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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

CONVERGENCE PROBLEMS OF THE EIGENFUNCTION EXPANSIONS
FOR POLYHARMONIC OPERATORS

By

SITI NOR AINI BINTI MOHD ASLAM

November 2018

Chairman: Assoc. Prof. Gafurjan Ibragimov, PhD
Institute: Institute for Mathematical Research

This research focuses on convergence and summability problems of the eigenfunc-
tions expansions of differential operators related to polyharmonic operator in closed
domain. The polyharmonic operator (−∆)m,m ∈ Z+ is the elliptic operator of order
2m with domain consists of classes of infinitely differentiable functions with compact
support, which is a symmetric and nonnegative linear operator and has a self-adjoint
extension. For domains with smooth boundary, the solution to these differential
operator problems involves eigenfunction expansions associated with polyharmonic
operator with Navier boundary conditions. Suitable estimations for spectral function
of the polyharmonic operator by using the mean value formula for the eigenfunctions
of the polyharmonic operator is established. These estimations enable us to show the
uniformly convergence of the Riesz means of the spectral expansions related to poly-
harmonic operator in closed domain. The classes of differentiable functions used are
Sobolev and Nikolskii classes. Subsequently, the results are applied to study the
sufficient conditions for localization properties of the spectral expansions related to
distributions. The conditions and principles for the localization of the Riesz means
spectral expansions of distributions associated with the polyharmonic operator in
closed domain are considered.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

MASALAH-MASALAH PENUMPUAN BAGI PENGEMBANGAN FUNGSI
EIGEN UNTUK PENGOPERASI POLIHARMONIK

Oleh

SITI NOR AINI BINTI MOHD ASLAM

November 2018

Pengerusi: Prof. Madya Gafurjan Ibragimov, PhD
Institut: Institut Penyelidikan Matematik

Kajian ini bertumpu kepada mengkaji masalah penumpuan dan penjumlahan oleh
pengembangan fungsi eigen bagi pengoperasi boleh beza terkait dengan pengoperasi
poliharmonik di dalam domain tertutup. Pengoperasi poliharmonik (−∆)m,m ∈ Z+
ialah pengoperasi elips berperingkat 2m dengan domain yang mengandungi kelas
fungsi boleh beza tak terhingga dengan sokongan padat, yang simetri dan pengop-
erasi linear bukan negatif dan juga mempunyai sambungan adjoin tersendiri. Un-
tuk domain dengan sempadan yang lancar, penyelesaian kepada masalah pengop-
erasi boleh beza ini adalah melibatkan pengembangan fungsi eigen berkaitan den-
gan pengoperasi poliharmonik dengan syarat-syarat sempadan Navier. Anggaran
yang sesuai untuk fungsi spektrum bagi pengoperasi poliharmonik dengan menggu-
nakan formula nilai purata fungsi eigen bagi pengoperasi poliharmonik diterbitkan.
Anggaran ini membolehkan kita menunjukkan bahawa penumpuan seragam oleh
pengembangan spektrum purata Riesz adalah terkait dengan pengoperasi polihar-
monik di dalam domain tertutup. Kelas-kelas fungsi boleh beza yang digunakan
adalah kelas-kelas Sobolev dan Nikolskii. Kemudiannya, keputusan yang didap-
ati digunakan untuk mengkaji syarat-syarat cukup untuk ciri-ciri penyempatan bagi
pengembangan spektrum yang berkaitan dengan pengagihan. Syarat-syarat dan prin-
sip penyempatan oleh pengembangan spektrum purata Riesz bagi pengagihan terkait
dengan pengoperasi poliharmonik di dalam domain tertutup juga dipertimbangkan.
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CHAPTER 1

INTRODUCTION

In the present thesis we deal with summability and localization problems connected
to eigenfunction expansions of the polyharmonic operator on the closed domain.
There are various vibrating systems in physics, which can be described by the
polyharmonic equations. The problems, which appear in the study of such vibrating
systems, are the reasons to develop the theory of eigenfunction expansions of the
polyharmonic operators. The mathematical description of the physical processes
taking place in real space is based on the spectral theory of differential operators.
The most difficult engineering problems concerning heat and mass transfer pro-
cesses can be modelled by partial differential equations (PDEs), particularly by
polyharmonic equations.

The natural generalization of the well-known Laplace operator ∆ is polyharmonic
operator (−∆)m,m ∈ Z+ which is symmetric, nonnegative linear operator in the
classes of infinite times differentiable functions with compact support. The spectral
expansions coincides with the partial sums of the eigenfunction expansions of the
polyharmonic operator. In the case of bounded domains in N-dimensional Euclidean
space, the problems on the convergence and localization of the eigenfunction
expansions of the polyharmonic operator become very complicated. This research
is devoted to investigate the problems of uniform convergence of eigenfunction
expansions of the functions from classes of Nikolskii and Sobolev in closed domain.
In order to establish summability of eigenfunction expansions of the polyharmonic
operator in closed domain, the suitable estimations for spectral function of the poly-
harmonic operator near the boundary of the domain are obtained. As an application
to the modern theory of mathematical physics the localization problems of the
spectral expansions related to the distributions on closed domain are researched.

This chapter will provide some fundamental background regarding the ideas and
concepts from spectral theory of differential operators connected with convergence
problems of eigenfunction expansions. For further details to be made, we present
the research objectives, motivation and a brief outline of the thesis to complete this
chapter.

1.1 Motivation

Linear elliptic equations become apparent in several models describing various phe-
nomena in the applied sciences. Problems involving biharmonic and polyharmonic
operator occurs in numerous applications in physics and engineering such as in
gas dynamics, hydrodynamics, elasticity theory and in other area of mechanics.
The study of some of these problems leads to the boundary value problems for



© C
OPYRIG

HT U
PM

polyharmonic operators with the Navier boundary conditions corresponding to
biharmonic and polyharmonic equation. These partial differential equations are
complemented with the Navier boundary conditons correspond to the hinged plate
model such as for thin elastic plates and stationary surface diffusion flow.

The solution to these differential operator problems involves eigenfunction expan-
sions associated with polyharmonic operator with Navier boundary conditions in
order to describe physically relevant situations. Our first motivation arises from
the case when eigenfunction expansions are not convergence. Then the problem
of summability will occur. Secondly, the boundary or initial conditions of the
differential operators can be expressed by nonsmooth function. This lead to the
study of eigenfunction expansions in the spaces of distributions.

