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The Ordinary Least Squares (OLS) is the commonly used method to estimate 
the parameters of fixed effect panel data model. However, the method is 
tremendously affected by the presence of outliers.  In addressing the problem, 
we proposed new and improved robust estimators to provide resilient estimates 
against the most critical outlying values known as block high leverage points 
(HLPs).  Firstly, we proposed robust panel data transformation to be performed 
around the MM-estimate of location as an alternative to the non-robust centering 
by the mean.  Two robust Within Group estimators known as Robust Within 
Group MM (RWMM) and Robust Within Group GM (RWGM) are also proposed 
to be simulated under the MM-centering.  Results of simulation study and real 
data identify RWMM and RWGM to provide more resistant and efficient 
estimates under MM-centering compare to the existing estimation based on 
median centering.  
 
 
Not much research has been done on method of detecting HLPs for panel data.  
Hence, we have proposed Robust Diagnostic-F (RDF) to remedy the problem of 
masking and swamping in detecting HLPs.  Simulation works and numerical 
examples prove that the newly proposed RDF outperforms existing methods with 
the lowest rates of swamping.  
 
 
The existing RWGM estimator has shortcoming whereby it is based on Robust 
Mahalanobis Distance (RMD) based on Minimum Volume Ellipsoid (MVE) which 
is prone to suffer from swamping effect.  To rectify this problem, the RWGM with 
RDF and RWGM with DRGP are developed by integrating the RDF and existing 
Diagnostic Robust Generalized Potential (DRGP); respectively, into the 
algorithm of GM-estimator.  Results indicate that the performance of 
RWGM(RDF) estimator which uses RDF as part of its weighting scheme 
surpasses other methods under study. 
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To date no work has been focused on robust bootstrapping methods for fixed 
effect panel data model.  Thus, bootstrapping methods known as Diagnostic 
Bootstrap (Boot-D) and Weighted Bootstrap with RDF (Boot RDF) are also 
developed to provide resistance bootstrap estimates against block HLPs.  In 
Boot-D, a diagnostic measure is introduced to eliminate any outlier from the 
sampling plan whereas new re-sampling with probabilities is derived in Boot 
RDF.  In the study, Boot RDF is found to provide robust and superior 
performance as confirmed by the numerical examples and simulation results.  
 
 
This research also addresses the combined problem of HLPs and 
heteroskedastic errors for fixed effect panel data model. A two-step robust 
estimator called Two Step Heteroskedasticity-Outlier (TSHO) is proposed and 
successfully dampens both problems.  This study is considered to be among the 
first to solve simultaneous problems of heteroskedastic and non-normal errors 
for panel data.  Empirical evidence via simulation experiments and numerical 
data show TSHO to be persistent under zero or high level of contamination.  
Standard errors of the beta estimates are also corrected by the newly proposed 
heteroskedasticity- and outlier- robust standard error or HORSE estimator.  Two 
types of robust weights are introduced in HORSE to protect against large 
residuals caused by block HLPs and also heteroskedasticity.  In the events, 
simulation results indicate the lowering level of biasness by HORSE.  This leads 
to the final conclusion that HORSE is able to produce less bias standard errors 
due to the robust weighting schemes introduced in its algorithm.   
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Oleh 
 
 

NOR MAZLINA ABU BAKAR 
 
 

Januari 2019 
 
 

Pengerusi: Profesor Habshah Midi, PhD 
Fakulti: Institut Penyelidikan Matematik  
 
 
Kaedah Biasa Kuasa Dua Terkecil merupakan kaedah yang kerapkali digunakan 
untuk menganggar parameter bagi model data panel efek tetap.  Walau 
bagaimanapun, kaedah ini sangat terjejas dengan kehadiran titik terpencil.  Bagi 
mengatasi masalah ini, kami mencadangkan penganggar teguh baharu yang 
lebih baik, yang dapat memberi anggaran yang lebih teguh terhadap titik 
terpencil yang paling kritikal dikenali sebagai titik tuasan blok (HLP).  
Pertamanya, kami mencadangkan agar transformasi data dibuat menggunakan 
anggaran lokasi MM sebagai alternatif kepada pemusatan min yang tidak 
berdaya teguh.  Dua kaedah Penganggar Teguh Dalam Kumpulan di kenali 
sebagai Penganggar Teguh Dalam Kumpulan MM (RWMM) dan Penganggar 
Teguh Dalam Kumpulam GM (RWGM) turut dicadangkan untuk disimulasikan di 
bawah pemusatan-MM.  Melalui kajian simulasi dan data sebenar, RWMM dan 
RWGM dikenalpasti berupaya memberi anggaran yang lebih teguh serta efisien 
di bawah pemusatan-MM, berbanding dengan kaedah sedia ada yang 
menggunakan pemusatan median.   
 
