will occur from a higher temperature to a lower
temperature objects until the objects and the surmounding reach thermal equilib-
rium. Once the temperature difference between the objects and surmoundings are
in equilibrium, heat transfer mechanism cannot be stopped, it can only be postponed.

Heat transfer mechanism can be divided into three, which are conduction, radiation
and convection. In conduction, the heat transfer mechanism occurs through the
stationary medium (motionless solid or fluids) when there exist a temperature
difference. As for the radiation mechanism, the surfaces of the material mediums
transmit the energy in the mode of electromagnetic waves. According to Incropera
and Dewitt (1996), convection refers to heat transfer mechanism that occurs between
a solid and a moving fluid when there exist a temperature difference between a solid
and a fluid as shown in Figure 1.1.

Generally, the fundamental objective of this research is to examine the stability of
the nanofluids layer on Rayleigh—Benard convection subjected to infinitesimal dis-
turbances. The infinitesimal thermal perturbation will be introduced on a particular
flow, and the problem is linearized through the use of the classical linear stability
analysis. Then, the eigenvalue problem of the perturbed state will be obtained from

cold

heat flux

—_—

* fluid velocity

hot

Figure 1.1: Heat transfer between two different material



a normal mode technique, solved numerically using the Galerkin technique and com-
puted using the Maple software.

1.2 Convection and Applications of Convection

The classification of convection can be divided into two types of convections, the
natural (or free) convection and the forced convection depending on how the flu-
ids motion are initiated. The mechanism of natural convection, in which the fluids
motion are induced by density differences in fluids occurring due to temperature dif-
ferences. At the bottom boundary layer, the heated fluids received heat become less
dense and rise. At the upper boundary layer, the surrounding, more dense cooler
fluids move down, sink and subsequently heated, causing a circular motion and the
process continues. Therefore, the convective flows in fluids layer can be driven by
buoyancy (Bénard convection) force due to temperature difference. Examples of
natural convection, we have:

1. The initiation process of boiling water occurs when the heat is transferred from
the bumer into the pot by conduction, thus heating the water at the bottom layer
of the pot. Subsequently, this hot, less dense water rises and starts bubbling,
thereby transferring heat from the hot water at the bottom to the cooler water
at the top by convection. At the same time, the cooler, more dense water at
the top moves down and sink to the bottom, become heated and the process
repeat.

2. Hot air balloon consists of a bag contains heated air. A bumer heats the air
trapped inside the balloon, making it less dense than the air outside and so
the air moves upward causing the balloon to rise. Once the pilot wants to go
down, he let off some of the hot air and at the same time, cool air takes it place,
driving the balloon to drop down.

3. Oceanic circulation is critically important in the movement of heat over the
planet. Environmental scientists found that along with pattemms of air move-
ment in the atmosphere, the movement of water through the oceans helps
to determine weather and climate conditions in different regions around the
word. Gyres, upwelling and thermohaline circulations are the main pattermns
of oceanic circulation. Basically, ocean circulation moves the cooler water
from the poles to the equator, where the water is wanmed before the gyre sends
it back toward the poles.

4. A star has a convection zone, the outer—-most layer of the interior of the star
where energy is moved by convection. The convection in the sun and other
stars involves the upward motion of hotter gas and downward motion of cooler
gas, and is the process which the sun uses to transport heat close to surface
(Mulan, 1991).

The mechanism of forced convection, in which fluids motion are induced by an exter-
nal source such as fan, pump or suction devices used to facilitate convection. Forced



convection can be found in everyday life, including air conditioning and central heat-
ing and in various types of machineries. Forced convection is frequently encountered
by engineers in designing or inspecting heat exchangers, pipe flow and so on. Ex-
amples of forced convection, we have:

1. Generating forced convection is as simple as tuming on a fan. The heated air
from the furmace is pushed through the house by the fan blower situated in the
ventilation system. After it has travelled through the vents by being pushed
through by fans, the treated air is forced out through floor or ceiling vents into
the house.

2. Heat exchangers like radiators are employed to transfer thermal energy in the
aim of heating and cooling from one medium to another. Commonly, radia-
tors are designed to operate in buildings, automobiles as well as electronics
devices. The radiator put the warm air out at the top and draws in cooler air at
the bottom and the process continues.

