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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
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NONPARAMETRIC CONDITIONAL MEAN CUMULATIVE FUNCTIONS
FOR COMPARISON OF RANDOM-INTERVAL COUNTING PROCESSES

WITH APPLICATIONS TO PANEL COUNT DATA ANALYSIS
IN MEDICAL STUDY

By

TAN PEI LING

December 2018

Chairman :Prof. Noor Akma Ibrahim, PhD
Faculty :Institute for Mathematical Research

In medical study, patients are treated with different treatments may have different
follow-up schedule. Patients will visit clinic periodically, the actual time-to-event
occurrence of disease is unknown, and only the number of occurrence between two
consecutive visits is recorded. This is also referred as panel count data. Whenever
the event have multiple occurrence, the event process is referred as recurrence
process and is treated as a random point process over the follow-up time. A broad
range of test procedures have been proposed for continuous observation processes
in time-to-event data analysis, but only a few test procedures are applicable for
discrete time observations when only panel count data are available. In practice,
the number of clinical visits and clinical visit times are different for each patient.
i.e, the observation processes are not identical. The number of patients assigned in
each treatment group could also be imbalanced. However, most of the existing
nonparametric test procedures proposed for treatment effectiveness comparison
assume that each treatment has identical observation processes and are conducted
for balanced sample size. When the observation processes between treatments are
different, the existing test procedures are less significance in detecting the departure
from the null hypothesis and provide misleading results. To address this, the study is
focused on the development of a nonparametric test procedure which is constructed
based on the integrated weighted differences between the mean cumulative function
of the recurrences event with condition on treatment group. The test procedure is also
extended to take into account multivariate recurrence processes, when the recurrent
process has multi-type events. The empirical power of the proposed test statistics
in detecting the departure from the null hypothesis are evaluated via Monte Carlo
simulation study. The findings show that the proposed method works well under the
tested situations. For efficiency comparison, the proposed test is evaluated through
real data analysis and the results are in line with earlier research.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

FUNGSI KUMULATIF MIN BERSYARAT TAK BERPARAMETER BAGI
PERBANDINGAN PROSES PENGIRAAN SELANG RAWAK DENGAN

APLIKASI KE ATAS ANALISIS DATA KIRAAN PANEL
DALAM KAJIAN PERUBATAN

Oleh

TAN PEI LING

Disember 2018

Pengerusi :Prof. Noor Akma Ibrahim, PhD
Fakulti :Institut Penyelidikan Matematik

Dalam kajian perubatan, pesakit yang dirawat dengan rawatan yang berbeza mungkin
mempunyai jadual susulan yang berlainan. Pesakit akan melawat klinik secara berkala,
masa kejadian penyakit tidak diketahui, dan bilangan kejadian di antara dua lawatan
berturut-turut direkod. Ini juga dirujuk sebagai data pengiraan panel. Apabila kejadian
adalah pelbagai, proses kejadian dirujuk sebagai proses berulang dan dianggap sebagai
proses titik rawak sepanjang masa rawatan susulan. Pelbagai prosedur ujian telah
dicadangkan untuk proses pemerhatian yang berterusan dalam analisis data masa ke
masa, tetapi hanya beberapa prosedur ujian dicadangkan untuk pemerhatian masa
diskret apabila yang ada hanya data pengiraan panel. Bilangan lawatan klinikal dan
masa lawatan klinikal adalah berbeza bagi setiap pesakit. Iaitu, proses pemerhatian
tidak sama. Bilangan pesakit dalam setiap kumpulan rawatan mungkin tidak seimbang.
Walau bagaimanapun, kebanyakan prosedur ujian tak berparameter yang sedia ada
yang dicadangkan untuk perbandingan keberkesanan rawatan mengandaikan bahawa
setiap rawatan mempunyai proses pemerhatian yang sama dan dijalankan untuk
saiz sampel yang seimbang. Apabila proses pemerhatian antara rawatan berbeza,
prosedur ujian sedia ada kurang cekap dalam mengesan sisihan dari hipotesis nol dan
memberikan keputusan yang silap. Untuk menangani masalah ini, kajian ini memberi
tumpuan kepada lanjutan prosedur ujian tak berparameter yang dibina berdasarkan
perbezaan berwajaran terintegrasi antara fungsi kumulatif min bagi kejadian berulang
bersyarat pada kumpulan rawatan. Prosedur ujian juga diperluas untuk mengambil
kira proses berulang pelbagai pembolehubah, apabila proses berulang mempunyai
pelbagai jenis peristiwa. Kuasa empirikal statistik ujian yang dicadangkan dalam
mengesan sisihan dari hipotesis nol dinilai melalui kajian simulasi Monte Carlo. Hasil
kajian simulasi menunjukkan bahawa kaedah yang dicadangkan adalah baik di bawah
situasi yang diuji. Bagi kecekapan perbandingan, ujian yang dicadangkan dinilai
melalui analisis data sebenar dan keputusannya selaras dengan kajian terdahulu.
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CHAPTER 1