 
Belum ada banyak kajian yang dilakukan dalam kaedah pengesanan HLP untuk 
data panel.  Oleh itu, kami telah mencadangkan Diagnostik Teguh-F (RDF) bagi 
mengatasi masalah litupan dan limpahan sewaktu mengenalpasti HLP. Kerja-
kerja simulasi serta contoh berangka telah membuktikan kaedah baharu RDF ini 
mengatasi kaedah sedia ada dengan kadar limpahan yang paling rendah.   
 
 
Penganggar RWGM yang sedia ada mempunyai kelemahan di mana kaedah ini 
adalah berdasarkan kepada Jarak Teguh Mahalanobis (RMD) dengan Isipadu 
Elipsoid Minimum (MVE) yang terdedah kepada kesan limpahan.  Untuk 
memperbetulkan masalah ini, RWGM dengan RDF dan RWGM dengan DRGP 
telah dibangunkan dengan mengintegrasikan RDF dan Diagnostik Teguh 
Potensi Teritlak (DRGP) ke dalam algoritma penganggar GM.  Hasil kajian 
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menunjukkan bahawa prestasi penganggar RWGM(RDF) yang menggunakan 
RDF sebagai sebahagian daripada skim pemberatnya melangkaui kaedah lain.   
 
 
Sehingga kini, belum ada kajian yang memfokuskan kepada kaedah butstrap 
teguh untuk model data panel efek tetap.  Oleh itu, kaedah butstrap yang dikenali 
sebagai Butstrap Diagnostik (Boot-D) dan Butstrap Berpemberat RDF (Boot 
RDF) turut dibangunkan untuk mendapatkan anggaran teguh butstrap terhadap 
blok HLP.  Dalam Boot-D, satu ukuran diagnostik diperkenalkan untuk 
menghapuskan mana-mana titik terpencil daripada pelan penyampelan 
manakala penyampelan semula dengan kebarangkalian turut diperkenalkan 
dalam kaedah Boot RDF.  Kedua-dua kaedah ini dapat memberikan alternatif 
teguh yang unggul; disahkan oleh contoh berangka dan kajian simulasi.   
 
 
Kajian ini turut membincangkan masalah serentak yang melibatkan HLPs dan 
kesilapan heteroskedastik untuk model data panel efek tetap.  Penganggar 
teguh dengan dua langkah utama yang dikenali sebagai HO Dua Langkah 
(TSHO) turut dicadangkan bagi meredakan kedua-dua permasalahan ini.  Kajian 
ini dianggap sebagai kajian pertama yang menyelesaikan permasalahan 
heteroskedastisiti dan ketidaknormalan secara serentak bagi data panel.  Bukti 
empirik melalui eksperimen simulasi dan data berangka menunjukkan TSHO 
sentiasa teguh di bawah pencemaran sifar atau tahap tinggi.  Ralat piawai bagi 
anggaran beta juga turut diperbetulkan menggunakan kaedah baru yang 
dicadangkan iaitu penganggar ralat piawai - heteroskedastisiti titik terpencil atau 
ringkasnya penganggar HORSE.  Dua jenis pemberat teguh diperkenalkan oleh 
HORSE untuk melindungi daripada ralat yang disebabkan oleh blok HLP dan 
juga kesan heteroskedastisiti.  Dalam menangani perkara ini, hasil simulasi 
menunjukkan HORSE berupaya untuk mengurangkan kesan bias.  Secara 
kesimpulannya, HORSE telah dapat mengurangkan bias ralat piawai hasil 
daripada skim pemberat teguh diperkenalkan dalam algoritmanya.  
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HR Heteroskedasticity Robust 
LMS Least Median Square 
LTS Least Trimmed Square 
MCD Minimum Covariance Determinant 
MD  Mahalanobis Distance 
MSE Mean Square Error 
MVE Minimum Volume Ellipsoid 
OLS Ordinary Least Square 
RDF Robust Diagnostic-F 
RMD Robust Mahalanobis Distance 
RMSE Root Mean Square Error 
RWGM Robust Within Group Generalized M 
RWGM(DRGP) Robust Within Group MM with Deleted Robust 