1.3 Nanofluids and Applications of Nanofluids

Nanofluids term are proposed by Choi (1995) and relatively new engineered fluids
consist of nano-sized particles (1-100 nm) suspended within the base fluids,
reported by Masuda et al. (1993) as shown in Figure 1.2. These particles, typically
a metal or metal oxide, enhance conduction and convection coefficients, allowing
the greater amount of heat transfer released from the coolant. Serrano et al. (2009)
provided an excellent illustration of nanometer in corresponding from millimeter to
micrometer as can be seen in Figure 1.3.

Nanofluids are potentially heat transfer fluids with enhanced thermophysical proper-
ties and can be employed in various devices for excellent achievement, especially in
energy and heat transfer performances (Mahdi et al., 2015). Their particles are small,
low weight and less chances of sedimentation, therefore they possess the following
advantages (Choi, 1995 Das et al., 2006):

1. High specific surface area therefore more heat transfer surfaces occured be-
tween fluids and particles.

2. High dispersion stability with predominant Brownian motion of particles.

3. Reduced pumping power as compared to pure liquids to achieve equivalent
heat transfer intensification.

4. Reduced particles clogging as compared to conventional slurries, thus promot-
ing system miniaturization.

5. Adjustable properties, including thermal conductivity and surface wettability,
by varying particles concentrations to suit different applications.



Nanoparticle
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Figure 1.2: Schematic cross section of nanofluids structure
(Source: Yu and Choi, 2003)
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Figure 1.3: Length scale and some examples related
(Source: Serrano et al., 2009)

Nanofluids are the innovated formation of heat transfer fluids offered various
inducing new possibilities for the heat transfer enhancement and have superior
properties contrary to pure liquids. The large surface area of nanoparticles cleady
improvises the performance of heat transfer and reinforces the steadiness of the
suspensions. Successful utilization of nanofluids will support the latest tendency
toward miniaturization of the components by empowering the design of lighter and
smaller heat exchanger systems. Special properties of nanofluids offer the possibility
of applying nanofluids in numerous applications of engineering systems, from the
advanced nuclear system to the drug delivery system (Buongiomo et al., 2008 Kim
et al., 2009; Kleinstreuer et al., 2008). However, the development of nanofluids is
still hindered by several factors such as the lack of agreement between results, lack
of theoretical understanding about the mechanisms and poor characterization of
suspensions. Therefore, necessary studies are needed before extensive application
can be found for nanofluids.

Buongiorno (2006) model identified the Brownian motion and thermophoresis mech-
anisms on the thermophysical properties of the nanofluids and act as the primary



mechanisms for the characteristic of convective enhancement in nanofluids. Sus-
pended nanoparticles in various base fluids can significantly alter the flow and heat
transfer characteristics of the nanofluids. The heat transfer enhancement in natu-
ral convection is more pronounced at higher volumetric fraction of nanoparticles and
the enhancement reduces by decreasing the volumetric fraction of nanoparticles. The
definition of Brownian motion and thermophoresis mechanisms defined as below:

1. Brownian motion is the random movement of particles suspended in a fluid (a
liquid or a gas) resulting from their collision with the fast moving atoms or
molecules in the gas or liquid as reported by Jang and Choi (2004) and Singh
(2008). The more amount of suspended particles in a fluid, the higher rate of
collision between the atoms or molecules. Therefore, Brownian motion can
increase the thermal conductivity of the nanofluids.

2. Themmophoresis is a mechanism observed in mixtures of moving particles
where the different particles types exhibit different responses to the force of a
temperature gradient.

The potentials of nanofluids in heat transfer applications have attracted much atten-
tion especially in the industry sector about a decade ago. There are some review
papers, which present overviews of various aspects of nanofluids, including prepara-
tion and characterization, techniques for the measurements of thermal conductivity,
theory and model, thermophysical properties, and convective heat transfer (Trisaksri
and Wongwises, 2007 Ma and Liu, 2007 Armuebo et al., 2007 Wang and Mujum-
dar, 2007 Wang and Mujumdar, 2008 Li et al., 2009 Kakac and Pramuanjaroenkij,
2009; Yu et al., 2010). Saidur et al. (2011) explained the applications of nanofluids
in industrial, commercial, residential and transportation sectors written as below:

1. Nanofluids have high thermal conductivity and act as heat transfer intensifica-
tion. Wong and de Leon (2010) reported that the application of nanofluids is
crucial in industrial cooling due to their impact in great energy preservations
and emissions reductions. Kulkarni et al. (2008) used nanofluids of ethylene
or propylene glycol mixed with water in different proportions as heat transfer
fluids in heating system of buildings in cold regions. The outcomes showed
that by applying heat exchangers with nanofluids decrease the volumetric and
mass flow rates, preserving an overall pumping power.