INTRODUCTION

This chapter provides some preliminary of the study and summary of research work.
Section 1.1 briefly describes the background and Section 1.2 is on the motivation
of the study. The purpose of study and research objectives are listed in Section 1.3,
followed by conclusion in Section 1.4. The topics discuss in the remaining chapters
are provided in Section 1.5.

1.1 Background

This thesis deals with a particular kind of random process. The central idea is to study
random collections of point occurrences in medical follow-up study. For the most
part, the points are considered as occurring along the time axis. Some examples arise
from medical follow-up study are outline here to illustrate the breadth of potential
applications. One may consider the sequence of time points at which systems failed,
such as the development of new cancer types, growth of tumour cells and so forth.
Whenever the event may have multiple occurrence, the event process is referred as
recurrence process. In several of these examples, each point may be classified into
one of several types or classes. For example, in non-melanoma skin cancer study,
skin cancer can be distinguish into two types, Squamous cell carcinoma and Basal
cell carcinoma. Alternatively, one may wish to consider several types of sickness
symptoms, vomiting, high fewer or severe/chronic pain. A point process with several
types or classes of point is called multivariate.

This research deals with the study of several processes of potential importance in
applications, including the development of nonparametric techniques for statistical
analysis of data arise from medical follow-up study and investigating its performance
by assuming reasonable conditions of all properties under studied. We consider the
case where the processes are independent of each other and the censoring process
are non-informative. Nevertheless, the nonparametric technique is generalized to
compare multiple samples from different treatments (processes, environments, system
designs, operating conditions, and so forth).

1.2 Motivation

In medical follow-up study, disease process or the recurrent events evolve in
continuous time, and patients are often monitored at irregular time points depend
on treatment assignments. In such case, each subject is observed only at several
distinct time points, where the exact time of occurrence of disease or recurrent event
is unknown and only the number of events that have occurred prior to each observation
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time is recorded. These produce panel count data which consist only the number of
occurrences of events over a range of time between visits, it is also referred as interval
count data of recurrent events. Due to the lack of information, it is common to work
with the mean of recurrences or recurrence rate.

Nelson (2003) describes the nonparametric mean cumulative function (MCF)
estimator for recurrent event data on continuous observation process and also on
periodical observation process with some example arising from product repairs,
disease recurrences and warranty claims. The MCF is not commonly used in panel
count data as nonparametric maximum likelihood estimator (NPMLE) and isotonic
regression estimator (IRE). Based on Wellner and Zhang (2000), NPMLE is more
efficient than IRE. However, NPMLE is much more computationally complex and
time consuming. IRE is restricted to non-decreasing step function of the recurrent
events. However, in practice, some events may have an increasing or decreasing step
functions. The MCF estimator can be applied to both increase or decrease functions
and it is useful on observing an event changes over times.