Generalized Potential 
RWGM(RDF) Robust Within Group MM with Robust Diagnostic-F 
RWMM Robust Within Group MM 
TSHO Two Step Heteroskedasticity-Outliers 
WBP Weighted Bootstrap with Probabilities 
WG(OLS) Within Group with Ordinary Least Square 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1  Research Background 
 
 
Panel data refers to the pooling of longitudinal data, in which some units of 
observations, such as households, countries, firms, or nations, are followed over 
a number of time periods (Baltagi, 2013).  Panel data analysis plays an important 
role in modern econometrics because its grouping structure can provide 
important information rather than simpler forms of data.  In particular, the 
structure can be used to estimate models with complicated forms of 
heterogeneity across units or entities.  Recently, there has been renewed interest 
in the likelihood methods for panel data, in part this is due to the emergence of 
new computational algorithms, such as Markov Chain Monte Carlo methods.  For 
the past decade, there has also been an increasing trend on the use of this type 
of data in the research of economics and finance.  The effects of globalization 
made it necessary to study panel data.  For example, changes in an economy of 
a country can have significant effects to its neighbouring region due to the impact 
of globalization.  Thus, panel data of countries in the affected regions can 
certainly provide more information and variability to this type of study.  The uproar 
of Industry Revolution 4.0 makes it more essential to evaluate large panel data 
in order to gain critical and upfront information.  Many online databases such as 
Osiris, Bankscope and Datastream are available online to provide the necessary 
and vital information.  These databases have tremendously reduced the number 
of hours spent in collecting data.  For example, panel data of firms or banks can 
be accessed by a few mouse clicks and the data can be downloaded almost 
instantaneously via the internet.   
 
 
Fixed effect linear regression is one of the methods available in the 
econometrics.  It involves the use of linear regression analysis which analyzes 
the relationship between a response or dependent variable and more than one 
explanatory variables (also known as regressor, predictor and independent 
variables). In general, the regression analysis helps us realize how the value of 
the response variable changes by changing any one of the explanatory variables 
in the situation that the other explanatory variables are considered to be fixed.  
The Ordinary Least Squares (OLS) method is often used to estimate the 
parameters of the fixed effect panel data model.  The method minimizes the sum 
of squared of regression errors which are the estimate of distances between the 
responses predicted by the linear approximation and the observed responses in 
the data set.  Data analyzers prefer to apply OLS due to the universal 
acceptance, elegant statistical properties, and computational simplicity.  
Unfortunately, the OLS depends on a number of fairly restrictive and often 
unrealistic assumptions.  Among the assumptions are the normality of error 
distribution, independency of the explanatory variables and error terms with 
constant variance for all observations or homoscedasticity (Kutner et al., 2004; 
Baltagi, 2013; Greene, 2017).  The normality assumption is often violated in the 

http://en.wikipedia.org/wiki/Dataset
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presence of one or more sufficiently outlying observations in the data set 
resulting in bias and unreliable estimates of the model parameters (see 
Montgomery et al., 2001; Gujarati, 2002; Chatterjee and Hadi, 2006; Andersen, 
2008).   
 
 
It is important to point out that researchers must be aware that panel data is 
susceptible to the occurrence of outliers.  In the existence of outliers, the 
assumption of independent and identically distributed (i.i.d) errors for linear 
regression is completely violated.  The least square estimate minimizes squared 
errors and gives high weights to outliers, causing the parameter estimates to 
become extremely sensitive to their presence (Maronna et al., 2006; Imon, 
2017).  In addressing the problem, highly advanced robust methods have been 
developed for linear regressions (Hampel et al., 2001; Chatterjee and Hadi, 
2006; Huber, 2011).  Modern robust methods are researched to find highly 
efficient estimators which mimic least square estimates in the absence of 
outliers.  Typically, intensive computer simulations are required in this type of 
research which are now widely accessible; for example R computing by R Core 
Team (2013).  Somehow, only limited investigations are done for regression of 
panel data (Wagenvoort, 1998; Bramati and Croux, 2007; Verardi, 2010; Aquaro 
and Cizek, 2013).  The effects of outliers can be crucial for fixed effect model 
especially when multiple outliers occur concentrated in the time series.  Any 
atypical observation can cause panel data to become highly contaminated due 
to data transformation by non-robust centering procedure (Bramati and Croux, 
2007).  The detection of the outliers can be very difficult due to the effects of 
masking and swamping (Rousseuw and Van Zomeren, 1990; Hadi, 1992; Imon, 
2017).  The two effects somehow can be lessened by carefully inspecting the 
outliers by a robust method (Habshah et al., 2009).  The development of a robust 
outlier detection method for panel data is very important since the method can 
be used to determine robust weights.  These robust weights can be integrated 
into other methods such as bootstrapping and GM-estimators to gain more 
efficiency and robustness in estimating robust parameters against the effects of 
the outliers.   
 
