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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

EFFICIENCY OF 4253HT SMOOTHERS IN EXTRACTING SIGNAL
FROM NOISE AND THEIR APPLICATIONS IN FORECASTING

By

NURUL NISA’ BINTI KHAIROL AZMI

February 2019

Chairman : Mohd Bakri Adam, PhD
Faculty : Institute For Mathematical Research

Compound smoother is a non-linear smoothing technique that has the ability to
reduce heavy noise from signal and at the same time, is resistant to sudden changes
and impulse in a data series. The compound smoother of 4253HT has been studied
and modified in the algorithm, specifically to estimate the middle point of running
median for even span size by applying the following types of means; geometric,
harmonic, quadratic and contraharmonic.

The stability of running median of even span with modification toward the positive
and negative block pulse were discussed. The modified 4253HT using harmonic
mean works best in preserving edge at sudden changes point from down to upward
and negative block pulse. Modified 4253HT using contraharmonic mean on the
other hand, has been found to preserve edge of upward point and positive block
pulse. The combination of modified 4253HT using harmonic and contraharmonic
means adaptively, produce a new smoother with more resistance to block pulse and
better preservation of the edge.

The performance of the modified compound smoothers was assessed via simulation.
The signal of sinusoidal and special functions; Doppler, HeavySine, Bumps and
Block was generated with non-Gaussian noise added that produced high volatility
and disturbed by outliers. The performance were measured by regression coefficient,
Estimated Integrated Mean Square Error (EIMSE) and variance reduction. The
4253HT has the ability to capture the signal from heavy noise data. In general,
4253HT performs best at smaller frequency and the recovery of signal from heavy
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noise at high frequency using 4253HT is fairly good. This is asserted by the smooth
value which was close to the signal, indicating its capability to extract signal from
highly fluctuating noise.

The modified 4253HT using adaptive mean showed the most effective, compared
to others, in extracting low, moderate and high frequency of sinusoidal signal from
the noise with 10%, 25%, 50% and 75% contaminated normal distribution. The
Doppler, Block, Bumps and Heavy Sine signal show the modified 4253HT using
adaptive mean also managed to recover those signal from noise better than other
modified 4253HT and the existing one. The extracted signal was then used for bet-
ter forecasting which was facilitated by seasonal Holt-Winters, ARAR and seasonal
ARIMA algorithm.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KEEFISYENAN PELICIN 4253HT DALAM MENGEKSTRAK
ISYARAT DARIPADA HINGAR DAN APLIKASINYA DALAM

PERAMALAN

Oleh

NURUL NISA’ BINTI KHAIROL AZMI

Februari 2019

Pengerusi : Mohd Bakri Adam, PhD
Fakulti : Institut Penyelidikan Matematik

Pelicin kompaun adalah teknik pelicinan bukan linear yang mempunyai kebolehan
untuk mengurangkan hingar daripada isyarat dan pada masa yang sama mempunyai
ketahanan terhadap perubahan yang secara tiba-tiba dan impulsif di dalam data.
Pelicin kompaun 4253HT telah dikaji dan diubahsuai dalam algoritmanya terutama
dalam menganggar titik tengah pelicin median bagi jangka bersaiz genap dengan
menggunakan jenis purata yang berikut: geometrik, harmonik, kuadratik dan kontra
harmonik. Kestabilan bagi median jangka bersaiz genap terhadap blok impulsif
positif dan negatif dibincangkan. 4253HT yg dimodifikasi menggunakan purata
harmonik paling baik dalam memelihara titik yang berubah dari rendah ke tinggi dan
blok impulsif yang negatif. Manakala, 4253HT yg dimodifikasi menggunakan purata
kontra harmonik berjaya memelihara titik yang berubah dari tinggi ke rendah dan
blok impulsif yang positif. Gabungan 4253HT yg dimodifikasi menggunakan purata
harmonik dan kontra harmonik secara adaptif menghasilkan pelicin yang lebih tinggi
ketahanannya terhadap blok impulsif dan memelihara titik hujung dengan lebih baik.

Prestasi pelicin kompaun yang diubahsuai dinilai melalui simulasi. Isyarat sinu-
soidal dan beberapa fungsi istimewa seperti Doppler, Block, Bumps dan Heavy
Sine telah dijana dengan hingar bukan Gaussian ditambah yang menghasilkan
volatiliti yang tinggi dan diganggu oleh unsur luaran. Prestasi diukur oleh koefisyen
regresi, jangkaan integrasi purata ralat kuasa dua dan penurunan varians. 4253HT
berprestasi baik pada frekuensi yang rendah dan mengembalikan isyarat dari hingar
yang tinggi pada frekuensi yang lebih tinggi menggunakan 4253HT adalah agak
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baik memandangkan nilai yang licin menghampiri nilai isyarat yang mana me-
nunjukkan kebolehan mengasingkan isyarat daripada hingar yang bervolatiliti tinggi.

