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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Doctor of Philosophy 
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MULTIPLE LINEAR AND PANEL DATA REGRESSION MODELS 

By 

MUHAMMAD SANI 

November 2018 

Chairman :   Professor Habshah Midi, PhD 

Institute :   Mathematical Research 

The Influential Distance (ID) is proposed to identify multiple influential observations 

(IOs) in linear regression. However, the method not only considered good leverage 

observations (GLOs) as IOs, but also takes long computational running time with high 

rate of swamping and masking effects. Fast Improvised Influential Distance (FIID) is 

proposed to overcome these shortcomings. The results indicate that FIID successfully 

identified and classified GLOs and IOs with less computational running time, no 

masking effect and smaller rate of swamping. 

The presence of high leverage points (HLPs) and violation of the assumption of 

homoscedasticity are very common in analyzing data in linear and panel data 

regression models. To remedy this problems weighted least squares (WLS) based on 

FIID weighting method for Heteroscedasticity Consistent Covariance Matrix (HCCM) 

estimator is developed. The results obtained from simulation study and real data sets 

indicate that the proposed method is superior compared to the existing methods.  

The presence of outlying observations in a data set causes heteroscedasticity in a 

homoscedastic data set and vice versa. To know the type of outliers that are responsible 

for these irregularities is very important so that appropriate measure will be taken. To 

bridge the gap in the literature, we have successfully proposed robust White test to 

detect heteroscedasticity and identifies the types of outliers that causes and hide 

heteroscedasticity termed heteroscedasticity-enhancing and heteroscedasticity-

reducing observations (HEO and HRO), respectively. Furthermore, we proposed 

appropriate remedial measures for both HEO and HRO denoted by GM-FIID and 

ITSRWLS, respectively. The results of the simulation study show that the proposed 

methods are efficient and consistent than the existing methods. 
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The panel data estimators for both fixed and random effect models becomes bias and 

causes inconsistency in variance-covariance matrix when there exist 

heteroscedasticity of unknown form and high leverage points in a data set. To date no 

research has been done to address this problem. To fill-in the gap in the literature we 

proposed a WLS estimation technique for both fixed and random effect model based 

on RHCCM estimator with FIID weighting method. The MM-Centering technique is 

employed instead of mean centering to reduce the effect of HLPs. The results of 

simulation study and real data sets indicate that weighted least squares based on FIID 

(WLSFIID) was found to be the best method.  

 

 

The classical Hausman pretest is used to choose between random and fixed effect 

panel data models. In the presence of heteroscedastic error variances and high leverage 

points (HLPs) or IOs in a data set, the right model may not be correctly identified. To 

the best of our knowledge no research has been done to address this issue. We 

proposed a robust Hausman pretest denoted as RHTFIID based on FIID and Robust 

Heteroscedasticity Consistent Covariance Matrix (RHCCM) estimator to remedy the 

problem. The results of simulation and real data set indicate that the proposed method 

was found to perform better than the conventional Hausman pretest. 
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Institute :   Penyelidikan Matematik 

 

 

Jarak Pengaruh (ID) dicadangkan untuk mengenal pasti cerapan berpengaruh 

berganda (IOs) dalam regresi linear. Walau bagaimanapun, kaedah ini bukan sahaja 

menganggap titik tuasan yang baik (GLO) sebagai IO, tetapi juga mengambil masa 

pengiraan yang lama dengan kadar swamping dan masking yang tinggi. Peningkatan 

Jarak pengauh Pantas (FIID) dicadangkan untuk mengatasi kekurangan ini. Hasilnya 

menunjukkan bahawa FIID telah berjaya mengenal pasti dan mengklasifikasikan GLO 

dan IO dengan masa pengiraan yang pendek, tiada kesan masking dan kadar swamping 

yang rendah. 