 
Another equally important problem to be addressed in a panel linear regression 
model is the violation of the homoskedastic errors assumption.  Heteroskedastic 
errors become a common problem in panel data whereby heteroskedasticity-
robust (HR) standard errors become a major discussion in the econometrics 
literature (Arellano, 1987; Kezdi; 2004; Stock and Watson, 2006; Petersen, 2009; 
Imbens and Kolesar, 2016).  However, no discussion is made on the 
simultaneous occurrence of heteroscedasticity and outlying values.  The existing 
HR methods are only robust towards heteroscedasticity but break down in the 
existence of outliers (Croux et al., 2003).  Thus, this thesis focuses on the effects 
of outliers on the fixed effect panel data model; especially x-outliers which lies 
concentrated in a few time series or known as block high leverage points (block 
HLPs).  The coexisting problems of heteroscedasticity and block HLPs are also 
highlighted.  Comparisons among newly developed methods and the existing 
ones are made.  These are the paths taken by this study where robust 
procedures are introduced to lessen the effects of the block HLPs and also 
heteroscedasticity in the fixed effect panel data model.   
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1.2 Importance and Motivation of the Study 
 
 
A small percentage of outliers is expected to present in a dataset (Hampel, 1971; 
Hampel, 2001).  The presence further leads to a wrong conclusion of a statistical 
analysis.  Research in this area is particularly important because many 
researchers are unaware of the biasness produced in the statistical analysis 
caused by these outliers.  In panel data, outliers are frequently found to be 
concentrated in a few time series or also known as block concentrated outliers 
(Bramati and Croux, 2007).  Block concentrated x-outliers or block HLPs can be 
lethal because they may introduce heavy contamination to the contaminated 
time series (Verardi and Wagner, 2010).  The classical estimation such as the 
arithmetic mean is highly affected by the presence of even a single aberrant data 
(Maronna, 2006).  Fixed effect regression requires data to be transformed 
around the arithmetic mean before ready to be regressed (Greene, 2017).  
Wrongly estimated mean will be produced when panel data are contaminated by 
block HLPs.  As a result, the mean centering procedure will introduce more 
outliers into the transformed panel data.  Regardless of their sources, the outliers 
can render least squares estimations meaningless (Kutner et al., 2004; Baltagi, 
2013; Imon, 2017).  Bramati and Croux (2007) have proposed the use of median 
centering as a robust measure to minimize the heavy contamination in the 
transformed data caused by the block HLPs.  Median is chosen since the 
measure is robust and can easily be derived.  However, the median centering 
technique is found to cause the transformed data to become nonlinear and non-
equivariance (Verardi and Wagner, 2010).  Moreover, median is only 64% 
efficient compared to mean (Maronna et al., 2006).  The less efficient median 
will cause robust estimator to become less efficient in an uncontaminated data.  
These unresolved issues motivate this study to propose MM-centering by 
considering MM-estimate of location as the measure of central tendency.  MM-
estimate of location is 98% efficient and can bring back linearity and 
equivariance to the transformed data (Maronna et al., 2006).  The MM-centering 
is therefore expected to provide more efficiency and thus better performance 
than the median centering for robust estimation in panel data. 
 