Modifikasi 4253HT mengunakan purata adaptif adalah yang paling efektif berband-
ing yang lain dalam mengekstrak isyarat sinusoidal berfrekuensi rendah, sederhana
dan tinggi daripada 10%, 25%, 50% and 75% hingar tercemar. Isyarat Doppler,
Block, Bumps dan Heavy Sine menunjukkan modifikasi 4253HT mengunakan pu-
rata adaptif berkeupayaan untuk mengembalikan semula isyarat tersebut lebih baik
berbanding berbanding modifikasi 4253HT dan yang sedia ada. Isyarat yang telah
diekstrak kemudiannya digunakan untuk peramalan menggunakan algoritma Holt
Winter bermusim, ARAR dan ARIMA bermusim.
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CHAPTER 1

INTRODUCTION

1.1 Smoothing

Smoothing is more of a curve fitting whereby the main purpose is tracing the trend
from a set of data series blurred by noise. In a data series, trends provide the
direction to choose appropriate method of estimation. Smoothing data series does
not necessarily have to be well fitted, but most importantly it has an ability to reduce
noise so that overall picture regarding global behavior of data series can be captured.
The pattern extracted from smoothing process is able to provides some guideline on
a suitable modelling estimation for forecasting purpose. Smoothing does not only
helps in curve fitting but also very useful in determining future values by eliminating
non-well behave noise.

Smoothing by definition varies according to the fields of interest. Some studies, use
the term filtering to refer to smoothing for example Ataman et al. (1981), Bovik
et al. (1983), Gabbouj et al. (1992), Zeng (1994) and Miao and Jiang (2013). In
order to avoid any confusion, the term smoothing is used consistently throughout
this research. The main concern of smoothing is to capture underlying pattern by
removing unwanted noise from the data series. Thus, it is appropriate if a data series
to be regarded as a mixture of smooth and rough component, whereby

data = smooth + rough. (1.1)

Data can also be referred as a trend mixed with noise, true value with measurement
error or regional trend mixed with local deviation. Since the ”smooth” is intended
to be smooth, the points are shown connected in a sequence. The main purpose of
smoothing is to reduce noise in a data series so that the smoothed values produce a
good signal of deterministic trend and shape of the distribution. Hence, the objectives
of smoothing can be extended to more specific forms are as follows;

1. to determine a suitable model that fitted the dependent variable with variable
of interest,

2. to reveal any obscure patterns,

3. to eliminate significant spikes or outliers and

4. to examine patterns in the noise.

Smoothing is very useful prior to conducting further analysis which requires
assumptions and specific shape of distribution. The application of smoothing is not
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limited to one-dimensional data as it can be employed in image processing analysis
where smoothing the data involves two-dimensional algorithm.

The most crucial part in smoothing process is measuring the smoothness of data
series. Nonetheless, it is very subjective in practice to identify the sufficiency of dis-
turbing noise that has been eliminated. Anderson and Chirarattananon (1971) state
that variance after smoothing should be lesser than the original sequence considering
that random errors have been reduced.

1.2 Basic Definitions in Smoothing

Smoothing in this study focuses on its operation in temporal data. Some terminolo-
gies related to smoothing temporal data are described for further understanding.

1.2.1 Temporal Data

Let X be a temporal data and defined as doubly infinite numerical sequence, Mallows
(1980);

X = {X−N , . . . ,X−3,X−2,X−1,X0,X1,X1,X2,X3, . . . ,XN} (1.2)

where Xt is the observation at time t, t = 0,±1,±2, . . . ,±N of a time varying
random variable of phenomenon X.

The analysis of temporal data usually starts by observing the graph to foresee the
general trend and later decide on appropriate method of data analysis. Temporal
data analysis is very useful to trace pattern for forecasting purpose. Hence, reducing
noise from a data series is an essential way to discover the general trend or curve
before further analysis can be conducted. Common approaches are transformation
or differencing. The most prominent is by smoothing a data series using a smoother.

When a sequence of X is observed, two main components can be extracted, signal
and noise. Both components are described in the subsequent parts of this chapter.

1.2.2 Signal

In smoothing, a signal is assumed as a smooth continuous curve or general pattern
that can be described by plotting graph.
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Definition 1.1 Anderson and Chirarattananon (1971): A signal can be defined as
the most useful relationship between the time varying random variable generating
the time series and time.

Each data point is similar and at the same level as the neighboring values. The points
also need to be consistent if there are any changes in the direction of the data series.
A signal can be taken as a deterministic function whereby it is commonly disturbed
by noise either Gaussian or non-Gaussian.

1.2.3 Noise

Commonly, a data series is masked by noise that makes the process of estimation
complicated. In general, noise can be defined as follows;

Definition 1.2 Jankowitz (2007): Noise is a component in a data series that inter-
feres the detection of signal.

Generally, noise is randomly distributed either with known distribution or some
cases, with no specific distribution.

Definition 1.3 Jankowitz (2007) : Gaussian noise is obtained by generating an in-
dependent, identically and random observations from Gaussian distribution.

Definition 1.4 Jankowitz (2007) : Non-Gaussian is any noise that is not generated
by normal distribution. The example of non-Gaussian noise includes noise generated
by long tailed distribution and the one obtained in the forms of extreme data points
or several consecutive extreme points or block pulse.

Non-Gaussian noise is not considered well behave due to their tremendous effects
on the pattern. Heavy noise is another form of non-Gaussian noise producing high
volatility in a data series.