 

 

Kehadiran titik tuasan tinggi (HLPs) dan pelanggaran terhadap andaian 

homoskedastisiti adalah menjadi kebiasaan dalam menganalisis data dalam model 

regresi linear dan regresi panel data. Untuk mengatasi masalah ini, pemberat kuasadua 

terkecil (WLS) berdasarkan kaedah pemberat FIID bagi  anggaran kepada 

Heteroskedastisity ConsistentCovariance Matrix (HCCM) di cadangkan. Hasil yang 

diperoleh daripada kajian simulasi dan set data sebenar menunjukkan bahawa kaedah 

yang dicadangkan lebih unggul berbanding kaedah yang sedia ada. 

 

 

Kehadiran titik terpencil dalam set data menyebabkan heteroskedastisiti dalam set data 

homoskedastik dan sebaliknya. Untuk mengetahui jenis titik terpencil yang 

bertanggungjawab terhadap penyelewengan ini adalah sangat penting supaya langkah 

yang sesuai boleh diambil. Untuk merapatkan jurang dalam literatur, kami telah 

berjaya mencadangkan ujian Putih yang teguh untuk mengesan heteroskedastisiti dan 

mengenalpasti jenis titik terpencil yang menyebabkan dan menyembunyikan 

heteroskedastisiti yangmasing-masing dinamakan penggalakkan-heteroskedastisiti 
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dan pengurangan-heteroskedastisiti (HEO dan HRO) masing-masing. Selain itu, kami 

mencadangkan langkah pemulihan yang sesuai untuk kedua-dua HEO dan HRO yang 

masing-masing, digelar sebagai GM-FIID dan ITSRWLS. Hasil kajian simulasi 

menunjukkan bahawa kaedah yang dicadangkan adalah cekap dan konsisten daripada 

kaedah sedia ada. 

 

 

Penganggar data panel untuk kedua-dua model kesan tetap dan rawak menjadi tidak 

saksama dan menyebabkan ketidakkonsistenan dalam matriks variasi-kovarians 

apabila terdapat heteroskedastisiti bentuk yang tidak diketahui dan titik tuasan tinggi 

dalam set data. Sehingga kini tiada kajian telah dilakukan untuk menangani masalah 

ini. Untuk mengisi jurang dalam kesusasteraan, kami mencadangkan penganggaran 

WLS untuk kedua-dua model kesan tetap dan rawak berdasarkan anggaran RHCCM 

dengan kaedah pemberat FIID. Kaedah  MM-berpusatdigunakan dan bukannya purata 

berpusat untuk mengurangkan kesan HLPs. Hasil kajian simulasi dan set data sebenar 

menunjukkan bahawa kaedah kuasadua terkecil berpemberat berdasarkan FIID 

(WLSFIID) telah dikenalpasti sebagai kaedah terbaik. 

 

 

Pra-ujian Hausman klasik digunakan untuk memilih antara model data panel kesan 

rawak dan tetap. Dengan kehadiran variasi ralat berheteroskedastik dan titik tuasan 

tinggi (HLPs) dalam set data, model yang betul mungkin tidak dapat dikenal pasti. 

Bagi pengetahuan terbaik kami, tiada kajian telah dilakukan untuk menangani isu ini. 

Kami mencadangkan pra-ujian Hausman yang teguh yang dipanggil RHTFIID 

berdasarkan FIID dan anggaran Matriks Kovarians Konsisten Teguh 

Berheteroskedastik(RHCCM)untuk memperbaiki masalah tersebut. Hasil daripada 

simulasi dan set data sebenar menunjukkan bahawa kaedah yang dicadangkan didapati 

lebih baik daripada pra-ujian Hausman konvensional. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background and Purposes 

Regression analysis is an important statistical method for investigating the linear 

relationships between the response variable and one or more predictor variable(s).  It 

was introduced by Sir Frances Galton in the nineteenth century. There are several 

techniques for modeling and analyzing variables in linear regression. The ordinary 

least squares (OLS) technique introduced by Legendre and Gauss (Maronna et al., 

2006) has been generally adopted due to its simplicity and computational ease. The 