A broad range of nonparametric test procedures for comparing recurrent event
processes based on panel count data can be divided into two types with respect to the
estimator of the mean function of the processes used in test statistics. Most common
method used based on the nonparametric maximum pseudolikelihood estimator
(NPMPLE) or IRE which is generally the least-square method includes the test
used in Balakrishnan and Zhao (2010a), Li et al. (2010), Park et al. (2007), Sun and
Fang (2003), Zhang (2006), and Zhao and Sun (2011); the other is constructed based
on the nonparametric maximum likelihood estimator (NPMLE) which is generally
more computationally complex, it involves iteration process and does not always
reach convergence (Balakrishnan and Zhao, 2009). These methods share the same
property where they require identical observation processes for all subjects except that
given in Zhao and Sun (2011) and Li et al. (2014). Zhao and Sun (2011) incorporate
Welch procedure for invariance test into IRE based on two sample hypothesis testing
to allow unequal observation processes across treatment groups. Whilst, Li et al.
(2014) proposed a class of nonparametric test for univariate and multivariate case
by comparing its sample mean responses of the underlying recurrent process given
covariates.

Note that the observation times are rarely equally spaced over a discrete time interval,
it can be different on each subject, and the interval between each observation can
also be random. Due to this, the discrete time Markov process assumption can not
be used, and it is usual that, the disease process is characterized by counting process
with Poisson structure. Furthermore, most of the existing methods assumed that
the group indicators are identical and independent (i.e., the sample sizes are equal
or balance across treatment groups). Therefore, there arises the need to extend the
existing methods to analyse panel count data with unequal observation process for
both univariate and multivariate problems.

2
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1.3 Problem Statement

In medical research, clinical follow-up study plays an important role to study the safety
and efficacy of the clinical interventions; mainly used to evaluate new approaches,
such as surgery or radiotherapy and new ways to improve the diagnosis of diseases,
and test the new drugs or combinations of drugs on patient to improve patients’ quality
of life and potentially expand lifespan. This kind of study is usually produces panel
count data, which involves recurrent events and multi-type events and each patient is
observed or examined only at periodic follow-up assessments.

The main interest is to compare the effectiveness of different treatments in medical
follow-up studies. Panel count data involves more than one observation times
point for each subject and which may differ from subject to subject. The clinical
follow-up schedule for different treatments might have different follow-up patterns.
In this setting, the observation scheme could be different or unequal observation
process. The times interval between two subsequent treatments are unequal, the mean
recurrence might be nonmonotonic. The existing methods which assumed identical
observation processes and/or required recurrent processes to be non-decreasing
monotonic function may not be appropriate and inefficient. A lot of effort has been
spent on deriving the estimators and modeling the panel data, see Li et al. (2011), Li
et al. (2013), Hua and Zhang (2012) and Hua et al. (2014) among others. The works
are considering the effect of covariate measurements on the intensity of a recurrent
phenomenon for single type of recurrent event. It is useful to have statistical methods
which allowing both the systematic and random observation scheme in univariate
or multivariate cases, and motivate us to develop a statistic test for panel count data
analysis.

It is usual that medical research study done with restricted inclusion criteria in order to
obtain a homogeneous sample of patients, representative only of specific sub-groups
of population of a limited size. In control clinical studies or experimental studies,
the samples which are compared are similar in those characteristics which may have
effect on the response. Due to the constraints on resources to observe the process and
collect the data in medical follow-up study, it is difficult to have data with both large
number of observational units and a long time of observation period. In this study,
we explore and evaluate the proposed test for samples with relative small size and
imbalanced, as well as the effect of length of observation period on the performance
of proposed method.

3
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1.3.1 Objectives

The research intends to achieve the following objectives:

1. Derive and develop a test statistic and its variance computation which allowed
unequal observation processes across treatment groups.

2. Evaluate the performance of the test statistic by its statistical power for different
weight processes via simulation studies.

3. Compare the performance of the test statistic when the sample sizes are
imbalanced and or relatively small between treatment groups, and explore the
impact of the length of follow-up period and the degree of unequal observation
on the test statistic.

4. Extend the test statistics to multiple samples and multivariate panel count
data in a more general set-up of multivariate counting processes allowing for
multiple jumps and furthermore allowing unequal observation processes across
treatment groups.

5. Compare the performance of the test statistic with existing test through the real
data analysis in medical follow-up study.