In real situation, extracting unknown signal from heavy noise is difficult to handle.
Similarly, measuring successful smoothing can also be challenging as it can be very
subjective under condition where signal has a non-deterministic pattern. Hence, sim-
ulated signal added with noise are generated and evaluated in order to identify the
effectiveness of the smoother in extracting signal from noise, Jankowitz (2007). The
process of extracting the signal from distracting noise can be done by employing a
smoother.
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1.2.4 Smoother

Smoother is an important tool in statistical analysis that helps a lot in directing re-
searchers for further decision making.

Definition 1.5 Rohwer (2005): Smoother S is a notation that operates X to bring out
a new component of Si(Xt) that produces smoothed value at time t and i represents
the number of smoothing algorithm being applied.

A good smoother S, has an ability to extract signal from noise.

1.2.5 Span of Smoother

In this research, smoothers work based on running span or window size. Let the

observations in a window be as follows W =

{
X

t− k−1
2

, . . . ,Xt , . . . ,Xt+ k−1
2

}
where

k = 2u+1 and u = 1,2, . . . ,n. For example, if u = 1, the observations in a span are
W = {Xt−1,Xt ,Xt+1} which makes the span size to be equivalent to three.

This is only applicable for window of odd size. For even span size, k = 2u. For
example, if u = 2, the observations in a span are W = {Xt−2,Xt−1,Xt ,Xt+1} which
makes the span size to be equivalent to four.

1.3 Types of Smoothers

Generally, a smoother can be classified into linear and non-linear. Most of the linear
approaches involve parameter estimation and work best in removing Gaussian noise
from the signal. On the other hand, non-linear is more flexible in treating non-normal
noise in a data series.

1.3.1 Linear Smoothers

Smoothing techniques which initially evolve from linear to non-linear are actually
based on suitability of the data. Linear smoother is very popular, easy to understand
theoretically that it comes handy upon implementation. Linear smoothers can also
be defined as a linear function of a data series. Generally, a linear smoother can be
expressed as follows;

4



© C
OPYRIG

HT U
PM

Definition 1.6 Rohwer (2005) : A sequence {Yt} is the (discrete) convolute of se-
quence {Xt} and β if and only if

Yt =
u

∑
j=−u

β jXt− j. (1.3)

The simplest linear smoothing algorithm is moving average where the smoothed
value is replaced by the mean of three neighboring values in a span. For example,
the output of moving average of span size three, {Yt} on a sequence of {Xt} produces
the following;

Yt =
Xt−1 +Xt +Xt+1

3
(1.4)

where the weightage of all values in a span is equal. The longer the span size, the
smoother the data series is. However, too long span size cause the lost of important
information in a data series.

A linear smoothing with weighted function gives different effects to the smoothed
values. The weight takes into consideration the distance from neighboring values.
For example, the output of weighted moving average of span size five, {Yt} can be
expressed as follows;

Yt =
Xt−2 +2Xt−13Xt +2Xt+1 +Xt+2

9
. (1.5)

The closer the neighboring values are to the smoothed value, the higher weighted
is assigned. If the smoothing data series at first pass is not sufficient to reduce the
disturbing noise, multiple times of smoothing can be applied to the data series.
Smoothing a data series using algorithm in Equation (1.4) twice, produces equivalent
algorithm presented in Equation (1.5). Since the algorithm of linear smoother is
in the function of mean, the major drawback is its resistance to sharp changes or
outliers.

There are many versions of extended linear smoother such as kernel smoothers, local
polynomial smoothers, spline and kringing. The linear approach is theoretically easy
to understand and widely applicable in various fields. Commonly, in linear smooth-
ing, certain assumptions such as data must be independent and identically normally
distributed need to be satisfied. However, in most real life situation, the assumptions
require beyond just the recruitment of linear smoother.

5



© C
OPYRIG

HT U
PM

1.3.2 Non-linear Smoother

Non-linear smoothers are designed to compensate the weakness of linear approach.
Non-linear smoothers work very well in the existence of outliers that meet the
criteria of resistance, robustness, extracting non-Gaussian noise, preservation of
information edge and the recovery of the details of a signal. Although seems
theoretically difficult, analysing non-linear smoothers seems to be applicably
effective in real practices.

One of the most prominent non-linear smoothers is a smoother that is based on order
statistic. Median smoother is part of order statistic smoother (OSS) where the output
is the middle point which comes from an ordered sequence. Median smoother is one
of the categories that exhibit the feature of being robust to outliers, Tukey (1977).
Generally, the output of OSS on the length k in a sequence {Xt} for n is odd can be
expressed as follows, Bovik et al. (1983);

Yt = OSS
(
{Xi}t+k

i=t−k

) k

∑
t=i

αiX(t) (1.6)

where X(t) is the order statistics of X
t− k+1

2
, . . . ,Xt , . . . ,Xt+ k+1

2
and k = 2u+1. The

αi are constants and applicable to different types of order statistic such as median
smoother, maximum and minimum smoother and α-trimmed mean smoother. The
median smoother is a function Yt with coefficients;

αi =

{
1; i = k+1

2 ,

0; otherwise.
(1.7)

For maximum smoother, the coefficients is defined as;

αi =

{
0; i = 1, . . . ,k−1
1; i = k.

(1.8)

As a generalization, all of coefficients are constrained to be zero except for the i-th
which is set to be unity, Bovik et al. (1983).