OLS estimates are obtained by minimizing the sum of squared errors. Under usual 

assumptions, that is, the distribution of the errors (residuals) is normal and the residual 

variances are equal (satisfied Gauss-Markov theorem) the OLS method provides the 

Best Linear Unbiased Estimator (BLUE) for the parameter of a linear model. Because 

of the convenient properties of the OLS, such as closed form solution and ease of 

computation, it is often applied in many fields of study such as applied sciences and 

Engineering. Among these convenient properties is the assumption of homogeneity of 

its residual variances, commonly called homoscedasticity. Rana et al. (2012), Carrol 

and Ruppert (1982) as well as Habshah and Bashar (2008) elucidated many different 

occasions where homoscedasticity assumption breaks down and resulted to 

heteroscedasticity (unequal residual variances). The heteroscedasticity problem has 

been reported by many researchers such as (Montgomery et al., 2001; Gujarati, 2003; 

Kutner et al., 2004; Chatterjee and Hadi, 2006; Greene, 2008; Lima et al., 2009; 

Habshah et al., 2013).  

However, when the homoscedasticity assumption is violated, the OLS estimate is still 

unbiased, but becomes inefficient due to the inconsistency of the variance-covariance 

matrix of the estimate. As a consequence, the inference will become unreliable. 

Heteroscedasticity occurs in the cross sectional data as well as panel data which are 

almost used in every field of study such as economics, finance, history, business, law, 

education, meteorology, medicine, biology, chemistry, engineering, physics, 

sociology, and psychology. 

Panel data regression model is one of the most widely used models especially in 

economics and finance because of it advantage over cross-sectional and time-series 

model. Panel data referred to as data collected for many individuals over time, it has 

two dimensions cross sectional and times series (Baramati, 2007). It can be analyzed 

by running a regression over these two-dimensions using a classical least squares. The 

fixed effect (FE) and random effect (RE) models are the commonly used methods of 

analyzing panel data regression. The major difference between these two models is 

the definition of the unobserved time invariant variable in the data set. However, the 
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problem of heteroscedasticity and influential observations (outliers in x or y direction) 

affects both the cross sectional and panel data estimators.  

1.2 Outliers in Linear Regression 

Outliers are those observations which are markedly far away from the majority of the 

data. Barnett and Lewis (1994) defined outliers as a set of data (or subset of 

observations) which appears to be inconsistent with the remainder of that set of data. 

There are different sources of outliers. It may be the natural feature of a population 

that is uncontrollable. It can result from typing error, measurement error, unusual 

values, transmission or copying error (Leroy and Rousseeuw, 1987). Imperfect 

collection of data is another source of outliers. 

The existence of atypical observations which often referred to as outliers is inevitable 

in real data sets (Hampel et al., 1986). Rousseeuw and Van Zomeren (1990) classified 

outliers into high leverage points (HLPs) and vertical outliers (VOs). Presence of 

anomalous observations especially HLPs in a data set invalidate classical statistical 

inference (Hampel et al., 1986). The OLS is inefficient and produce unreliable 

estimates even when a single outlying observation is added or present in a data set. 

Hampel et al. (1986) claimed that a routine data set typically contains about 1–10% 

outliers and even the highest quality data set cannot be guaranteed to be free of outliers 

In the case of linear regression, observations are judged as outliers on the basis of how 

the fitted regression equation accommodates them. Observations corresponding to 

excessively large residuals are treated as outliers. In OLS method, the residual mean 

square is generally used to estimate the variance of the errors. The residual mean sum 

of squares can be greatly inflated by outliers so that we may not be able to reliably 

estimate the variance of the errors and consequently the entire inferential procedure 

may be in fault. In the literatures there are several types of outliers for a regression 

problem. In regression problem if outlier occurs in Y direction it is called vertical 

outlier or residual outlier. Moreover, outlier may occur in X direction, usually called 

high leverage points (HLPs). The HLPs are classified into good and bad based on their 

effect to the model fit. Only bad leverage points influence the model fit, but not the 

good leverage points. The good leverage points have no effect or very little effect on 

the parameter estimates and may contribute to the precision of the estimates. 