2. Demirbas (2006) reported that the development of thermal energy storage in
the form of sensible and latent heat has become an important aspect of energy
management with the emphasis on conservation of the waste heat and solar
energy in industry and buildings. Wu et al. (2010) classified the Al,O3-H,0
nanofluids as a new phase change material for the thermal energy storage of
cooling systems. The addition of Al;O3 nanoparticles remarkably reduced
the supercooling degree of water, advanced the beginning freezing time and
reduced the total freezing time.



3. Various nanofluids can be employed in conventional heat exchangers used in
buildings in order to reduce volumetric flow, the mass flow rate and pumping
power savings. Nanofluids also require smaller heating systems in order to be
able to deliver the same amount of thermal energy, thus reducing the size and
the initial cost of equipment. This will reduce the release of pollutants to the
environment due to a reduction in power consumption, and the waste produced
at the end of the heat transfer system life cycle. In cooling systems, Yu et al.
(2007) reported that nanofluids can be used in place of chilled water, which is
commonly used in coils of air conditioning ducts.

4. Over the last few decades, Vonarbourg et al. (2006) developed colloidal drug
delivery systems to improve the efficiency and the specificity of drug action.
The small size, customized surface improved solubility, and multifunctionality
of nanoparticles opens many doors and creates new biomedical applications.
Singh and Lillard (2009) reported that the novel properties of nanoparticles
offered the ability to interact with complex cellular functions in new ways.
Mahapatra et al. (2008) briefly discussed the antibacterial activity research of
CuO nanoparticles against four bacterial strains. The size of nanoparticles was
less than that of the pore size in the bacteria, and thus, they had a unique prop-
erty of crossing the cell membrane without any hindrance. It could be hypoth-
esized that these nanoparticles formed stable complexes with vital enzymes
inside cells which hampered cellular functioning resulting in their death.

1.4 Rayleigh-Bénard Convection

Rayleigh-Benard convection is a type of natural convection, occurring in infinite
horizontal planes of fluids layer heated from below and cooled from above. Bénard
(1900) performed the first experiment where he melted a layer of wax about 1mm
deep in a metal dish heated from below. Once the base layer was hot enough to melt
all the wax, at first observation there was no—motion of the liquid wax. But as the
base was heated above some critical temperature, he observed the appearance of
hexagonal cells when the thermal instability of convection developed on the surface
of the wax, and analyzed the presence of convection cells. Figure 1.4 showed a
convection cell known as Bénard cell, a hexagonal pattem obtained by Bénard
(1900).

Consider a fluid layer maintained at a constant temperature, confined between two
infinite horizontal planes. Initially, the fluid layer is motionless. Then, the fluid
layer is heated from below where the lower boundary is at a higher temperature than
the upper boundary and is said to have an adverse temperature difference because
the fluid at the bottom will be lighter than the fluid at the top. This top—heavy
arrangement is unstable and by buoyancy force, the fluid moves where the initial
movement is the upwelling of warmer fluid from the heated layer below as shown in
Figure 1.5.



Figure 1.4: The pattern of Bénard cell
(Source: Chandrasekhar, 1961)
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Figure 1.5: Mechanism of convection due to buoyancy force (Bénard convec-
tion)

This movement of fluid by convection due to buoyancy force is called Bénard con-
vection. Once the temperature gradient is below a certain value, the natural tendency
of the fluid to move, because of buoyancy force, will be inhibited by its own vis-
cosity and thermal diffusivity. Thus the thermal instability will manifest itself only
when the adverse temperature difference exceeds a certain critical value. According
to Wilson (1993b), the thermal Rayleigh number is govemed by

r faTg3DT*
ma ¢

1.1)

where r ¢ is the fluids density, at thermal volumetric coefficient, g is the gravita-
tional force, L is the depth of the fluids layer, DT*  (T;* —'Ty)) is the temperature
difference across the fluids layer, mis the viscosity and a ¢ is the thermal diffusivity.