The theory for elliptic equations of order greater than two is much less well devel-
oped. However, the developments of past several years promise to lay a foundation
for the general theory of spectral expansions related to differential operators. Lately,
many applications and increasing interest to discover new tools suitable for poly-
harmonic operators contributing to the development of polyharmonic equations in
modern mathematical physics and engineering.

1.2 Eigenvalues and Eigenfunctions for Polyharmonic Operator

We begin with introducing the mean value formula for eigenfunction of Laplace
operator.

Let G be an N- dimensional space and {un(x)} be an arbitrary eigenfunction of
Laplace operator in N- dimensional domain Ω ⊂G corresponding to the eigenvalue,
λn > 0, with x ∈Ω and radius r > 0. Then the following formula holds:∫

ω

un(x+ rω) dω = (2π)N/2 un(x) (r
√

λn)
(2−N)/2 J(N−2)/2(r

√
λn).

The eigenfunction {un(x)} is the solution of the equation

∆un +λun = 0, x ∈ G.

For N = 2, the mean value formula for the eigenfunctions {un(x,y)} of the Laplace
operator

2π∫
0

un(x+ r cosθ ,y+ r sinθ) dθ = 2π J0(r
√

λn) un(x,y)

Moiseev (1977) considered the equation of Laplace operator and established theo-

2
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rem for eigenfunction of Laplace operator up to the boundary. He proved that the
estimations for the solution in closed domain can be obtained by the following theo-
rem.

Theorem 1.2.1 (Moiseev (1977)) Let u(x,y) ∈C(Ω)∩W 2
` (Ω) be a solution of the

equation:
∆u(x,y)+µ

2u(x,y) = f (x,y), f ∈ L2(Ω)

where u|∂Ω = 0,µ = µ0 + ia,µ0 > 0,a 6= 0. Then for all f ∈ L2(Ω) one has:

||u(x,y)||C(Ω) ≤ C

√
ln2

µ0
µ0

|| f ||L2(Ω).

Note that, let Ω ⊂ RN be a domain with smooth boundary ∂Ω . We define the
space C(Ω) as a set of all continuous functions in bounded domain Ω and the space
L2(Ω) is defined as a set of all square integrable functions in Ω .

The basic object of our study will be the N-dimensional Euclidean space, RN , con-
sisting of N-tuples of real numbers, namely,

R
N = {(x1,x2, ...,xN) : x1,x2, ...,xN ∈ R},

where N is a positive integer, i.e N ∈N. Elements of RN are referred to as vectors in
N-space for N > 1, while the elements of R are referred to as scalars. Given a vector
x = (x1,x2, ...,xN) in RN and 1≤ i≤N, the scalar xi is called the i-th coordinate of x.

The algebraic operations on RN can be done easily in a componentwise form. Thus,
the sum of (x1,x2, ...,xN) and (y1,y2, ...,yN) is given by (x1+y1,x2+y2, ...,xN +yN)
and α(x1,x2, ...,xN) = (αx1,αx2, ...,αxN).

We define the scalar product of x = (x1,x2, ...,xN) and y = (y1,y2, ...,yN) denoted as
x ·y by

x ·y = x1y1 + x2y2 + ...+ xNyN .

.

The distance between the elements x = (x1,x2, ...,xN) and y = (y1,y2, ...,yN) in RN

is defined by

|x−y|=

√√√√ N

∑
i=1

(xi− yi)2.

3
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We denote the N-dimensional integral of a function over the domain Ω by∫
Ω

f (x) dx =
∫

...
∫

Ω

f (x1,x2, ...,xN) dx1dx2...dxN ,

where x represents the N - tuple (x1,x2, ...,xN) and dx is the differential of
N-dimensional volume.

The representation of integral transformation: Let r = |x−y| and ω = x−y
|x−y| =

x−y
r

then dω is the element of solid angle at x one has∫
|x−y|≤R

f (y) dy =
∫

r≤R

f (y) dy

=

R∫
0

(
rN−1

∫
ω

f (x+ rω) dω

)
dr.

(1.1)

Here, we also consider Lp spaces of functions whose p-th powers are integrable. For
1≤ p<∞, the Lp(R

N) spaces are the usual complex spaces of p-integrable functions
in the N-dimensional real Euclidean space RN which is defined by

Lp(R
N) =

{
f
∣∣∣|| f ||Lp =

( ∫
RN

| f (x)|p dx
)1/p

< ∞

}
.

The following theorems and definition are fundamental inequalities involved in prov-
ing triangle inequality which can be found in Reed and Simon (1978).

Theorem 1.2.2 (Minkowski’s inequality) If f ,g ∈ Lp(R
N) where 1 ≤ p < ∞, then

f +g ∈ Lp(R
N) and

|| f +g||Lp ≤ || f ||Lp + ||g||Lp .

For the second inequality, we first define the Holder conjugate.

Definition 1.2.1 Let 1≤ p < ∞. The Holder conjugate, p′ of p is defined by

1
p
+

1
p′

= 1 i f 1 < p < ∞.

Remark that, for 1≤ p < ∞ the Holder conjugate of p′ is p.

Theorem 1.2.3 (Holder’s inequality) For 1 ≤ p < ∞. If f ∈ Lp(R
N) and g ∈

4
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Lp′(R
N), then f g ∈ Lp(R

N) and∫
| f g| dµ ≤ || f ||Lp ||g||Lp′

.

The Holder’s inequality is valid for any p. But for the case when p = p′ = 2, this
inequality becomes the Cauchy-Schwartz inequality.

The L2 space is a special case of Lp space which is also known as the Lebesgue
space. It is a Hilbert space with its norm given in terms of its inner product. The L2
space denotes the set of square integrable functions. It is a function space where
the set of functions whose squares are summable which is not only a normed linear
space but also an Euclidean space.

We define an inner product on L2 by

< f ,g >=
∫

f (x) g(x) dµ(x).

This space is important in the study of complete orthonormal system of eigenfunc-
tons, orthogonality of eigenfunctions and self-adjoint operator.

In the study of mathematical physics, a classical example of the problem of eigen-
functions for an elliptic operator is the problem of the eigenfunctions for the bihar-
monic operator. We consider the following problem{

∆ 2u+λu = 0 in Ω ,
u|∂Ω = ∆u|∂Ω = 0.

(1.2)

For this problem, the other types of the boundary conditions also can be considered
to replace boundary condition with u|∂Ω = ∂u

∂ν
|∂Ω = 0, where ∂

∂ν
denotes derivative

by normal vector ν .