1.2.1 Basic Properties of Robust Estimators 

Robust estimators target to provide useful information even if some of the parametric 

assumptions are violated. In linear regression analysis, the robust regression methods 

are used to produce resistance estimates, which lead to the stability in the results in 

the presence of unusual observations in a data set (for more details, one can refer to 

Huber, 1964; Hampel, 1974; Andrews, 1974; Ramsay, 1977; Simpson, 1995; 

Rousseeuw and Leroy,1987; Welcox, 2005; Marrona, 2006).  
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The objective of a robust estimator is to provide estimates based on the information 

contains by the majority of the data set. Moreover, robust regression aim to fit a model 

based on the information in the most of the data. The most fundamental or basic 

properties used to measure the performance of robust estimator are; efficiency, 

breakdown point and bounded influence. These three properties are introduced briefly 

as follows. 

1.2.1.1 Efficiency 

Efficiency of an estimator is the measure of the degree of a robust method performance 

relative to least squares method under it basic assumptions. Moreover, it can similarly 

be expressed as a percentage of the ratio between the variance of the least squares fits 

for a clean data (without outliers) and the variance of the robust fit (Maronna et al. 

2006). An efficient estimator is also the minimum variance unbiased estimator 

(MVUE) in which it attains the minimum variance for all parameter estimates. An 

estimator should also be precise, as measured by its statistical efficiency. The 

statistical efficiency of an estimator relies on the postulated distribution. For instance, 

the sample mean has the perfect efficiency of 100 percent at the normal distribution, 

but at other distributions its efficiency may become very low. According to Simpson 

(1995) efficiency near 90 to95 percent relative to OLS with normal random error is 

desirable. 

1.2.1.2 Breakdown Point 

The breakdown point (BP) is usually expressed as a percentage measure of resistivity 

of an estimator for a given amount of contamination (Hampel, 1974; Wilcox, 2005; 

Maronna et al., 2006). It is the smallest fraction of bad observation that can change an 

estimator dramatically by an arbitrary large value. In general, a large BP means that 

the estimator has an ability to withstand a large percentage of outliers without 

distraction the analysis. The breakdown point of an estimator 𝑇𝑥 given the data 

matrix𝑋𝑦, is, 

 

 

BP(𝑇𝑥/𝑋𝑦) = min {
𝑚

𝑛
: SUP
𝑋𝑦
∗
‖𝑇𝑥(𝑋𝑦) − 𝑇𝑥(𝑋𝑦

∗)‖ = ∞} 

 

 

where the supremum is over all possible data matrix 𝑋𝑦
∗  include of  𝑛 −𝑚 observation 

and 𝑚 contaminated points (Donoho and Huber, 1983; Leroy and Rousseeuw, 1987; 

Maronna et al. 2006). The least squares estimator has breakdown point as low as 1/𝑛 

(which sometimes referred to as zero percent) meaning that even a single outlying 

observation can make an estimator of OLS to be meaningless. However, there are 

some robust regression estimators that have high BP of approximately 50% (meaning 

that up to half of the data can be contaminated and the estimator can still be useful) 

such as least median of square, least trimmed square, S and MM-estimator. According 
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to Rousseeuw and Croux (1993) the highest possible BP is 50%, because the estimate 

keeps bounded when fewer than 50% of the data are replaced by outlying observation. 