1.5 Double-Diffusive Convection

The study on double—diffusive convection began progressively with the article of
The salt fountain and thermohaline convection by Stem (1960). The opposing
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Figure 1.6: Mechanism of salt fingers in a double—diffusive convection
(Source: Tumer, 1973)

stratifications of two components species drives a convection if their diffusiveness
are differed. Stommel et al. (1956) reported that there is a significant potential
energy available in the decrease of the salinity with depth found in much of the
tropical and subtropical ocean. They investigated that the flow of the salt fountain
would be driven in a thermally conducting pipe. It was Stem (1960) who found out
that the two orders of magnitude difference in heat and salt diffusiveness allowed
the ocean to form its own pipes, which later known as “salt fingers”. Stern also
identified the potential for the oscillatory instability when cold, fresh water overlies
warm, salty water. In fluid dynamics, the double—diffusive convection is a form
of convection driven by two different density gradients, with different rates of
diffusion (Mojtabi and Charrier—Mojtabi, 2000). Convection in fluids is driven
by density variation within them, and this density variation may be caused by
gradients in the composition of the fluids or by differences in temperature (through
thermal expansion). Thermmal and compositional gradients can often diffuse with
time, reducing their ability to drive the convection, and requiring that gradients in
other regions of the flow exist in order for convection to continue. Therefore, the
compositional gradients (thermo—diffusion) and thermal diffusion are known as the
Dufour diffusion and Soret diffusion.

Figure 1.6 is an example of double—diffusive convection called salt fingers by
Turner (1973). In this investigation, he used a flourescein salt, which makes
the water “heavy on top” in the salt concentration, but the stratification is kept
gravitationally stable by the wamm on top temperature gradient. The key to the
instability is the fact that heat diffuses much more rapidly than salt (hence the
term double—diffusion). A downward moving finger of warm saline water (see
diagram) cools off via molecular diffusion of heat, and therefore, becomes more
dense. This provides the downward buoyancy force that drives the finger. Similarly,
an upward moving finger gains heat from the surrounding fingers, becomes lighter,



and rises. The net effect is a vertical exchange of water containing the salt, and
hence a downwards salt flux. The heat flux is also downward, but is much smaller
since most of the heat diffuses out sideways to adjacent fingers. The combined heat
and salt fluxes yield a density flux that is downwards. Hence the top layer of water
actually becomes less dense over time, and the lower layer becomes more dense. In
terms of eddy diffusivities, the effective salt and heat diffusivities are positive (i.e.,
down gradient), but the density diffusivity is negative, an upgradient flux.

Much of this work was initiated with an application to the ocean in mind, and because
heat and salt (or some other dissolved substance) are then important, the process
has been called thermohaline (or thermosolutal) convection. Related effects have
now been observed in other contexts, to be described below, and the name double—
diffusive convection has been used to encompass this wider range of phenomena.
The minimum requirements for the occurrence of double—diffusive convection, in
the sense implied here, are the following

1. The fluids must contain two or more components having different molecular
diffusivities. It is the differential diffusion that produces the density differ-
ences required to drive the motion.

2. The components must make opposing contributions to the vertical density gra-
dient.

1.6 Porous Medium

Porous medium is a solid (often called frame or matrix) permeated by an intercon-
nected network of pores (voids) filled with a fluid (liquid or gas). Usually both
the solid matrix and the pore network (also known as the pore space) are assumed
to be continuous, so as to form two interpenetrating continua such as in a sponge.
The porosity e of a porous medium is defined as the fraction of the total volume of
the medium that is occupied by void space. There are numerous types of porous
media and almost limitless applications of and uses for porous media. Many natural
substances such as rocks, soils, biological tissues (e.g. bones), and man made
materials such as cements, foams and ceramics can be considered as porous media.
Some of the well known porous materials can be seen in the Figures 1.7 and 1.8.
Straughan (2008) reported that a poroelastic medium is characterized by its porosity,
permeability as well as the properties of its constituents (solid matrix and fluid).