Rabiner et al. (1975) made a comparison of the performance of Hanning or weighted
moving average with running median and found that running median is superior than
Hanning in smoothing several waveforms such as log input energy of a speech signal,
zero-crossing rate, and pitch period. Ever since then, median smoother has evolve
into various of modification to accommodate the shortcoming.
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1.4 Compound Smoother

One of the acknowledged types of non-linear smoother is a compound smoother.
Compound smoother is a multiple combination of running median or median
smoother, weighted moving average, splitting and re-smoothing a rough algorithm.
The following sub sections elaborate some elements that are used commonly in com-
pound smoother.

1.4.1 Median Smoother

Median smoother works based on window or span size. The output of me-
dian smoother is obtained by arranging the sequence X in ascending order,{

X(t−u), . . . ,X(t), . . . ,X(t+u)

}
and taking the middle point, X(t) as the output.

For illustration, consider the following conditions. For odd span size, let {X̃t,k}
denotes as the output of median smoother in a sequence of X at index t and window
size k, where k = 2u+ 1 and u = 1,2, . . . , k−1

2 where u ∈ Z. For even span size,
let {X̃t,k} denotes as output of median smoother in a sequence of X at index t and
window size k, where k = 2u and u = 1,2, . . . , k

2 where u ∈ Z.

1.4.1.1 Median Smoother Span Size Two

The output of median smoother of k = 2 which is a mean of two values in a window
of size two can be denoted as follows;

X̃t,2 = median(Xt ,Xt+1) (1.9)
= mean(Xt ,Xt+1) (1.10)

=
1
2
(Xt +Xt+1) . (1.11)

Let {Xt} = {X1,X2, . . . ,Xn} represents a set of data series with discrete index at t
where, t = 1,2, . . . ,n. Table 1.1 depicts the algorithm of median smoother with span
size two. The points at the end of a data series is lost in the computation. There are
many approaches to remedy the missing points at both ends. In this case however,
the end point is appended with actual values, X̂n = Xn. The missing end points are
discussed further in Section 1.4.4.
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Table 1.1: Algorithm of median smoother of window size two

Xt X1 X2 X3 . . . Xn−1 Xn

operation X1+X2
2

X2+X3
2

X3+X4
2 . . .

Xn−1+Xn
2 Xn

output X̃1 X̃2 X̃3 . . . X̃n−1 X̃n

Median smoother of span size two is equivalent to moving average of span size
two. The order of observations is not important. Hence, the median smoother of
window size two shares the same properties of linear smoother and not being robust
to outliers.

1.4.1.2 Median Smoother Span Size Three

The output of median smoother of window size three, {X̃t,3} on a sequence of
{X} = {Xt−u, . . . ,Xt , . . . ,Xt+u} where u = 1,2 . . . , k+1

2 and u ∈ Z is denotes as the
following equation;

X̃t,3 = median(Xt−1,Xt ,Xt+1). (1.12)

The output of median smoother of span size three, {X̃t,3} is produced by the follow-
ing algorithm;

1. Sort the following sequence Xt−1,Xt ,Xt+1.

2. The sorted sequence is X(t−1),X(t),X(t+1).

3. From the sorted sequence, an output of median smoother, X̃t,3 = X(t).

Table 1.2 shows the algorithm of median smoother for window size three.

1.4.1.3 Median Smoother of Span Size Four

Median smoother of window size four, {X̃t,4} on a sequence of {X} =

{Xt−u, . . . ,Xt , . . . ,Xt+u} where u = 1,2 . . . , k
2 and u ∈ Z, can be denoted as the fol-

lowing equation;

X̃t,4 = median(Xt−2,Xt−1,Xt ,Xt+1). (1.13)

8
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Let say, the observations in a sequence are Xt−2,Xt−1,Xt ,Xt+1. By sorting the ob-
servations in a sequence, together they become X∗(t−2),X

∗
(t−1),X

∗
(t),X

∗
(t+1). From this

sequence, the median value is an arithmetic mean of observations at (t−1) and (t),

X̃t,4 =
X∗
(t−1)+X∗

(t)
2 . In summary, the output of median smoother, X̂t,4 is obtained by

the following algorithms;

1. Sort the following sequence Xt−2,Xt−1,Xt ,Xt+1.

2. The sorted sequence is X∗(t−2),X
∗
(t−1),X

∗
(t),X

∗
(t+1).

3. From the sorted sequence, an output of median smoother, X̂t,4 =
X∗
(t−1)+X(t)

2

∗
.

Table 1.3 shows the algorithm of median smoother for window size four.

1.4.1.4 Median Smoother of Span Size Five

Median smoother of span size five, {X̃t,5} on a sequence of {X} =

{Xt−u, . . . ,Xt , . . . ,Xt+u} where u = 1,2 . . . , k
2 and and u ∈ Z is denotes as;

X̃t,5 = median(Xt−2,Xt−1,Xt ,Xt+1,Xt+2). (1.14)

The output of median smoother with a span size five is produced by the following
algorithms;

1. Sort the following sequence Xt−2,Xt−1,Xt ,Xt+1,Xt+2.

2. The sorted sequence is X(t−2),X(t−1),X(t),X(t+1),X(t+2).

3. From the sorted sequence, X̃t,5 = X(t).

Table 1.4 shows the algorithm of median smoother for window size five.