1.3.2 Scope of study

In ordinary continuous time recurrent event or survival data analysis, the actual
occurrence times of the event are known, the censoring process is usually modeled to
allow the random observation process. The censoring process can be non-informative
or informative. When the censoring process is dependent of the observation process
and or the recurrent process, the censoring is informative, one might model the
censoring process. Study on the degree of censoring on the performance of test
can be done. In this study, we consider non-informative censoring process, when
the censoring is independent of observation process and recurrent process, and the
censoring times are the longest follow-up time for each patient. In this case, we did
not model the censoring process and study on the censoring process is limited. The
proportion of censoring can be computed as number of censored over total number
sample size. We consider the correlation between subjects as the random effect
modeled by mixed Poisson process which is independent of the observation process
and censoring process. However, the recurrent process might be correlated with
censoring process or the observation process. For informative censoring processes,
it is necessary to model the censoring processes and study the effect of the heavy
censoring observations on the performance of the test statistic. On the other hand, the
observation process are continuous in ordinal time-to-event data analysis, sufficient
test is conducted to decide whether or not the period of observation has been long
enough to detect the presence of cured (immune) individuals in the study, as in cured
model analysis. As the length of follow-up study will affect the sufficiency of making
inferences about the cure rates. In medical follow-up study, the length of follow-up

4
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is planned according to the patient’ health conditions and type of treatments. In
this study, we assume that the observation processes (the follow-up) is independent
of the recurrent processes. In other word, the length of follow-up does not affect
the recurrence rate between two consecutive visits. In this case, we only model the
follow-up process as exponential function which is proportional between treatment
group, and the length of follow-up period is the longest follow-up time of the patients
in the pooled sample. The test for sufficient follow-up is not directly relevant to
the main problem in our study. However, we do explore the effect of the length of
follow-up on the empirical power of the proposed test.

1.4 Novelty and Contributions

It is a need to develop a test statistic that allows for unequal observation process
and relax the assumption on the identical treatment indicator. Thus, a new class of
statistical test procedure is proposed based on MCF with conditional on treatment
groups which allow the different observation scheme and imbalanced sample size
across treatment groups. Based on simulation study, the proposed test works well
for both equal and unequal observation process and even when the sample size are
imbalanced. The test statistics based on conditional MCF estimator is efficiently
comparable with existing NPMLE and IRE based tests. The results are also compatible
with existing tests. The proposed test statistic is also extended to address multiple
sample and multivariate comparison problems.

1.5 Thesis Outline

Chapter 2 gives some fundamental about panel count data and the background
knowledge related to nonparameric mean cumulative function (MCF) estimator.
This chapter reviews some of the existing nonparametric test statistics which are
commonly used in the analysis of panel count data and limitations of those methods
are highlighted. Chapter 2 further presents some practical constrains in medical follow
up study including multi-sample and multivariate problems.

Chapter 3 extends the nonparametric Wilcoxon type of test statistics which allowed
unequal observation processes when the recurrent events followed nonhomogeneous
Poisson processes and mixed Poisson processes. The development of the test statistics
based on MCF given treatment groups as well as it asymptotic variance calculation
are presented in Chapter 3.

Chapter 4 demonstrates the efficiency of the test statistics for two samples comparisons
for Poisson and mixed Poisson recurrent processes with identical observation
processes. The proposed test is applied to compare treatment efficiency for the
data arise from Gallstone study which is a pre-schedule follow-up study. Whilst,
Chapter 5 generalizes the test to multi-sample comparisons with unequal observation
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processes, where the number of observations between treatments are different. The
test statistic is applied to panel count data arise from bladder tumor study, where the
observation processes are not identical and comparisons are made between two or
more treatment groups. The asymptotic normality of the proposed test statistic are
presented through quantile plots.

Chapter 6 extends the approach to multivariate panel count data problem. Findings of
the study are outlined in Chapter 7. Conclusion summarizes the scope of study with
further discussion and outlines some future works to extend this study are included in
Chapter 7. The overall research work is given in Figure 1.1.
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Propose multi-sample test statistic 
based on integrated weighted 

difference between conditional mean 
cumulative functions. 

Develop R programming algorithm 
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-Evaluate error rate;
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-Evaluate the asymptotic distribution of test statistic.
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Figure 1.1: Research work flow.
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