The biharmonic operator in (1.2) has a complete orthonormal system of eigenfunc-
tions {uk(x,y)} in L2(Ω) that corresponds to the sequence of eigenvalues {λk} . The
Fourier series in eigenfunction of polyharmonic operator is represented as follows

∞

∑
h=1

fkuk(x), (1.3)

where we denote fk =
∫
Ω

f (x) uk(x)dx as Fourier coefficients of f (x) in the system

{uk(x)}.

5
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The partial sums Eλ f (x) = ∑
λk<λ

fkuk(x) of (1.3), can also be considered using the

Riesz means of order α ≥ 0

(Eα

λ
f )(x) = ∑

λk<λ

fk uk(x)
(

1− λk
λ

)α

.

The Fourier series (1.3) is said to be summable at x by Riesz means of order α to
f (x) such that

lim
λ→∞

∑
λk<λ

fk uk(x)
(

1− λk
λ

)α

= f (x).

For α = 0, the summability of Riesz means of order α is simply an ordinary
convergence.

Denote C∞(Ω) as a space of all smooth (infinitely differentiable) functions on
domain Ω . Let C∞

0 (Ω) be the space of infinitely differentiable functions in Ω with
compact support in Ω . We say that a function is finite in Ω if it has compact support
Ω0. In general, a function which is finite in Ω and is defined in the space RN is
equal to zero outside a bounded set contained in Ω and a positive distance from the
boundary ∂Ω of Ω .

We denote by A an operator in the Hilbert space L2(Ω) with the domain of definiton
D(A) =C∞

0 (Ω) satisfying the following properties

Au = (−∆)m u(x), u ∈C∞
0 (Ω).

This differential operator is self-adjoint if (Au,v) = (u,Av) for any u,v ∈ C∞
0 (Ω)

(symmetric). Then, the operator A is semibounded if there exists a constant µ such
that (Au,u)≥ µ(u,u) for all u ∈C∞

0 (Ω). From Friedrichs’s theorem, every symmet-
ric semibounded operator A has at least one self-adjoint extension Â with the same
lower bound µ . There exists an operator Â with the following properties

1. Â is self-adjoint:

2. (Âu,u)≥ µ(u,u),u ∈ D(Â);

3. D(A)⊂ D(Â).

4. Âu = Au,u ∈ D(A).

(Von Neumann’s spectral theorem) Similar to every self-adjoint operator, the opera-
tor Â has a partition {Eλ} of unity which is represented in the form of

Â =

∞∫
µ

λdEλ .

6
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The projections Eλ increase monotonically, are continous on the left and tend
strongly to the unit operator

lim
λ→∞

||Eλ u−u||L2(Ω) = 0, u ∈ L2(Ω).

We consider the polyharmonic operator (−∆)m for m ∈ Z+ with domain DB = {u ∈
C∞(Ω) : u|∂Ω = ∆u|∂Ω = ...= ∆ m−1un|∂Ω = 0}, where ∆ denotes the well-known
Laplace operator:

∆ =
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+ ...+

∂ 2

∂x2
N
.

The iterations of Laplace operator can be represented as follows

∆
mu = ∑

`1+`2+...+`N=m

m!
`1!`2!...`N!

∂ 2mu

∂x
2`1
1 ∂x

2`2
2 ...∂x

2`N
N

,

which can be established by using mathematical induction and the following relation
between powers of Laplace operator

∆
k+1 = ∆(∆ k) = ∆

(
∑

`1+`2+...+`N=k

∂ 2k

∂x
2`1
1 ∂x

2`2
2 ...∂x

2`N
N

)
,

= ∑
`1+`2+...+`N=k

(
∂ 2k+2

∂x
2`1+2
1 ∂x

2`2
2 ...∂x

2`N
N

+
∂ 2k+2

∂x
2`1
1 ∂x

2`2+2
2 ...∂x

2`N
N

+

+ ...+
∂ 2k+2

∂x
2`1
1 ∂x

2`2
2 ...∂x

2`N+2
N

)
,

= ∑
`′1+`′2+...+`′N=k+1

∂ 2(k+1)

∂x
2`′1
1 ∂x

2`′2
2 ...∂x

2`′N
N

.

In an abstract way, the polyharmonic operator (−∆)m may also be seen through the
polynomial Lm : RN → R defined by

Lm(ξ ) = ∑
`1+...+`N=m

m!
`1!...`N!

( n

∏
i=1

ξ
2`i
i

)
= |ξ |2m, ξ ∈ RN .

Note that, (−∆)m = Lm(∇). In particular, this shows that Lm(ξ ) > 0 for all ξ 6= 0
so that (−∆)m is an elliptic operator [Agmon et al. (1959)].

The equation for eigenfunctions and eigenvalues for the polyharmonic operator has
a form

(−∆)mu(x)−λ u(x) = 0, x ∈Ω ,

7
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with Navier boundary condition

u|∂Ω = ∆u|∂Ω = ...= ∆
m−1u|∂Ω = 0.

We denote by Θ(x,y,λ ) the kernel of the integral operator Eλ and referred as the
spectral function of Â and the expression

(Eλ f )(x) =
∫
Ω

Θ(x,y,λ ) f (y)dy, f ∈ L2(Ω), (1.4)

is called as spectral decomposition of the element f corresponding to the self-adjoint
operator Â. The properties of the spectral function established in Gårding’s theorem
enable us to define the spectral decomposition of any function in L1(Ω) that is finite
in Ω .

The Riesz means Eα

λ
f of a spectral decomposition of order α ≥ 0 has the following

integral form

Eα

λ
f =

λ∫
µ

(
1− t

λ

)α

dEt f . (1.5)

It is easy to see that Eα

λ
is an integral operator

Eα

λ
f (x) =

∫
Ω

Θ
α(x,y,λ ) f (y)dy, (1.6)

with the kernel Θ α(x,y,λ ) which are also the Riesz means of order α of the spectral
function

Θ
α(x,y,λ ) =

λ∫
µ

(
1− t

λ

)α

dtΘ(x,y, t). (1.7)

The operator Â is an extension of (−∆)m, that is C∞
0 (Ω) ⊂ D(Â) and

(−∆)m f (x) = Â f (x) for any function f ∈C∞
0 (Ω).

Let f (x) ∈C∞
0 (Ω). Then

((−∆)m f ,vn) =
∫
Ω

[(−∆)m f (x)] vn(x) dx,

and since (−∆)m is formally self-adjoint

((−∆)m f ,vn) =
∫
Ω

f (x) (−∆)m vn(x) dx =
∫
Ω

f (x) λn vn(x) dx = λn fn.