9
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10

Table 1.2: Algorithm of median smoother of window size three

Xt X1 X2 X3 · · · Xn−1 Xn
operation (sorting in window) X1 X(1),X(2),X(3) X(2),X(3),X(4) · · · X(n−2),X(n−1),X(n) Xn

output X̃1 = X1 X̃2 = X(2) X̃3 = X(3) · · · X̃n−1 = X(n−1) X̃n

Table 1.3: Algorithm of median smoother of window size four

Xt X1 X2 X3 X4 · · · Xn−2 Xn−1 Xn
operation

X1 X2
X(1),X(2), X(2),X(3), · · · X(n−3),X(n−2), Xn−1

Xn
(sorting in window) X(3),X(4) X(4),X(5) · · · X(n−1),X(n) Xn

output X̃1 = X1 X̃2 = X2 X̃3 =
X(2)+X(3)

2 X̃4 =
X(3)+X(4)

2 . . . X̃n−2 =
X(n−2)+X(n−1)

2 X̃n−1 = X(n−1) X̃n

Table 1.4: Algorithm of median smoother of window size five

Xt X1 X2 X3 X4 · · · Xn−2 Xn−1 Xn
operation

X1 X2
X(1),X(2),X(3), X(2),X(3),X(4), · · · X(n−4),X(n−3),X(n−2), Xn−1

Xn
(sorting in window) X(4),X(5) X(5),X(6) · · · X(n−1),X(n) Xn

output X̃1 = X1 X̃2 = X2 X̃3 = X(3) X̃4 = X(4) · · · X̃n−2 = X(n−2) X̃n−1 = X(n−1) X̃n
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1.4.1.5 Generalization of Median Smoother for k Span Size

Median smoother of odd span size, the output is obtained by arranging the obser-
vations in a running window and choosing the middle point as the output. Median
smoother of odd window size X̃t,k is as follows;

X̃t,k = median(X
t− k−1

2
, . . . ,Xt , . . . ,Xt+ k−1

2
) (1.15)

where k = 2u+1 and u = 1,2, . . . , k+1
2 where u∈Z. This equation is only applicable

to median smoother of odd window size where k ≥ 3.

For even window size, the output of median smoother is obtained by averaging two
middle points of data, arranged in ascending order, X∗(t) and X∗(t+1). The output of

median smoother, X̃t,k with k = 2u can be expressed as follows;

X̃t,k = median
(

X
t− k−2

2
, . . . ,Xt , . . . ,Xt+ k

2

)
(1.16)

where the middle point is computed by
X∗
(t−1)+X∗

(t)
2 and {X∗} represents the

observations that have been ordered in a window.

In general, the median smoother is obtained by the following steps;

1. Select the window size.

2. Arrange the observations in a window in ascending order.

3. Choose the middle point as the output of median smoother. For odd window
size, the middle point is a single true value in the sequence. For even win-
dow size, the middle point is shared by two consecutive arranged points and
computed using arithmetic mean.

Median smoother of window size not more that five is preferable. Median smoother
of even window size take into consideration the neighboring values and hence edges
are not totally destroyed.

Commonly, median smoother of even span two and four is combined to get a cen-
tered median (Section 3.2). Therefore, the notation used to describe the algorithm of
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median smoother of window size four followed by median smoother of window size
two is 42. It is very rare to use median smoother of window size greater than seven.
Hence, notation 42 does not mean that the length of window is 42.

1.4.2 Repeated Median Smoother

Repeated median smoother refers to applying a smoother of equal span size on the
same data repeatedly. It is denoted as R. For example, 3R can be defined as smooth-
ing a data series by running median with window of size three, then is re-smoothed
using running median of span size three again over the data that has been smoothed
before. For example, let the output {Yt} produced by running median of span size
three on {Xt}= {Xt−u, . . . ,Xt+u} to be expressed as follows;

Yt = median(Xt−1,Xt ,Xt+1). (1.17)

The 3R smoother, {Vt} is obtained by smoothing {Yt}= {Yt−u, . . . ,Yt , . . . ,Yt+1} us-
ing;

Vt = median(Yt−1,Yt ,Yt+1). (1.18)

If the smoothed values become root after smoothing on the first pass, repeated run-
ning median is not necessary.

1.4.3 Splitting

Splitting in compound smoother is denoted as ’S’. Splitting works when a data se-
quence is divided into separate pieces in the middle of width-2 peak or trough. Each
end is smoothed separately with the end-value rule and then the parts are glued to-
gether, Jankowitz (2007). Mathematically, splitting is generated in the following
steps. Let {Yt} be the output of the following sequence {Xt} = {Xt−u, . . . ,Xt+u}
with;

Yt−1 = median(Xt−2,Xt−1,3Xt−2−2Xt−3)

Yt = median(3Xt+1−2Xt+2,Xt ,Xt+1). (1.19)

Hence, the output of splitting, {Wt} on a sequence of {Yt} is as follows;

Wt = median(Yt−1,Yt ,Yt+1). (1.20)

12
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Splitting is useful when dealing with bumps conveniently in a data series. The pro-
cess of splitting is done after applying 3R smoother.

1.4.4 End Points

If both end points are not taken into account in the algorithm, the computation of
one point of smooth value will took a long span size. For example, a smoothed value
using compound smoother 4253HT required 25 observations in a window, Conradie
et al. (2009). A running median of size 42 can cause the lost of two observations at
both ends points. If the missing points are ignored, the next process of smoothing
can result in the lost of other values in a data series.