 
It is highly important to identify outliers or high leverage points (HLPs) in the 
panel data.  Once the true outliers are correctly detected, correctional measures 
can be taken up to remedy the problems regarding outlying values.  Classically, 
outliers are detected by Mahalanobis Distance (MD) but the measure is non-
robust and highly affected by the occurrence of HLPs (Hadi, 1992).  MD simply 
calculates the distance of each data point from its centre mass.  Theoretically, a 
data point with a large MD indicates outlyingness due to its large distance from 
the centre mass.  However, MD formulation heavily relies on the non-robust 
arithmetic mean and covariance matrix to determine the centre mass of the data 
points.  Thus, in the presence of outliers, both the arithmetic mean and the 
covariance matrix are no longer reliable, causing the centre mass to be shifted; 
explaining the non-robustness of MD towards outliers.  From the literature, there 
are many different high leverage diagnostic methods such as the Robust 
Mahalanobis Distance (Rousseeuw and Leroy, 2003), Generalized Potentials 
(Imon, 2002) and Diagnostic Robust Generalized Potentials (DRGP) based on 



© C
OPYRIG

HT U
PM

4 
 

Minimum Volume Ellipsoid (MVE) (Habshah et al., 2009).  More high leverage 
diagnostic methods can be referred in Hoaglin and Welsch (1978), Hadi (1992) 
or Rousseew and Leroy (2003).  However, a few evidence suggests that the 
existing measures which are designed to detect a single HLP may not be 
effective in detecting multiple HLPs (Imon, 2002; Habshah et al., 2009).  
Furthermore, the problems of swamping and masking become very common in 
the detection of the leverage values (Serfling and Wang, 2014).  Swamping 
causes some inliers to be falsely detected as outliers whereas masking effect 
causes some outliers to be detected as inliers.  Most robust outlier detection 
techniques such as robust MD and DRGP greatly suffer from swamping.  The 
weaknesses of the existing robust outlier detection measures have inspired us 
to develop a new outlier detection method for panel data.  Moreover, to the best 
of our knowledge, no research has been done in detecting outliers for fixed effect 
panel data model.  A novel robust outlier detection method that we called Robust 
Diagnostic-F or RDF is formulated based on the work of Djauhari (2010).  RDF 
is motivated by the success combination of diagnostic-robust procedure of 
DRGP by Habshah et al. (2009).  The newly proposed robust RDF method is 
anticipated to be more effective in diagnosing HLPs with low swamping rate.   
 
 
Several works on robust estimation have been proposed in the literature for non-
panel data.  One of the well-performed robust estimators which has high 
breakdown point and highly resistant to the HLPs is the Generalized M-
estimators or GM-estimators introduced by Schweppe (given in Hill, 1977).  One 
can refer to Simpson (1995), Mallows (1975), Krasker and Welsch (1982), and 
Simpson et al. (1992) for other GM-estimators.  The GM-estimators are robust 
methods with the main aim of down weighting HLPs with large residuals.  The 
algorithm of the most applicable GM-estimators highly depends on the HLP 
diagnostic methods; which fail to detect the HLPs when they occur in multiple 
number (Bagheri and Habshah, 2009).  The issues of swamping and masking 
effects must be dealt with, otherwise poor results will be resulted for 
contaminated data (Bagheri et al., 2012).  In addition, the procedures of GM-
estimators are highly dependent on less efficient initial estimators such as OLS 
or Least Trimmed Squares (LTS) estimators.  A relatively few scholars studied 
robustness with respect to outliers in panel data.  Among them are Wagenvoort 
and Waldmann (2002) who proposed one-step robust estimation and Bramati 
and Croux (2007) who proposed Within Group GM-estimator or RWGM for the 
fixed effect panel data.  Both methods are found to provide resistant estimates 
to the panel data regression.  However, new methods must be proposed to derive 
better results, efficiencies and performance.  For example, robust weights in 
RWGM by Bramati and Croux (2007) is determined by RMD which is known to 
suffer from the effect of swamping.  Some inliers may be given a “0” weight and 
are not considered in the weighted estimation due to the swamping effect.  The 
shortcoming of the existing RWGM-estimators has encouraged us to develop 
new RWGM-estimators which are more efficient and more resistant towards 
HLPs.  In a recent development, high leverage diagnostic method, DRGP which 
is developed by Habshah et al. (2009) has successfully been incorporated in 
some robust methods such as LTS, MM and also GM-estimator by Bagheri et al. 
(2009).  This inspire us to introduce more robust weighting schemes for RWGM 
by considering superior outlier detection techniques.  By following similar steps 
of Bagheri et al. (2009), the DRGP and also the newly developed robust outlier 



© C
OPYRIG

HT U
PM

5 
 

detection method, Robust Diagnostic-F (RDF) is incorporated into RWGM to 
provide new robust weights for the RWGM-estimators.  The methods known as 
RWGM with DRGP and RWGM with RDF are to provide more efficient and robust 
parameter estimates for the fixed effect panel data model.  These methods contain 
precise robust weights which are determined by DRGP and RDF whilst 
dampening the effects of HLPs on the robust fixed effect linear regression. 
 