8
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Since (−∆)m f (x) ∈ L2(Ω), by Bessel’s inequality [Gradshtein and Ryzik (1943)]
we have f ∈ D(Â) and since the functions (−∆)m f (x) and Â f have the same
Fourier coefficients λn fn and the system {vn(x)} is complete, the required equality
(−∆)m f = Â f , understood as an equality of ele ments of L2(Ω) is hold.

Shishmarev (1969) studied the mean value formula of polyharmonic operator. He
proposed the following:

Let u(x) be a solution of the polyharmonic equation

∆
m u(x)− (−1)m

µ
2m u(x) = f (x), f ∈ L2(Ω), u ∈C(Ω)∩W 2m

2 (Ω),

in a bounded domain Ω ⊂ RN with sufficiently smooth boundary ∂Ω , subject to the
homogeneous boundary conditions

un

∣∣∣
∂Ω

= ∆un

∣∣∣
∂Ω

= ...= ∆
m−1un

∣∣∣
∂Ω

= 0,

where µ = µ0 + ia,µ0→ ∞,a 6= 0.

For eigenfunctions {uk(x)}of the polyharmonic operator, the mean value formula
was given by

∫
...
∫∫

θ

uk(x+rθ) dθ = 2
N−2

2 Γ (
N
2
)

JN−2
2

(r
√

λn)

(r 2m√
λk)

N−2
2

uk(x)+O(e−β0(r0−R) 2m√λk),

where β0 = max j≥2|ζ (
√
−α j)|,r0 < R.

Example 1.2.1 Let (−∆)m be a polyharmonic operator, which is self-adjoint elliptic
operator of order 2m in a domain Ω ⊂ RN . Let Ω be a bounded domain with a
smooth boundary ∂Ω and Ω + ∂Ω . We denote by A0 an operator in L2(Ω) whose
domain of definition consists of all the functions u(x) that are infinitely differentiable
in Ω +∂Ω and satisfy the conditions

u(x) =
∂u
∂v

(x) = ...=
∂ m′−1u

∂ m′−1v
(x) = 0, x ∈ ∂Ω , (1.8)

and which acts according to the rule A0u = (−∆)m u(x). �

Garding (1953) proved that the closure Â of A0 is a self-adjoint operator whose
spectrum consists of the eigenvalues λ1 ≤ λ2 ≤ ...λn → ∞ with the corresponding
orthonormal system of eigenfunctions {vn(x)} being complete in L2(G). Every
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eigenfunction un(x) which is infinitely differentiable in Ω ∪∂Ω satisfies the equality
A(x,D) vn(x) = λn vn(x) in Ω and the boundary condition (1.8).

The functions vn(x) are called eigenfunctions of the first boundary problem (or
Dirichlet problem) for the operator (−∆)m. The spectral function of Â is of the
form

θ(x,y,λ ) = ∑
λn<λ

vn(x) vn(y), (1.9)

and the spectral decomposition of the element f is of the form

Eλ f = ∑
λn<λ

fn vn(x), where fn = ( f ,vn). (1.10)

Example 1.2.2 Let T N = {x ∈ RN : −π < xk < π,k = 1,2, ...,N} and let (−∆)m

be an elliptic formally self-adjoint differential operator with constant coefficients.
One of the self adjoint extensions Â of this operator is specified by the condition
of periodicity, that is, Â is the closure in L2(T N) of the operator (−∆)m defined
on the functions in C∞(RN) that are periodic in each argument with the period 2π . �

It can be verified by a direct computation that the eigenfunctions of Â are
(2π)−N/2ei(n,x) corresponding to the eigenvalues |n|2m; its spectral function is

θ(x,y,λ ) = (2π)−N
∑

|n|2m<λ

ei(n,x). (1.11)

The spectral decomposition of any element f ∈ L(T N) has the form

Eλ f (x) = ∑
|n|2m<λ

fnei(n,x), (1.12)

where
fn = (2π)−N

∫
T N

f (y) ei(n,y) dy, (1.13)

and the Riesz means of order α of the spectral decomposition are

Eα

λ
f = ∑

|n|m<λ

(
1− |n|

m

λ

)α

fnei(n,x). (1.14)

The spectral decomposition (1.12) purposes a summation method for the multiple
Fourier series of a function f ∈ L(T N). In particular, the method corresponding to
the Laplace operator A(D) = ∆ is the summation over spheres and for an arbitrary
second order elliptic operator the summation is over expanding ellipsoids.
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Example 1.2.3 Let Ω = RN and (−∆)2m an elliptic polynomial with real coeffi-
cients. In this case, by using the Fourier transform one can show that there exists a
unique self adjoint extension Â0 whose spectral function is

θ0(x,y,λ ) = (2π)−N
∫

|ξ |2m<λ

ei(x−y,ξ ) dξ . (1.15)

The spectral decomposition of an arbitrary element f ∈ L2(R
N) is determined by the

formula

Eλ f (x) = (2π)−N
∫

|ξ |2m<λ

f̂ (ξ ) ei(x,ξ ) dξ , (1.16)

where
f̂ (ξ ) =

∫
RN

f (x) e−i(x,ξ ) dx (1.17)

and the integral converges in L2(R
N) by Plancherel’s theorem. Accordingly, the

Riesz means of the spectral function (1.15) are of the form

θ
α
0 (x,y,λ ) = (2π)−N

∫
|ξ |2m<λ

(
1− |ξ |

2m

λ

)α

ei(x−y,ξ ) dξ , (1.18)

while the Riesz means of the spectral decomposition (1.16) are

Eα

λ
f (x) = (2π)−N

∫
|ξ |2m<λ

(
1− |ξ |

2m

λ

)α

f̂ (ξ )ei(x,ξ ) dξ , (1.19)

�

As in Example 1.2.2, every elliptic operator purposes a summation method of mul-
tiple Fourier integrals, while the Laplace operator corresponds to the summation
method over spheres.