Apart from minimising the probability of losing values at both ends, substituting
end points will also reduce the complexity of the algorithm. There are several
approaches to dealing with the end points. Nevertheless, there are no specific
guideline on how to determine the best approach to this.

Let Y be denoted as the output of a median smoother on a sequence of {Xt} =
{Xt−u, . . . ,Xt , . . . ,Xt+u}. The computations of end points according to Jankowitz
(2007) are;

1. Rule of replicating end values

The most common practice is to add extra point at both ends of data. One
instance to do this, is to generate the value before X1 as X0 and value after Xn
as Xn+1.

2. Copy on end value rule

The lost smoothed values at both ends are appended with actual observations.
Let Yt is the smoothed value in a sequence. The Y1 can be replaced by X1 and
Yn by Xn.

3. Step-down end value rule

This can be done via window of smaller size. For example, missing end
points in a median smoother of span size three are computed by using median
smoother with a span size two.
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4. Omit end value rule

Remove the end values and only make use the available smoothed values.

5. Extrapolation end value rule

Tukey (1977) introduces a rule that extrapolates the end values. The technique
applies recent smoothed values obtained from a linear extrapolation to con-
struct another observation beyond the end of a sequence. The second and third
end values which cannot be smoothed are copied using the actual observations
in a sequence. A 0− th observation, Ŷ0 is estimated by linearly extrapolating
the second and third smoothed. Let Y2 and Y3 be the smoothed values and for
equally spaced data with t-spacing 4t. The slope at beginning of end values
is

Y3−Y2
4t

. (1.21)

The Ŷ0, is extrapolate by computing the difference between the second
smoothed values and two equally space of slope. It can be estimated as fol-
lows;

Ŷ0 =Y2−24t
(Y3−Y2)

4t
=3Y2−2Y3. (1.22)

Likewise for the last value of a sequence of n observations, Ŷn+1 is estimated
as;

Ŷn+1 = 3Yn−1−2Yn−2. (1.23)

The beginning point of end value is computed by using the median of obser-
vations extrapolated values with second and third smoothed values. Thus, the
Y1 can be estimated as;

Y1 = median(Ŷ0,Y1,Y2) (1.24)

and the last smoothed value is

Yn = median(Ŷn+1,Yn,Yn−1). (1.25)
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1.4.5 Hanning

Hanning is another name for running weighted average. Hanning plays an important
role in making the data cleaner and smooth. However, Hanning is not resistant
to outliers. Henceforth, this means Hanning is much affected by the existence of
occasionally significant spikes. This agrees with Velleman and Hoaglin (1981)
indication that Hanning is only to be applied after the removal of outliers by running
median.

The sum of weight assigned to each sequence must be equal to one. There are many
versions of determine the weightage, for example, actuaries used Spencer’s 15-Point
Moving Average to smooth trading volume, Kenney and Keeping (1962). The sym-
metric weight coefficients are 3

320 ,
6

320 ,
5

320 ,
3

320 ,
21

320 ,
46
320 ,

67
320 ,

74
320 . Let ht represents

the output of Hanning on a sequence of {X}= {Xt−u, . . . ,Xt , . . . ,Xt+u}. The output
of Hanning can be expressed as follows;

ht =
3

320
Xt−7 +

6
320

Xt−6 +
5

320
Xt−5 +

3
320

Xt−4 +
21

320
Xt−3 + (1.26)

46
320

Xt−2 +
67
320

Xt−1 +
74

320
Xt +

67
320

Xt+1 +
46

320
Xt+2 +

21
320

Xt+3 +
3

320
Xt+4 +

5
320

Xt+5 +
6

320
Xt+6 +

3
320

Xt+7.

Pekárová et al. (2003) applied Henderson’s 5-point Moving Average with
1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16 for smoothing the discharge time of selected rivers and denoted the

output of Hanning as follows;

ht =
1

16
Xt−2 +

1
4

Xt−1 +
3
8

Xt +
1
4

Xt+1 +
1
16

Xt+2. (1.27)

Tukey (1977) used a symmetric coefficients of form 1
4 ,

1
2 ,

1
4 of running weighted

average as a smoother which according to Mills (1991) produces a nice curvature
after the stabilization of outliers via running median smoother.

The Hanning is computed according to the following expression;

ht =
1
4

Xt−1 +
1
2

Xt +
1
4

Xt+1. (1.28)

Hanning provides a smooth and gentle curve after outliers being eliminated from a
data series.
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1.4.6 Re-smooth the Rough (Twice)

Smoothing repeatedly causes a data series to be overly smoothed that some impor-
tant feature might be left out during the process. For example, median smoother
occasionally eliminates Gaussian noise and Hanning tends to pull tops down and
bottoms up. Re-smoothing the rough helps to recover the important features that has
been eliminated while being smoothing repeatedly.

Tukey (1977) introduces an effective method to recover the over smoothed values by
applying the smoothing algorithm to the rough. This process is called re-roughing
and later will be appended with the smoothed values. If the algorithm used for
re-roughing the rough is similar to the algorithm used for smoothing a data series, it
is then shall be written as ”twice” and denoted as T.