 
Bootstrapping method is known as a powerful and popular method in parameter 
estimation (Hounkannounon, 2010).  In bootstrapping, a parameter is measured 
from an empirical distribution function of the observed data; constructed by 
resampling with replacement (Efron and Tibshirani, 1986).  However, the 
conventional bootstrapping techniques such as fixed bootstrapping heavily suffer 
from the presence of outliers (Amado et al., 2014; Imon and Ali, 2005).  In the 
classical fixed bootstrapping or popularly known as residuals bootstrapping, 
ordinary least square (OLS) regression residuals are considered in its 
resampling plan (Salibian-Barrera and Zamar, 2002).  However, when data are 
contaminated by HLPs, large residuals are produced by the OLS and the 
bootstrap samples are further contaminated by the sampling procedure (Norazan 
et al., 2009).  Since each data have equal chance of being included in the 
replications of the sub-samples, more outliers may be introduced in the sub-
samples of a contaminated data and causes bootstrap distribution to break down 
(Imon and Ali, 2002; Norazan et al., 2009).  In panel data, a vast number of 
bootstrapping procedures found in the literature are developed to protect against 
heteroskedasticity (Wu, 1986; Mammen, 1993; Liu, 1988; Cameron, et al., 2008), 
serial correlation or/and cross sectional dependence (Goncalves, 2011; Kunsch, 
1989; Liu and Singh, 1992; Kapetanious, 2008).  The literature search also found 
that no study is available on robust bootstrapping against outliers for panel data, 
even though the impact of outliers in panel data is severe.  However, robust 
bootstrapping alternatives are extensively discussed in the literature for non-
panel data (Athreya, 1987; Shao, 1990; Imon and Ali, 2005; Amado et al., 2014).  
In robustifying the bootstrapping technique for non-panel data, Singh (1998) 
suggested that contaminated data are to be trimmed off but arguments arise on 
the percentage level of trimming.  Imon and Ali (2005) then proposed Diagnostic 
Before Bootstrap whereby a diagnostic procedure is to be performed before 
bootstrapping.  In this way, any outlying values are removed from the bootstraps 
sampling.  However, the method heavily relies on the ability of the diagnostic 
measure to detect outliers accurately.  Some good data points may be declared 
as outliers due to the effects of swamping (Norazan et al., 2009).  It has also 
been suggested that harmful outliers can be excluded in the bootstrap by 
sampling with probabilities (Amado and Pires, 2004).  In this way, the effects of 
swamping and masking in determining true outliers for bootstrapping can be 
eliminated.  Inliers will receive high probabilities and have high chances to be 
included in the bootstrap sub-samples.  On the other hand, outlying values will 
receive lower probabilities and hence lower chance of being included in the 
bootstrap.  The concept is successfully implemented in Weighted Bootstrap with 
Probability (WBP) by Norazan et al. (2009).  In WBP, each data point is allocated 
a probability based on the outlyingness of the data.  Robust weights for the data 
points are then determined to provide better bootstrap estimates for 
contaminated data.  The success of WBP in providing the best robust bootstraps 
estimates for non-panel data has inspired us to develop robust bootstrap 

https://en.wikipedia.org/wiki/Empirical_distribution_function
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estimates for panel data.  The proposed method will become among the first 
study to propose robust bootstrapping panel data with respect to outliers, 
specifically the block HLPs.  Thus, Diagnostic Bootstrap (Boot-D) and Weighted 
Bootstrap with RDF (Boot RDF) are proposed by considering the use of DRGP 
and RDF; respectively.  The success of both the DRGP and RDF in detecting 
block HLPs motivates this study in determining new robust weights and hence, 
probabilities for the new robust bootstrapping methods.  Both DRGP and RDF 
swamp less good points and this property is believed to increase the efficiencies 
of the newly proposed bootstrapping procedures. 
 