1.3 Eigenfunction Expansions Associated with Polyharmonic Operator

The linear differential elliptic operators

u 7→ Au = (−∆)mu, (1.20)

is a linear operator containing all the lower order partial derivatives of the function
u. The coefficients of the derivatives are measurable functions of x ∈Ω . For elliptic
differential operators A of the form (1.20) and under assumptions on f , we consider
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solutions u = u(x) of the equation

(−∆)mu = f in Ω , (1.21)

satisfies m boundary conditions on ∂Ω . These conditions can be represented by
linear differential operators

B j(x;D)u = h j, j = 1, ...,m on ∂Ω , (1.22)

where the functions h j belong to the corresponding functional spaces. Each B j has
a maximal order of derivatives m j ∈ N and the coefficients of the derivatives are
sufficiently smooth functions on ∂Ω . For the problems considered in this thesis, we
take

m j ≤ 2m−1 for all j = 1, ...,m. (1.23)

Therefore, we assume that (1.23) holds. The meaning of (1.22) will remain unclear
until the exact definition of solution to (1.21) is given and it is satisfied the operators

γ ju =
∂ ju
∂v j

∣∣∣
∂Ω

, u ∈Cm(Ω) and j = 0, ...,m,

where v denotes the unit outer normal to ∂Ω .

Since the choice of the B j’s is not completely free, we need to impose the so-called
complementing condition. For any j, let B′j denote the B j of order m j, then for
equation (1.20) of the polyharmonic operator has a crucial condition in order
to obtain estimates for its solutions. The solvability of (1.20) depends on the
assumptions made on f ,B j and h j. Here, we will provide the homogeneous problem
as follows.

Let assume f = 0 in Ω and h j on ∂Ω for all j = 1, ...,m then for any B j’s there exists
a set of solutions in R such that

(−∆)mu = 0 in Ω ,

B j(x;D)u = 0 with j = 1, ...,m on ∂Ω ,
(1.24)

which only has a trivial solution.

We shall now give the boundary conditions as follows.

• Dirichlet boundary conditions. For the case B j(x,D)u = B′j(x,D)u = ∂ j−1u
∂v j−1

for j = 1, ...,m;m j = j−1 and (1.22) becomes

u = h1, ...,
∂ m−1u
∂vm−1 = hm on ∂Ω . (1.25)

12
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• Navier boundary conditions. In the case of B j(x,D)u = B′j(x,D)u = ∆ j−1u
for j = 1, ...,m;m j = 2( j−1) and (1.22) becomes

u = h1, ...,∆
m−1u = hm on ∂Ω . (1.26)

• Mixed Dirichlet-Navier boundary conditions. They are suitable combination

of (1.25) and (1.26). For instance, if m is odd, we have B j(x,D)u = ∂ j−1u
∂v j−1 for

j = 1, ...,m−1 and Bm(x,D)u = ∆ (m−1)/2u.

• Steklov boundary conditions. These conditions only considered for the bihar-
monic operator. Let a∈C0(∂Ω) and equation ∆ 2u = f in Ω corresponds with
the boundary operators B1(x,D)u = u and B2(x,D)u = ∆u−a ∂u

∂v . Then (1.22)
becomes

u = h1 and ∆u−a
∂u
∂v

= h2 on ∂Ω .

Note that the Navier boundary conditions is the main boundary conditions consid-
ered in this thesis.

As an example, for α ∈ (1
2 π,π) we fix the domain

Ωα = {(r cosθ ,r sinθ) ∈ R2;0 < r < 1 and |θ |< α}.

Let f ∈ L2(Ωα) and we consider the homogeneous Navier problem

∆
2u = f in Ωα ,

u = 0 on ∂Ωα ,

∆u = 0 on ∂Ωα \{0}.
(1.27)

We say that u is a system of solution to (1.27) if

∆u = w and −∆w = f in Ωα ,

u = 0 and w = 0 on ∂Ωα .
(1.28)

This system of solution is a solution to an iterated Dirichilet Laplace problem on
a bounded domain for any f ∈ L2(Ωα). We call this the energy solution, since its
second derivatives are square summable.

1.4 Resolvent Operator

The spectral theory of operators on infinite-dimensional spaces is more complicated
and it is important for an understanding of the operators themselves.
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If T is a linear transformation on Cn, then the eigenvalues of T are the complex
numbers λ such that the determinant of λ I−T is equal to zero. The set of such λ

is called the spectrum of T . It can consist of at most n points since det(λ I−T ) is a
polynomial of degree n. If λ is not an eigenvalue, then λ I−T has an inverse since
det(λ I−T ) 6= 0.

The following definitions and theorem was given in Kolmogorov and Fomin (1970).

Definition 1.4.1 Let T ∈L (X). A complex number λ is said to be in the resolvent
set ρ(T ) of T if λ I−T is a bijection with a bounded inverse. Rλ (T ) = (λ I−T )−1

is called the resolvent of T at λ . If λ /∈ ρ(T ), then λ is said to be in the spectrum
σ(T ) of T .

By the inverse mapping theorem, λ I−T has a bounded inverse if it is bijective. We
provide two subsets of the spectrum.

Definition 1.4.2 Let T ∈ L(X)

• An x 6= 0 which satisfies T x = λx for some λ ∈C is called an eigenvector of T ;
λ is called the corresponding eigenvalue. If λ is an eigenvalue, then λ I−T is
not injective so λ is in the spectrum of T . The set of all eigenvalues is called
the point spectrum of T .

• If λ is not an eigenvalue and if Rank(λ I−T ) is not dense, then λ is said to be
in the residual spectrum.

The residual spectrum does not occur for a large class of operators, for instance, self-
adjoint operators. Note that, the resolvent set ρ(T ) is open and Rλ (T ) is an analytic
operator-valued function on ρ(T ).

Theorem 1.4.1 Let X be a Banach space and suppose T ∈ L(X). Then ρ(T ) is an
open subset of C and Rλ (T ) is an analytic L(X)-valued function on each component
(maximal connected subset) of D. For any two points λ , µ ∈ ρ(T ),Rλ (T ) and Rµ(T )
commute and

Rλ (T )−Rµ(T ) = (µ−λ ) Rµ(T ) Rλ (T ). (1.29)

Example 1.4.1 Let D be a region in the complex plane, i.e. a connected open subset
of C and let T be a closed operator on a Hilbert space H. A complex number λ is
in the resolvent set, ρ(T ), if λ I−T is a bijection of D(T ) onto H with a bounded
inverse. If λ ∈ ρ(T ),Rλ (T ) = (λ I−T )−1 is called the resolvent of T at λ . �
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For a point to be in the resolvent set of T , several conditions must be satisfied. These
conditions are not all independent. For example, if λ I− T is a bijection of D(T )
onto H, its inverse is said to be bounded.

Example 1.4.2 Let consider the equation:

T f −λ f = g.

Then T has an eigenfunction {un(x)} and an eigenvalues {λn} defined by

Tun(x) = λnun(x). (1.30)

If f ∈ L2(Ω): f = ∑cnun(x), we have

T f = ∑cnTun(x) = ∑cnλnun(x),

then by subtracting λ f :

T f −λ f = ∑cn (λn−λ ) un(x).