For example, let {et} be denoted as rough, obtained by subtracting the actual val-
ues, {Xt} and smoothed values computed from median smoother of span size three,
{X̃t,3}. The rough is re-smoothed by using median smoother of span size three and
written as ẽt,3 = median(et−1,et ,et+1). The re-smoothed rough is then added back
to the smoothed values and expressed as the followings;

Xt = X̃t,3 + ẽt,3. (1.29)

Equation (1.29) is denoted as 3T. The number ”3” represents median smoother of
window size three and ”T” is an expression of re-smoothed the rough operation.

1.4.7 Notation in Compound Smoother

The following notations describe the common process in the compound smoother;

• Numeric term (eg. 2,3,4,5) represents the span size of a median smoother.

• R denotes the running median of same span size performed repeatedly.

• H is a short notation for Hanning or weighted running average.

• S refers to splitting.

• T indicates ”Twice” as in the case of re-smoothing the rough and adding it
back to the smoothed values in a sequence.

Compound smoother works by combining different types of algorithms. Tukey
(1977) come up with various types of compound smoothers such as 3R, 53H, 53HT,
3RSSH and 3RSSHT. Velleman (1980) then extended the Tukey’s ideas of running
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median for even span size in the compound smoother namely, 4253H and 4253HT.
The 3R denotes the repeated median smoother of span size three while 53H repre-
sents the algorithm of running median of span size five, followed by running median
of span size three and Hanning. The numbers in a compound smoother are basically
related to span size of the running median. The letters in a compound smoother in
contrast, represent the specific operation in the smoothing.

1.5 Exploratory Data Analysis (EDA)

In statistical analysis, the estimation of the smoothed values is the most crucial part.
There are three main approaches to estimation including classical, Bayesian and
Exploratory Data Analysis (EDA).

Classical analysis puts emphasis on parameter estimation subjected to known
distribution. The interpretation is objective and procedure of estimation is well
established. Bayesian methods are designed for rational incorporation of prior
information into the process of statistical analysis, Gelman et al. (2014).

Behrens (1997) mention that EDA, plays a major role in pattern identification in
a data. In EDA, attempts are made to identify the major features of a data set
of interest and to generate ideas for further investigation, Cox (2017). Graphical
analysis in EDA is to explore patterns prior to conducting further analysis in formal
statistical approach. EDA leads the researcher to determine the right path for
statistical modeling and analysis.

Since EDA is designed to illuminate underlying pattern in noisy data so that
underlying data structure not be obscured or completely hidden in the process,
Ellison (1993). The results revealed by EDA, provides several options of appropriate
statistical models that suit to the pattern being distinguished.

Even though classical approach is well established in theory and implementation, in
most real cases some required assumptions that failed to be full filled. One kind of
robustness particularly valuable in a data is resistance to observations drawn from
distributions which are longer tailed than the Gaussian and particularly to outliers,
isolated value which fall apart from the main body of data, Wainer (1976). EDA is
appropriate when there is a large amount of variability in a data.

Nonetheless, Gelman (2004) asserts that there is no specific statistical rules or as-
sumptions for the distribution in EDA. In conventional approach, the distribution of
a data needs to be first identified before the analysis of parametric can be conducted.
However, for some end users of statistical tools, the assumptions for underlying data
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are ignored, leading to results that are less reliable. Since the focus of this study is
compound smoother, EDA is hence, the appropriate approached.

1.6 Smoother as a Forecasting Tools

Forecasting is one of the important tools that help in decision making. The fore-
casting technique should be able to deal with seasonality, high volatility and sudden
changes in a data series. The existing of data with high variation and complexity has
driven forecasters to develop many forecasting techniques.

In statistics, forecasting is based on how the past data behave over the time period
on the average. The future values are expected to continue to occur based on what
had happened before. It is usually difficult to make a prediction from raw data since
the trend is not so obvious and mixed up with the unexpected event and distorted
by random error. Hence, raw data need to be massage first before applying any
forecasting technique and it is a norm in time series analysis.

Smoothing is one of statistical technique that can be employed to reduce the effect
of non-well behaved noise for forecasting purpose. Many researchers applied the
smoother to raw data before determining the forecast model so that the uncertainty
can be minimized. The smoothed data should be reasonable to represent the original
data, Montgomery et al. (2015). Hence, choosing the appropriate type of smoother
plays an important role so that the general features of the data is mantained and do
not eliminate well-behaved noise excessively.

The most popular technique is a family of exponential smoothing. Exponential
smoothing method is known as a non-parametric approach since no assumptions
pertaining the distribution was required. It also accomodate with forecasting
technique once the equation model was determined. This method is widely
applicable in various field and still relevant at the present period(Rendon-Sanchez
and de Menezes (2019), Elias and Nashat (2019), Hartomo et al. (2019), Tran et al.
(2019), Suppalakpanya et al. (2019) and many more).

Compound smoother is also popular option that widely employed in revealing poten-
tial pattern exists in the data series for forecasting purpose. Hourcade and Nadaud
(2010) performed energy forecast by smoothing the data first using linear regres-
sion and compound smoother 4253HT. The Tukey smoother able to detect the two-
period major movement in the data series and allowing a quick assesment to degree
of linearity of the data. Sargent and Bedford (2010) also employed the compound
smoother for forecasting one-step ahead Australian Football League (AFL) player
performance. The result found that exponentially smoothing a Tukey-smoothed se-
ries has delivered a significantly smaller average forecast error than using an un-
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smoothed series. Therefore, it is vital to extend the purpose of smoothing to fore-
casting the data that heavily disturbed by noise.