 
In panel data, robust estimation is mainly discussed with respect to 
heteroscedasticity and/or serial correlation (for example Stock and Watson 
(2008) and Petersen (2009)).  This is not unusual since heteroskedasticity largely 
occurs in panel data and in its presence, Feasible Generalized Least Squares 
(FGLS) is often performed to gain better efficiency than the OLS (Miller and 
Richard, 2018).  However, when HLPs are present in heteroskedastic data, two 
important least square regression assumptions are now simultaneously violated.  
The problems require immediate solutions and some robust measures need to 
be identified to withstand the bad influence of both non-normal and 
heteroskedastic errors.  The existing FGLS is based on least square and as 
mentioned earlier, least square estimation is highly sensitive towards HLPs 
(Baltagi, 2013; Stock and Watson, 2008).  Robust estimators for panel data such 
as the existing RWGM-estimator (Bramati and Croux, 2007), followed by 
RWMM, RWGM(DRGP) and RWGM(RDF) have been introduced in this study 
for panel data.  However, these methods are designed to provide resistance 
towards block HLPs and have never been tested against heteroscedasticity.  
From the literature, robust methods of panel data are proposed to withstand 
conditions of heteroscedasticity or outlying values separately.  To the best of our 
knowledge, no study has been conducted in robust estimation towards both 
effects of heteroscedasticity and outliers.  Thus, this motivates us to conduct a 
study; considered to be the first, in solving simultaneous problems of 
heteroskedastic and non-normal errors for panel data.  In this manner, Two Step 
Heteroscedasticity-Outlier (TSHO) robust estimator is proposed and the method 
consists of two important steps.  The first step is taken to dampen 
heteroskedastic errors and the second step eliminates the effects of outliers 
especially of block HLPs, to produce more reliable fixed effect estimates.   
 
 
In the presence of heteroscedasticity, the standard error of the fixed effect 
parameter estimates can be biased and inconsistent (White, 1980; Mackinnon 
and White, 1985; Arellano, 1987).  Thus, robust standard errors such as 
Huber/White estimators or sandwich estimators of variance by White (1980) are 
proposed and referred as heteroscedasticity-robust (HR) standard errors.  The 
HR standard errors are found to be consistent and robust against 
heteroscedasticity but produce biasness with increasing sample size or 
contaminated data (Cribari-Neto and Lima, 2014).  However, they are non-robust 
towards outliers since the HR standard errors are derived from the non-robust 
regression residuals.  Other HR standard errors are proposed by using 
bootstrapping methods (Cribari-Neto, 2004; Godfrey and Orne, 2004; Wilcox, 
2005; Godfrey, 2006) but again, the methods are known to be highly influenced 
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by leverage values.  It must be noted that the presence of HLPs is more crucial 
than the degree of heteroscedasticity; as indicated by Cribari-Neto and Zarkos 
(2001).  A vast gap is found in the literature in providing an alternative standard 
error which is robust towards both heteroskedasticity and also outliers.  This 
motivates us to propose heteroskedasticity- and outlier-robust standard error 
(HORSE) estimator for the fixed effect panel data.  Two sets of robust weights 
are derived in the HORSE estimator to dampen both effects of heteroskedasticity 
and block leverage values.  
 
 
Extensive studies have been conducted during the last decade to develop more 
robust estimators against outliers and/or heteroscedasticity especially for non-
panel data.  The tremendous development has been assisted by the abundance 
of high speed and cheap computing.  More robust estimators must be introduced 
or proposed for the panel data study.  In order to disseminate knowledge on 
robust estimation for panel data, R-computing codes for all the proposed 
methods are developed and published in the thesis.  The codes can certainly 
assist other researchers in the same field to produce more advance methods in 
the future.   
 
 
1.3  Research Objectives 
 
 
The main purpose of this thesis is to develop robust estimation for the fixed effect 
panel data model.  The robust estimators must be resistant to crucial outliers, 
especially those which lie concentrated in a few time series; in the x-direction or 
known as block HLPs.  Some newly developed robust estimators are also 
expected to withstand the effects of non-normal and heteroskedastic errors.  In 
the search of the robust estimators, other robust procedures are also developed 
in order to assist to the achievement of highly robust and highly efficient 
estimators.  The foremost objectives of our research can be outlined 
systematically as follows: 
 

1. To propose robust panel data transformation as an alternative to the 
non-robust centering by the mean.   
 

2. To develop robust outlier detection method as a remedy to the problem 
of masking and swamping in detecting HLPs for panel data.   
 

3. To establish Robust Within Group estimators which are resistant 
towards the presence of block HLPs in panel data by integrating 
successful outlier detection methods into the algorithm of GM-estimator.   