Permeability symbolized as K in fluid mechanics is a measure on the ability of
a porous material to transmit fluids. The concept of permeability is important in
determining the flow characteristics of hydrocarbons in oil and gas reservoirs, and
of groundwater in aquifers. Kaviany (1995) studied that for a rock to be considered
as an exploitable hydrocarbon reservoir without stimulation, its permeability
must be greater than approximately 100 mD (depending upon the nature of the



Figure 1.7: Lava from Mount Etna, Sicily
(Source: Straughan, 2008)

Figure 1.8: Wood is a very good example of a porous medium which exhibits a
strong anisotropy
(Source: Straughan, 2008)

hydrocarbon—gas reservoirs with lower permeabilities are still exploitable because
of the lower viscosity of gas with respect to oil).

Bejan and Lage (1991) reported that in analyzing transport phenomena of a
porous medium in a pore space region comprising of at least two homogeneous
material constituents with at least one of the constituents remaining fixed or slightly
deformable and the other constituent is moving. In a natural porous medium the
distribution of pores with respect to shape and size is irregular with pore scale is
in the microscopic scale. But in typical experiments, the quantities of interest are
measured over areas that cross many pores, and such space averaged (macroscopic)

10



quantities change in a regular manner with respect to space and time, and hence are
amenable to theoretical treatment (Nield and Bejan, 2006).

Porous materials with high porosity (for example, foametals) can be applied in
numerous practical applications such as fluid filters, heat exchangers and chemical
reactors, thus, attracts interest in various technological problems. Generally, they
are man—-made and major used for the design of heat transfer devices. Hill and
Straughan (2009) reported that the use of higher order Darcy—Brinkman equation
is more appropriate in order to model the fluids flow with highly porous materials.
In general, anisotropy is a consequence of orientation or asymmetric geometry of
porous matrix or fibers and is, in fact, employed in numerous systems in industry
and nature. Furthermore, anisotropy can also be a characteristic of artificial porous
materials such as pelleting used in chemical engineering process, fiber material used
in insulating purpose and packed beds used for the storage of heat energy.

Nanofluids in porous media incorporates an emerging idea; the review from the lit-
erature points out to at least two possible applications. Mahdi et al. (2015) reported
that there are two superiorities of applying porous media in nanofluids layer sys-
tem. First, its dissipation area is greater than the conventional fins that enhance the
heat transfer. Second is the irregular motion of the fluids flow around the individ-
ual beads which mix the fluids more effectively. Nanofluids have very high thermal
conductivities. Therefore, it would be the best convection heat transfer by using two
applications together: porous media and nanofluids.

1.7 Galerkin Method

One of the best known approximate methods was developed by the Russian engineer
Galerkin (1915). According to Fletcher (1984), Galerkin method used to solve prob-
lems in structural mechanics, dynamics, fluid flow, hydrodynamic stability, magneto-
hydrodynamics, heat and mass transfer, acoustics, microwave theory, neutron trans-
port, etc. Problems govemed by partial differential equations, ordinary differential
equations and integral equations have been investigated via a Galerkin formulation.
Steady, unsteady and eigenvalue problems have been proved to be equally amenable
to a Galerkin treatment. Finlayson (1972) reported that in this method, the weighting
functions are chosen to be the trial functions, w; T;. The trial functions must be
chosen as members of a complete set of functions. A set of functions w; is complete
if any function of a given class can be expanded in terms of the set, f a;w;j. Then
the series of equation is inherently capable of representing the exact solution, pro-
vided enough the terms are used. A continuous function is zero if it is orthogonal to
every member of a complete set. Thus the Galerkin method forces the residual to be
zero by making it orthogonal to each member of a complete set of functions (in the
limit as N ). The Galerkin method is highly developed for eigenvalue problems
and widely advocated by numerous papers.
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1.8 Applications in Industry

Many fluids flows in engineering and industrial applications are driven by buoyant
convection and subsequently modulated by feedback control, rotation, intermal heat
source, magnetic field and so on. One of the classical convection systems is the
Rayleigh-Benard setup: a fluid in a horizontally confined container heated from
below and cooled from above. The knowledge about this system is relevant for
the problem in a limitless range of industrial applications and through a superior
understanding of Rayleigh-Benard convection in nanofluids with feedback control,
rotation, internal heat source, magnetic field and many more including the porous
medium, one can provide profitable outcomes to the industry such as:

1. The concept of control strategy systems in convective heat transfer in fluids is
constantly changing in order to meet and keep pace with modem day applica-
tion requirement. Practically, these types of systems are very useful to improve
significant capabilities and reduces costs. Autopilot control systems play a vi-
tal role in controlling the speed of automobile to a desirable speed limit or to
keep the aircraft to autopilot so that the pilot should not continue to operate
the controls to maintain the desired heading and altitude. In autopilot mode,
the pilot is free to perform other tasks and helps to reduce crew members and
operating cost.