Assume that g(x) = ∑dnun(x), then

∑dnun(x) = g = (T −λ I) f = ∑cn (λn−λ ) un(x).

Hence

dn = cn (λn−λ ) and cn =
dn

λn−λ
,

thus

(Tn−λ I)−1g = Rλ g = ∑
dn

λn−λ
un(x).

�

The expression

Rλ (T )−Rµ(T ) = Rλ (T ) (µI−T ) Rµ(T )−Rλ (T ) (λ I−T ) Rµ(T ),

proves (1.30). Interchanging µ and λ shows that Rλ (T ) and Rµ(T ) commute. Equa-
tion (1.30) is called the first resolvent formula.
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Example 1.4.3 Let polyharmonic operator ∆ m = T , then

[∆ m− (−1)m
λ

2m] u(x) = f (x),

(T −λ I) u(x) = f (x),

u(x) = (T −λ I)−1 f (x),

=
∫
Ω

R(x,y,λ ) f (y) dy.

Here,

Rλ f =
∫
Ω

R(x,y,λ ) f (y) dy,

=
∫
Ω

∑
un(x) un(y)

λn−λ
f (y) dy,

= ∑
cn un(x)
λn−λ

,

= (T −λ I)−1 f (x),

where

R(x,y,λ ) = ∑
un(x) un(y)

λn−λ
.

Applying into (1.30), the resolvent operator for the polyharmonic operator is repre-
sented as follows

Tun(x) = λn un(x),

(T −λ I) un(x) = (λn−λ ) un(x),

un(x) = (T −λ I)−1 (λn−λ ) un(x),

= (λn−λ ) Rλ un(x),

= (λn−λ )
∫
Ω

R(x,y,λ ) un(y) dy.

�

1.5 Green’s Identities

Green’s functions provide a powerful tool for solving linear problems that consists
of an ordinary differential equation and partial differential equation with boundary
conditions which resulting a unique solution. The Green’s function can be defined
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by a similar linear problem where all boundary conditions are homogeneous and
the inhomogeneous term in the differential equation is a delta function. In electro-
dynamics and quantum field theory, Green’s functions are widely used in which
relevant differential operators are often difficult or impossible to solve exactly. They
can be solved perturbatively using Green’s functions.

Let consider a differential equation

L u(x) = f (x), B1(u) = α1, B2(u) = α2, ...,BN(u) = αN ,

for some function u= u(x),x in some subset Ω of RN , L =Lx some linear differen-
tial operator acting on the variable x and the B j defining linear boundary conditions.
Here, the notation L is known as ordinary differential operator if L = d2/dx2 and
L is a partial differential if L = ∂ 2/∂x2

1 +∂ 2/∂x2
2 + ...+∂ 2/∂x2

N , the Laplacian.

Then the corresponding Green’s function G = G(x,x′) is defined as a solution of the
following problem,

LxG(x,x′) = δ (x−x′), B1(G) = B2(G) = ...= BN(G) = 0,

where δ (x−x′) is the delta function localized at x′ ∈Ω (if B j involve differentiations
they are to act on the variables x′). If all boundary conditions are homogeneous:
α j = 0 ∀ j, then the solution of the problem is

u(x) =
∫
Ω

G(x,x′) f (x′) dx.

Otherwise one also has to add integrals involving G and α j, over the boundary
regions where α j is defined.

The Green’s first identity for the pair of functions (u,v) in N- dimensional can be
written as follows ∫

Ω

v∆u dx =
∫

∂Ω

v
∂u
∂n

dS−
∫

Ω

∇u ·∇v dx.

Interchanging u and v, we can also write the Green’s first identity for the pair (v,u),∫
Ω

u∆v dx =
∫

∂Ω

u
∂v
∂n

dS−
∫

Ω

∇v ·∇u dx.

Notice that the last term of the Green’s first identity for the pair (u,v) and (v,u) are
identical, thus subtracting the first identity from the second, one yields∫

Ω

(
u∆v− v∆u

)
dx =

∫
∂Ω

(
u

∂v
∂n
− v

∂u
∂n

)
dS.
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This is the Green’s second identity for the pair of function (u,v).

Similar to the notion of symmetric boundary conditions for the heat and wave
equation, the symmetric boundary conditions can be defined for Laplace’s equation,
by requiring that the right hand side of the Green’s second identity vanishes for any
functions u,v satisfying the boundary conditions. Furthermore, the homogeneous
Dirichlet, Neumann and Robin boundary conditions are all symmetric. In this thesis,
it is useful to provide the following relations.

Let u,v ∈C4(Ω). We consider bilinear forms:

L0(u,v) = ∑
|β |=2

|β |!
β !

(Dβ u)Dβ v+ ∑
|γ|=1

|γ|!
γ!

(Dγ
∆u)Dγ v. (1.31)

For β = (β1,β2),

∑
|β |=2

(β1 +β2)!
β1!β2!

D(β1,β2)u.D(β1+β2)v

=
(2+0)!

2!0!
D(2,0)u.D(2,0)v+

(1+1)!
1!1!

D(1,1)u.D(1,1)v,

=
∂ 2u
∂x2

1
.
∂ 2v
∂x2

1
+2

∂ 2u
∂x1∂x2

.
∂ 2v

∂x1∂x2
+

∂ 2u
∂x2

2
.
∂ 2v
∂x2

2
.

Second term of (1.31), we have

∑
|γ|=1

|γ|!
γ!

(Dγ
∆u)Dγ v =

(
∂

∂x1
∆u
)

∂v
∂x1

+
(

∂

∂x2
∆u
)

∂v
∂x2

.

Then (1.31) can be written as

L0(u,v) = ∑
|β |=2

2!
β !

(Dβ u)Dβ v+ ∑
|γ|=1

(Dγ
∆u)Dγ v,

and

L1(u,v) = ∑
|β |=1

(Dβ
∆u)Dβ v+(∆ 2u)v,

where these will take the form

L0 =
N

∑
j=1

∂ 2u
∂x2

j
.
∂ 2v
∂x2

j
+2

N

∑
i=1

N

∑
j=1

∂ 2u
∂xi∂x j

.
∂ 2v

∂xi∂x j
+

N

∑
i=1

∂ (∆u)
∂xi

.
∂v
∂xi

,
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and

L1 =
N

∑
i=1

∂ (∆u)
∂xi

.
∂v
∂xi

+(∆ 2u) · v.