1.7 Problem Statement

Linear smoother is optimal to eliminate Gaussian noise and track trends that are
common in practice, Bernholt et al. (2006). However, noise of high volatility tends
to mask the general picture of a data series. The existence of non well-behaved noise
violated the assumptions of linear model. Usually, least square estimation which
is well known for its poor performance in the presence of outliers or long-tailed
distribution data is used.

According to Venetsanopoulos and Pitas (1990), linear smoothers also have a high
tendency to blur important features and lack of the ability to remove impulsive
noise. Not only that, linear smoothers are highly vulnerable to outliers and could
not deal well with nonlinearity in a data series. Blurry edge which leads to the lost
of important information is actually due to the sudden changes in a series, Bernholt
et al. (2006).

Due to its ability to remove non-Gaussian noise from a data series, median smoother
is usually the favored smoothing tools. Unfortunately, median smoother tends to
over smoothed a data series since it eliminates Gaussian noise too.

One of established types of median smoothers which have been widely employed
in various area settings is compound smoother. Compound smoother is known as a
powerful tool to smooth a data series without excessively disrupting the details of a
data series.

Despite this good traits, the compound smoother does not respond well to oscillated
trend, Tóthmérész and Erdei (1995) and Jin and Xu (2013). The number observa-
tions of compound smoother should be at least seven, otherwise it will converge to
constant root, Janosky et al. (1997). The Velleman’s compound smoother as indi-
cated by Sargent and Bedford (2010) has been revised when possible combinations
of multiple step of running median, Hanning and re-smooth the rough are tested
out. Improvement on the existing compound smoother in comparison has yet to be
explored.
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1.8 Research Objectives

Since there is an opportunity for improvement in compound smoother, some modi-
fications to running median of span size 42 is suggested in this study. The existing
study only focuses on noise with long tailed distribution. The pattern with small
portion of contaminated can easily be observed with naked eyes. Unfortunately, for
data with high fluctuation, the signal might mix up with heavy noise, making it hard
to capture any possible trends. In this research, the performance of smoothers in
highly volatile data is compared and evaluated. This research provides some values
added to the existing study and also motivates future research to expand the idea this
study addresses for a better solution. Guided by the earlier discussion, the purposes
of study are summarized as follows;

1. To modify existing compound smoothers

2. To determine the stability of modified compound smoothers towards block
pulse.

3. To evaluate the performance of modified compound smoother via simulation
procedure with higher percentage of contaminated normal noise for sinusoidal,
Doppler, Bumps, Blocks and Heavy Sine function.

4. To formulate a strategy of forecasting by extracting deterministic components
in data series.

5. To apply the proposed modified smoother to financial, environment and agri-
culture data.

1.9 Thesis Outline

There are seven main chapters in this thesis. Chapter 2 presents the evolution
of smoothing techniques involving median and compound smoothers. Some of
the deterministic properties of smoothers are also explored. The advantages and
shortcomings of existing method are discussed while assessing the opportunity for
improvement.

In Chapter 3, the components and process of compound smoothers including median
smoother, Hanning, splitting and twice are described in details. In doing so, the
stability of compound smoother towards block pulse are presented. The simulation
procedure to generate the signal of sinusoidal, Doppler, Bumps, Blocks and Heavy
Sine with noise is presented and explained in the same chapter. Chapter 3 also lists
out the measures on how the smoothers successfully recover signal from noise with
outliers and high volatility.
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Chapter 4 focuses on the modification of existing compound smoother namely
4253HT. Some adjustments in computing the middle point of output median
smoother are highlighted. Different types of means are appended such as geometric,
quadratic, harmonic and contra harmonic means. In this chapter, comparison
between the stability of modified compound smoother are presented in the way they
each deal with impulse, block pulse and edge. The results of simulation, guided by
procedure elaborated in Chapter 3 are then compared and discussed.

Chapter 5 extends the modification by adaptively assigning the different types of
adjustments to 4253HT according to changes in the data series. The stability of
4253HT, modified through adaptive mean are discussed in term of how it behaves
on positive and negative block pulse size two, three and four. The performance
was compared with the best modification in Chapter 4 via simulation procedure as
explained in Chapter 3.

In Chapter 6, a strategy for forecasting is introduced by using deterministic trend and
noise obtained from smoothing process. Three established methods of forecasting;
Holts-Winters, Seasonal ARIMA and ARAR algorithms are applied by taking into
consideration their ability to forecast times series with the existence of trend and
seasonality. A data series that is equipped with linear trend, regular fluctuations and
noise of high volatility are generated. Some comparisons are done to prove that
forecasting using smoothed values is better than forecasting using original data.

Some applications of modified compound smoother are also discussed in Chapter 7.
In this research, data refer to the daily price index of a bank in Malaysia that issues
sukuk, the amount of daily rainfall at Universiti Malaya, Kuala Lumpur station
for the year 2006, daily average of temperature recorded at Petaling Jaya station
from 1/1/2009 to 31/12/2011 and total production of crude palm oil in Malaysia
from 1990 to 2010. The output of original and modified compound smoothers are
compared.

The last chapter concludes the findings of the research, highlights the contributions
and discusses future opportunity for research in other areas.
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