2. The effect of magnetic field on double—diffusive convection finds importance
on the role of engineering and industrial applications. These applications
include design of chemical processing equipment, formation and dispersion
of fog, distributions of temperature and moisture over agricultural fields and
groves of fruit trees and damage of crops due to freezing and pollution to the
environment, etc.

3. The rotating turbulence is an example of an interesting variation of Rayleigh—
Bénard convection is the case where the sample is rotated about the vertical
axis. The turbulent rotating convection on anisotropic effects with experiment
and numerical simulation is provided by the industry where the setup (rotating
table, laser, cameras, computers, LED light, etc.) is required in the engineering
turbulence pipe flows studies.

4. Inindustrial applications, internal heat sources are used very often in affecting
the thermal indoor climate. Typical heat sources are machines, appliances and
equipment, and all kinds of processes taking place in the room. The intemal
heat source transfers the energy to room air by convection and nommally is
sensible heat.

5. Design and optimization of industry products where modelling the flows of
liquids, heat as well as moisture transfer away in a porous media through the
hygiene product is crucial to the development of consumer products, such as
diapers and wipes (Suresh, 2016). Well design diapers containing the layer
of a porous medium (fibers) that is particularly effective without breaking the
bank. As for the wipes, they are designed to be durable enough for heavy duty
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cleaning tasks. The fabric is saturated with cleansing solution designed to be
mild yet effective.

6. According to Ghenai et al. (2003), the use of double-diffusive convection is
important in the process of solidification of a metal analog system of am-
monium chloride with water; NH4CI-H,O in a differentially heated cavity.
Casting is the common metal solidification which used the melting and reso-
lidification of a metal within a mold to produce a desired product. During the
solidification process, the metal is shrinking, and it is important to feed this
shrinking to ensure the castings are free of voids and defects.

Accordingly, it would be favorable to have the appropriate recognition knowledge
of the Rayleigh-Bénard convection with various effects discussed above since their
advantages can provide valuable practical implementation to the industry, and their
beneficial outcomes can improve the technological innovation.

1.9 Problem Statement

uite recently, the paramount way of achieving a great perfformance on convective
thermal instability in nanofluids for various engineering applications and industrial
processes have increased rapidly. Heat transfer problems in nanofluids for industry
are usually of a very complex in nature, frequently involving different mechanisms.
The major challenges in heat transfer industry are to maintain the stability of the
system, increase efficiency of mechanical equipment, energy conservation, reduce
the costs and outcome uncertainties. Therefore, modelling the most sophisticated
methods and formulations is considered in order to solve the onset of convection
problems where the outcome results consistently not significant, representative
and scientifically accurate. Due to these issues, suitable numerical methods with
appropriate governing equations are highly required.

The area of active control in convective processes is no less important from a
technological point of view. The ideas behind the methodology can be implemented
into real life, especially in industrial applications of the heat energy control systems
through the use of feedback controller perfformance assessment. Heat energy control
system is constructed to measure and regulate the flow of hot and cold fluids as a
fundamental study of the control system in order to behave in a desired manner.
Some of the significant achievements of control systems in industry area are the
ability to enhance the quality of the product, minimize the products waste and to
protect the environment. In some processes, it may be desirable to suppress chaotic
or turbulence motions and maintain a steady, time—independent flow in order to
minimize unpredictable flow, remove temperature oscillations which may exceed
safe operational conditions and reduce drag.

Scrutinizing the effect of feedback control in nanofluids system can help to improve
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the industrial problem regarding convection. As far as I concem, feedback control
has been investigated by many authors in few types of fluids layer system such as
micropolar fluids and fluids saturated in a porous medium, but less research on feed-
back control in nanofluids layer system. Thus, this study is intended to be compre-
hensible with some knowledge as a reference in the subject area of nanofluids study
to researchers. Variational types of effects also have been considered in the prob-
lem of feedback control for the onset of Rayleigh-Benard convection in nanofluids
layer system, the considered effects are rotation, magnetic field, internal heat source,
porosity of the porous medium, anisotropic parameters, thermal conductivity varia-
tion and viscosity variation parameters, respectively. Finally, students or researchers
that are interested in a control system in nanofluids engineering will find this thesis
useful as it will help to explain the basic of control system theory.