1.6 Spaces of Distributions

The notion of generalized derivation was developed in the early of twentieth century.
During 1950’s, Laurent Schwartz found a precise formulation of the theory of
distributions with some significant ideas by Sergei Lvovich Sobolev. The theory
of distribution is a concept that generalizes the notion of function, also called
generalized functions. Distributions are the objects that generalize the classical
notion of functions in mathematical analysis which make possible to differentiate
function for which the derivatives do not exist in the classical sense. It is a class of
objects which is more larger than the class of differentiable functions. Theory of
function spaces and spaces of distribution was studied as part of functional analysis.
The main field of application is the theory of ordinary and partial differential
equation. The fundamental idea of the theory of distributions is that it is generally
easier to work with linear functionals acting on spaces of good functions which lead
to the study of distributions spaces i.e. the space of continuous linear functionals on
the set of test function.

Let T be a topological space of functions defined on N-dimensional Euclidean
space, RN . Then we consider T a space of test functions and define the space of
distributions on T .

We begin with some preliminaries. Let γ denote a multi-index, i.e. N-dimensional
vector with nonnegative integer components γ = (γ1,γ2, ...,γN) and the length
of multi-index is set by |γ| = γ1 + γ2 + ... + γN . We use the notation xγ =

(x
γ1
1 ,x

γ3
2 , ...,x

γN
N ) where x ∈ RN . Then we can write a partial mixed derivative of

order γ as follows

Dγ f (x) =
∂ |γ| f (x)

∂x
γ1
1 ∂x

γ2
2 ... ∂x

γN
N

.

Let U be an open set in RN . If f : U → R is a continuous function, we define its
support as

supp f = {x ∈U ; f (x) 6= 0}.

The function f is said to have a compact support if supp f is a bounded set.

First, we state an important space of test functions C∞(RN) as a space of all smooth
(infinitely differentiable) functions in the N-dimensional Euclidean space RN and
use the notation ε(RN) to denote the set C∞(RN). Let K be a compact subset of RN.
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The topology of ε(RN) is defined by the family of seminorms

PK,γ(ϕ) = max
x∈K
|Dγ

ϕ(x)|,

as topological space with the following definition of topology. We say that a
sequence ϕn ∈ ε(RN) converges to a function ϕ ∈ ε(RN) in topology of ε if
uniformly on each compact subset of RN, |Dγ ϕn(x)−Dγ ϕ(x)| → 0, ∀γ ∈ N as
n→ ∞. The ε(RN) space equipped with the topology of uniform convergence of
every derivative on each compact subset of RN.

We consider the space of test functions J(RN) denote as the Schwartz space of the
smooth functions and define the space

J(RN) =
{

f : f ∈C∞(RN), sup
x∈RN

(1+ |x|)α |Dγ f (x)|< ∞; ∀γ,α ∈ N
}
.

Let f ∈ J(RN), then all derivatives Dγ f (x) are rapidly decreasing as |x| → ∞.
The space J(RN) is a topological space and let introduce topology in J(RN) as
follows. We say that a sequence ϕn ∈ J(RN) converges to a function ϕ ∈ J(RN), if
supx∈RN (1+ |x|)α |Dγ ϕn(x)−Dγ ϕ(x)| → 0, ∀γ,∀α ∈ N as n→ ∞. For example,

the function e−|x|
2

belongs to J(RN).

Another important space of test functions is C∞
0 (R

N). This space is the subsets of
C∞(RN) which contains the functions from C∞(RN) with compact support defined
in the N-dimensional Euclidean space RN . The notation D(RN) is used to denote
the set C∞

0 (R
N) equipped with the topology defined as follows. We consider D(RN)

with a topology that corresponds to the the following convergence of test functions.
We say that a sequence ϕn ∈D(RN) converges to a function ϕ ∈D(RN), if there is
a number R > 0 such that supp ϕn ⊂ UR and x ∈ RN then |Dγ ϕn(x)−Dγ ϕ(x)| → 0,
∀γ ∈ N as n→ ∞ where UR = U(0;R) denotes the sphere of radius R centered at the
origin.

As an example of a function from D(RN), we consider the so called cap-shaped
function

ωε(x) =

 Cε e
− ε2

ε2−|x|2 , |x| ≤ ε,

0, |x|> ε.

We choose a constant Cε to give
∫

ωε(x) dx = 1, resulting

Cε ε
n
∫
U1

e
− 1

1−|ε|2 dε = 1.
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We conclude with presenting the embedding relationship between all the three spaces
of test functions by

ε(RN)⊃ J(RN)⊃D(RN).

The generalized function in the sense of Sobolev-Schwartz refers to each linear con-
tinuous functional over the space of test functions T . In order to define the general-
ized function, it is important to give the following definition.

Definition 1.6.1 We call f as a linear continuous functional on T if f is mapping
from T to R (set of real numbers) such that

(i) linearity:
f (αϕ +βψ) = α f (ϕ)+β f (ψ),

for any ϕ,ψ ∈ T and α,β ∈ R.

(ii) continuity: If ϕn converges uniformly to ϕ in topology of T then f (ϕn)→
f (ϕ).

The linear continuous function is called a distributions on T . We use the notation
< f ,ϕ > to denote the action of the functional (generalized function) f over the test
function ϕ . Further, we represent f (x) as generalized function f corresponding to
the argument x of the test functions on which the functional f acts.

In line with the previous subsection, we first let ε(RN) be the space of test functions.
Then the space of distributions on ε(RN) denote by ε ′(RN).

From the definition, it is possible to say that the distributions becomes zero in a
domain. We say that a distribution f is equal to zero in a domain Ω ⊂ RN if

< f ,ϕ >= 0,

for any function ϕ ∈C∞(RN) with supp ϕ ⊂Ω .

Let N f ⊂ RN is a set where a distribution is zero. This set called nill set of f . Then
support of distribution is the following set

supp f = RN \N f .

If supp f is finite in RN (means can be included in the ball with finite radius) then
we say that a distribution of f has compact support. Note that the space ε ′(Ω) is the
space of distributions with compact support.
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Subsequently, let consider J(RN) be a space of test functions. Then the corre-
sponding space of distributions J′(RN) is called the space of tempered distributions.
Sometimes, J′(RN) is called the space of slowly increasing distributions. If
f ∈ J′(RN) and ϕ ∈ J(RN), then the action of functional f on test function
ϕ is denoted by < f ,ϕ >. We now define convergence in J′(RN) as a weak
convergence of the sequence of functionals. We say that a sequence fn ∈ J′(RN)
converges to the generalized function f ∈ J′(RN); fn → f as n→ ∞ in J′(RN) , if
< fn,ϕ >→< f ,ϕ > for any ϕ ∈ J(RN) as n→ ∞.