4. To propose robust bootstrapping techniques for panel data and provide 
resistance bootstrap estimates against block HLPs.   
 

5. To develop robust estimator and robust standard error under the 
conditions of non-normal and heteroskedastic errors for fixed effect 
panel data model. 
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1.4   Scope and Limitations of the Thesis 
 
 
The general extent of the thesis is to proposed robust estimation for the fixed 
effect panel data model under the influence of outliers.  In particular, the study 
emphases on the multiple outliers which occur in the x-direction and lie 
concentrated in a few time series.  This type of outliers is known as block high 
leverage points (HLPs) which found to have significant effects on fixed effect 
parameter estimation in their presence.  The effects of heteroscedasticity are 
also highlighted.  The study would be done through the proposed robust methods 
based on references and coded algorithms by R-programming.  Simulation 
experiments and applications on real data would be carry out to know the 
proposed methods’ performances.  However, this study is limited to balanced 
panel data with fixed effect in the presence of HLPs.  This study will not cover 
other types of outliers nor other type of regression model.  The algorithms of the 
proposed methods can only be proposed based on limited references of robust 
estimation for panel data.  Monte Carlo simulations of the proposed methods will 
be conducted using limited sample sizes and will be based on ideal conditions 
and assumptions.  At the same time, the simulation experiments often require a 
significant amount of computer time and can be expensive.   
 
 
1.5   Overview of the Thesis 
 
 
In accordance with the objectives and the scope of the study, the contents of this 
thesis are organized into nine chapters. The thesis chapters are structured so 
that the research objectives are apparent and are conducted in the sequence 
outlined.  
 
 
Chapter Two:  
 
This chapter deals with a brief literature review of the OLS estimations for the 
fixed effect panel data regression parameters and violations from its 
assumptions.  The chapter reviews on the types of outliers in panel data and the 
existing techniques to detect them, and to understand the effects of abnormal 
data on the techniques.  Different robust estimators, bootstrapping techniques 
and heteroskedasticity-robust estimators are also reviewed by highlighting the 
strengths and weaknesses of existing methods.   
 
 
Chapter Three:  
 
This chapter discusses the development of the robust centering procedures for 
the contaminated fixed effect panel data model.  MM-Centering is proposed to 
resolve the issues by considering robust MM-estimate of location as the measure 
of central tendency.  
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Chapter Four:   
 
A novel robust outlier detection method that we called Robust Diagnostic-F or 
RDF is proposed in this chapter.  The newly proposed method is a combination 
of robust Mahalanobis Distance and diagnostic F (Djauhari, 2010) and is highly 
reliable in detecting the true HLPs whilst reducing the effect of swamping. 
 
 
Chapter Five:  
 
This chapter deals with the development of two robust methods which are 
resistant to the presence of high leverage points.  The proposed robust 
estimators are the improvised Robust Within Group GM-estimator (RWGM) 
based on the DRGP and also based on the newly developed robust outlier 
detection method, RDF.  They are known as RWGM(DRGP) and RWGM(RDF); 
respectively.   
 
 
Chapter Six:   
 
In this chapter, two robust bootstrapping techniques are proposed, namely Boot-
Diagnostic and Weighted Bootstrap with RDF (Boot RDF).  The Boot-Diagnostic 
is motivated by Imon and Ali (2005) and Boot RDF is proposed by incorporating 
new robust weights determined by the Robust Diagnostic-F (RDF) from  
Chapter 4.   
 
 
Chapter Seven:   
 
This chapter addresses the robust solutions towards non-normal and 
heteroskedastic errors.  A heteroskedastic- and outlier-robust estimator is 
proposed in this chapter to correct the problems.  The proposed method is called 
Two Step Heteroscedasticity and Outlier- robust estimator or TSHO which 
consists of two important steps (or stages) to guard against the bad effects of 
block HLPs and also heteroskedasticity.   
 
 
Chapter Eight:   
 
This chapter considers the computation of robust standard errors for robust 
estimators.  Heteroskedasticty- and outlier-robust standard error or HORSE 
estimator is proposed by relaxing the assumptions of heteroskedasticity and 
provide robust weights to reduce the effects of HLPs.   
 
 
Chapter Nine:   
 
This chapter provides summary and detailed discussions of the thesis conclusions. 
Areas for future research are also recommended. 
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1.6   Flowchart of the Study 

 
Figure 1.1: Flowchart of the study 
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