1.10 Objectives and Scopes of Study

The objectives of this present study are to analyse the mathematical modelling for
each problem below:

1. Rayleigh-Benard convection in rotating nanofluids layer with feedback con-
trol subjected to double—diffusive coefficients. In this problem, we investigate
the effects of feedback control K, rotation (Taylor number Ta), Soret parame-
ter Sr, Dufour parameter D f and nanofluids parameters in the system. These
two types of interdiffusion, Soret and Dufour parameters play an important
role within nanofluids layer system. Then, to explore the performance involv-
ing double—diffusive coefficients with feedback control K and rotation in the
respective system.

2. Rayleigh—-Benard convection in rotating nanofluids layer with feedback con-
trol subjected to the magnetic field. In this problem, we analyze the sensitive-
ness main effects of feedback control K, Taylor number Ta, magnetic Chan-
drasekhar number H and nanofluids parameters for two types of nanofluids in-
volved in this problem, that are alumina—water Al;O3-H, O and copper—water
Cu—H;0 nanofluids. Then, to compare and discuss the behaviour of these two
types of alumina-water Al, O3—H; O and copper—water Cu—H;O nanofluids in
details.

3. Rayleigh-Benard convection in nanofluids layer saturated in a rotating
anisotropic porous medium with feedback control and intemal heat source. In
this problem, we use the Darcy s law on the Oberbeck-Boussinesq approxima-
tion for Darcy model of a porous medium to investigate the effects of feedback
control K, rotation, internal heat source , anisotropic parameters (mechanical
anisotropy parameter x and thenmal anisotropy parameter z ), porosity e and
nanofluids parameters involved such as: Rng No Np and Ln in the respective
system.

4. Rayleigh—-Benard convection in Darcy—Brinkman nanofluids layer saturated in
a rotating anisotropic porous medium with feedback control and internal heat
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source. In this problem, we consider the Brinkman model of a porous medium
to study the effects of feedback control K, rotation with intemal heat source ,
Darcy number Da, porosity e, anisotropic parameters (mechanical anisotropy
parameter x and themmal anisotropy parameter z ) and nanofluids parameters
in this respective system.

5. Stationary and oscillatory mode of Rayleigh-Bénard convection in Maxwell
nanofluids layer saturated in a rotating porous medium with feedback con-
trol subjected to thermal conductivity variation and viscosity variation, re-
spectively. In this problem, we use a modified Darcy—Maxwell nanofluids
model incorporates the Brownian motion and thermophoresis mechanism. We
also consider the modified Darcy model for a porous medium saturated with
Maxwell nanofluids subjected to the effects of Vadasz number Va, relaxation
parameter 1 , feedback control K, rotation, viscosity variation m and thermal
conductivity variation k as the main parameters where the respective results
will be examined.

The scope of study is limited to the Rayleigh-Benard convection in nanofluids with
porous and nonporous. It has not escaped our notice that the major scope of this
study is to mainly focus upon the effects of feedback control strategy and rotation
on the convective instability in nanofluids layer and nanofluids layer saturated in a
porous medium, where several other parameters are considered in their respective
problems.

In this thesis, the mathematical models are extended from the previous researchers,
and each of these explanations will be listed in the respective chapter. It is worth
mentioning that the sources of this study are from well-known jourmnals and pub-
lished papers. For each considered problem, the systems governed by the partial
differential equations (PDE) are nondimensionalized, perturbed and changed into a
system of ordinary differential equations (ODE). The resulting equations then are
solved numerically by Maple software. However, to ensure our obtained results are
in an equivalent agreement cormrespondence to previously published results, each of
the results from these problems has to undergo a comparison test, and the results
should be aligned in the similar value with the previously published results. Once
we found out that our respective results are in a good agreement, we are confident to
perform further examinations in order to obtain the results in each problem.