Finally, let D(RN) be the space of test functions. The space of continuous linear
functional on D(RN) is called the space of distributions. The spaces of distributions
on D(RN) are denoted by D ′(RN). The convergence in D ′(RN) is defined as
follows. We say that a sequence of generalized functions fn ∈ D ′(RN) converges
to the generalized function f ∈ D ′(RN); fn → f as n→ ∞ in D ′(RN) , if for any
ϕ ∈D(RN) we have < fn,ϕ >→< f ,ϕ > as n→ ∞.

Hence, it follows from all these definitions that the embedding is valid.

ε
′(RN)⊂ J′(RN)⊂D ′(RN).

Note that, we briefly introduce C∞(Ω) and C∞
0 (Ω) spaces in Section 1.2. We will

discuss further for C∞(Ω) and C∞
0 (Ω) topological spaces in the domain of Ω ∈ RN

in Chapter 5 of this thesis.

1.7 Classes of Differentiable Functions

1.7.1 Sobolev Classes

We consider Ω as bounded domain in the N-dimensional Euclidean space RN and its
boundary is denoted by ∂Ω . Let 1 < p < ∞. We define Sobolev space as

Definition 1.7.1 Let α be a positive integer and 1 < p < ∞. The space W α
p (Ω) is

the collection of functions in Lp(Ω) such that

W α
p (Ω) =

{
u : u ∈ Lp(Ω), ||u||Wα

p
=
(

∑
|γ|≤α

∫
Ω

|Dγ u|p dx
)1/p}

.

Also, for p = ∞

||u||Wα
∞

= ∑
|γ|≤α

ess sup
x∈Ω

|Dγ u|.

Note that, W 0
p (Ω) = Lp(Ω).
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We define subspace W̊ α
p (Ω) ⊆ W α

p (Ω) as a closure of C∞
0 (Ω) in the norm of

W α
p (Ω). In other words, we say that u ∈ W̊ α

p (Ω) if and only if there exists a se-
quence of functions un ∈C∞

0 (Ω) such that

||u−un||Wα
p
→ 0.

More generally, W̊ α
p (Ω) is a space of functions whose derivatives Dγ u vanish along

∂Ω , for |γ|< α−1.

In the case p= 2, we define the Hilbert-Sobolev space Hα(Ω) =W α
2 (Ω). The space

Hα(Ω) is equipped with the inner product

< u,v >Hα= ∑
|γ|≤α

∫
Ω

Dγ u Dγ v dx.

Similarly, we define H̊α(Ω) = W̊ α
2 (Ω).

Remark 1.7.1

• Each Sobolev space W α
p (Ω) is a Banach space.

• The space W̊ α
p (Ω) is a closed subspace of W α

p (Ω) which is also a Banach
space, with same norm.

• The spaces Hα(Ω) and H̊α(Ω) are Hilbert spaces.

1.7.2 Nikolskii Classes

Let Ω ⊂ RN be a domain with smooth boundary ∂Ω . We denote by Lp(Ω) a classs
of the measurable functions which are p-integrable over Ω .

Definition 1.7.2 Let α = `+κ, `- positive integer and 0 <κ< 1, p≥ 1. We say that
a function f (x)∈ Lp(Ω) belongs to the Nikolskii class Hα

p (Ω), if for any h∈RN and
for all α = (α1,α2, ...,αN) satisfying |α|< `:∣∣∣∣∣∣∂ α f (x+h)−2∂

α f (x)+∂
α f (x−h)

∣∣∣∣∣∣
Lp(Ω)

≤C
∣∣∣∣∣∣h∣∣∣∣∣∣κ,

where ∂ α = i|α|D
α

.

Using the notation ∆ 2
h f (x) = f (x+h)−2 f (x)+ f (x−h) we define a norm in Hα

p (Ω)
by the following∣∣∣∣∣∣ f ∣∣∣∣∣∣

p,α
=
∣∣∣∣∣∣ f ∣∣∣∣∣∣

Lp(Ω)
+ ∑
|α|=`

sup
h
|h|κ

∣∣∣∣∣∣∆ 2
h ∂
|α| f (x)

∣∣∣∣∣∣.
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The closure of the space C∞
0 (Ω) in the norm of Hα

p (Ω) denoted by H̊α
p (Ω).

1.8 Research Objectives

The thesis is devoted

1. To estimate the spectral function of the polyharmonic operator in closed do-
main.

2. To establish the uniformly convergence of eigenfunction expansions of con-
tinuous functions in closed domain.

3. To obtain the sufficient conditions for uniformly convergence of the eigen-
function expansions from Nikolskii classes in closed domain.

4. To obtain sufficient conditions for localization of the distributions from the
classes of Sobolev with negative smoothness.

1.9 Thesis Outline

This thesis consists of six chapters as follows.

• Chapter 1 - Introduction: In this chapter we provide the basic tools of the
research background related to the area of our research subject to the objectives
and methods applied in solving problems in this thesis.

• Chapter 2 - Literature review: This chapter is basically deals with the previous
research works done by well-known mathematicians related to our research
topic. All these works are the factors and motivation leads to the idea of our
research.

• Chapter 3 - In this chapter, we investigate the uniform convergence of eigen-
function expansions of the biharmonic operator of continuous functions and
also from Nikolskii classes in closed domain by using the estimated Riesz
means.

• Chapter 4 - This chapter provides a more precise respresentation of eigenfunc-
tion expansions of the polyharmonic operator. We estimate the Riesz means
of the spectral function of polyharmonic operator which we will apply in the
investigation of the uniform convergence of eigenfunction expansions of the
polyharmonic operator of continuous functions and Nikolskii classes in closed
domain.

• Chapter 5 - In this chapter, we use the results of the estimation of eigenfunc-
tions of biharmonic operator from Chapter 3 and also the estimation of eigen-
functions of polyharmonic operator from Chapter 4 to study the localization
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principle of spectral expansions of distributions in the Sobolev space with neg-
ative smoothness in closed domain.

• Chapter 6 - Discussions and future work: In the last chapter of this thesis, we
give the conclusions of the results obtained in the end of this research study
and its remarkable contributions to the development of the partial differential
equation theory particularly problems involving polyharmonic operator. We
also discuss and give suggestion on the open problems related to polyharmonic
operator for future researchers to explore.
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