1.11 Outline of Thesis

This thesis covers nine chapters, including introduction and conclusion. Chapter 1 is
the preliminary chapter consisting of the introduction of this study, which involves
the definition, applications and methods that are used for this research as well as the
problem statement, the objectives and the outline of the thesis. Chapter 1 focused
on how this topic has been exposed and finally become one of the topics that are
important to be studied.
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Chapter 2 reviews the pioneering studies performed by many researchers on the
convective instability experimentally and numerically. We also highlighted the
investigators who studied the Rayleigh-Benard convection in nanofluids layer
with double—diffusive convection, rotation, feedback control, intermal heat source,
magnetic field, thermal conductivity and viscosity variation effects followed by the
investigation in a porous medium with anisotropic parameters. Furthermore, the
methodology and contribution from their research is highlighted.

Chapter 3 explains the methodology for five following problems for five different
models of the research problem with lower-upper bounding surfaces of free—free,
rigid—free and rigid-rigid. The mathematical formulation includes the linear stabil-
ity analysis upon normal mode technique, Galerkin technique and Maple software.
The governing equations of nanofluids model as formulated by Buongiorno (2006)
associated with Brownian motion and thermophoresis mechanism. An explanation
on the use of controller has been discussed throughout this chapter as well as the
effect of rotation.

The first problem of this study, namely the Rayleigh—Bénard convection in rotating
nanofluids layer with feedback control subjected to double—diffusive coefficients is
discussed in details in Chapter 4. Chapter 4 starts with the introduction, accompa-
nied by mathematical formulation then, proceeds with the results and discussion,
and ends with the conclusion. The effects of feedback control K, rotation, Soret Sr
together with Dufour Df parameters, solutal Rayleigh number Rs and nanofluids
parameters are illustrated graphically and discussed in details.

Discussion in Chapter 5 focused on feedback control K, rotation together with
magnetic Chandrasekhar number H combination effects on the Rayleigh-Bénard
convection in nanofluids layer. We consider two types of nanofluids in this problem,
alumina—water Al 03—H;0O and copper-water Cu—H,O nanofluids. In the interest
of understanding the applications of feedback control K, rotation and magnetic
Chandrasekhar number H on these two types of nanofluids, the simulation is
performed and briefly discussed throughout this chapter.

Investigation is continued in Chapter 6 for Rayleigh-Benard convection in nanoflu-
ids layer saturated in a rotating anisotropic porous medium with feedback control
and internal heat source. Linear stability analysis of nanofluids in the Rayleigh—
Bénard problem in a porous medium is studied based on the Darcy model. The
obtained results for feedback control K, rotation, intemal heat source , porosity e,
anisotropic parameters (mechanical anisotropy parameter x and thermal anisotropy
parameter z ) and nanofluids parameters are discussed briefly and presented graphi-
cally.
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The effects of rotation due to the Coriolis force measured by Taylor-Vadasz number
Tay and feedback control K on the Rayleigh-Bénard convection in an anisotropic
porous medium saturated by Darcy—Brinkman nanofluids layer subjected to internal
heat source is camried out in Chapter 7. In this chapter, the Brinkman model for
nanofluids saturated in a porous medium has been used for linear stability analysis
upon normal mode technique. The Galerkin technique and Maple software have
been used to solve the eigenvalue problem and the obtained results for feedback
control K, rotation, internal heat source , Darcy number Da, porosity e, anisotropic
parameters (mechanical anisotropy parameter x and thermal anisotropy parameter
z ) and nanofluids parameters are discussed and presented graphically.

Chapter 8 discussed on stationary and oscillatory mode of Rayleigh—Bénard
convection in nanofluids layer saturated in a rotating porous medium with feedback
control subjected to viscosity variation and thermal conductivity variation. In this
chapter, linear stability analysis of Maxwell nanofluids on the Rayleigh—Bénard
problem in a porous medium is studied upon Darcy—Maxwell model. The important
effects of feedback control K, rotation, Vadasz number Va, relaxation parameter1 ,
viscosity variation m, thermal conductivity variation k, porosity e and nanofluids
parameters have been presented graphically and discussed.

Lastly, Chapter 9 contains the summary of the Rayleigh-Bénard convection in
rotating nanofluids layer with feedback control. In this study, we focused on the
stationary mode of convection of the respective problems from Chapter 4 until
Chapter 7, meanwhile for Chapter 8, we include both the stationary and oscillatory
mode of convection. At the same time, we can conclude these problems can be
extended into oscillatory cases and nonlinear cases, with different types of fluids
and models, where further and tremendous analyses of computational methodology
are required to solve these problems.

The following section reviews the literature in the aforementioned areas.
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