 
 

1.2.1.3 Bounded Influence Function 

The bounded influence function (BIF) is another essential property of a robust 

estimator. The BIF referred to the ability of an estimator to control the amount of 

impact that outlying points in the X direction (i.e., high leverage points) have on model 

estimation (Simpson, 1995). Least squares are the most susceptible to high leverage 

points, but some robust methods also have unbounded influence. A study of the 

influence function determines whether or not an estimator has bounded influence. The 

influence function (IF) measures the robustness with respect to small amounts of 

contamination. Rousseeuw and Leroy (1987) described the IF of an estimator 𝑇𝑥 at a 

distribution F in those points 𝑥0 of the sample space where the limit exists as 

 

 

IF(𝑥0; 𝑇𝑥 , 𝐹) = lim
ε→∞

𝑇𝑥((1 − 𝜀)𝐹 + 𝜀𝜑𝑥0) − 𝑇𝑥(𝐹)

𝜀
. 

 

 

where 𝜑𝑥0 is the probability mas function of 𝑥0. The influence function explain the 

bias caused by adding a few outliers at the point 𝑥0, standardized by the amount 𝜀 of 

contamination (for more details, one can refer to Leroy and Rousseeuw, 1987; 

Simpson, 1995; Wilcox, 2005; Maronna, 2006; Andersen, 2008). 

 

 

1.3 Importance and Motivation of the Study 

The existence of unusual observations (high leverage point, outliers and influential 

observation) is very common in regression. Unfortunately, these anomalous 

observations are responsible for misleading conclusions about the fitting of a 

regression model. The diagnostic measure in regression dealing with high leverage 

point (outlying observations in x-direction) denoted by HLPs and outliers (outlying 

observations in y-direction) have very close ties with influential observations (IOs). 

Generally, any observation that individually or together with several other 

observations causes a large impact on the calculated values of various estimates 

(standard error, coefficients, t-values, p-values, etc) is referred to as IOs (Belsley et 

al., 1980). Andrews and Pregibon (1981) showed that outliers may have an influence 

on the parameter estimates. Chatterjee and Hadi (1986) pointed out that HLPs and 

outliers need not always be influential, and IOs are not necessarily be high leverage 

points. Since the IOs give a very bad effect on the parameter estimates, it is very 

imperative to identify them and their effect should be minimized. 
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Imon (2005) proposed a generalized version of DFFITS based on group deletion 

technique denoted by GDFFITS to detect IOs but the method is not successful to 

correctly identify multiple IOs. Pena (2005) introduced a new idea to measure the 

influence of an observation based on how this observation is being influenced by the 

rest of the data denoted by Si. The shortcoming of Pena’s method is that it is totally 

different from the way of measuring the influence of observations. To quote him, 

‘‘instead of looking at how the deletion of a point or the introduction of same 

perturbation affects the parameters, the forecasts, or the likelihood function, we look 

at how each point is influenced by the others in the sample. That is, for each sample 

point we measure the forecasted change when each other point in the sample is 

deleted’’. Imon et al. (2011) extend the idea of Pena to group deletion for identifying 

multiple IOs termed generalized version of Siwhich is denoted Mi. 

Recently, Nurunnabi et al. (2016) proposed new identification measure for IOs termed 

influential distance (ID) based on group detection technique for identifying multiple 

IOs. The technique has three major stages. The first stage identifies the suspected 

unusual observations to be deleted using a method termed Group Union Method 

(GUM), the second stage identifies HLPs and VOs, and the third stage computes the 

ID. This method is very good for the identification of IOs. However, the shortcoming 

of this method is that in the first stage it employed the union of five different detection 

methods (standardized studentized residual, standardized LMS residuals, leverage 

values or hat matrix, Cooks distance and difference in fits) for the identification of the 

suspected unusual observation that will form the deletion group. Some of these 

detection methods have been reported to have high rate of masking and swamping (for 

more details refer to Habshah et al., 2009). According to Hadi (1992) the choice of the 

initial suspected unusual observations is very important as it may lead to correct 

detection of the final IOs. Moreover, the computation of all these diagnostic methods 

takes a lot of computer times.    Additionally, the ID method only identified IOs but 

fail to differentiate between the good leverage points and IOs. Hence, ID incorrectly 

detects IOs. The good leverage observations have little or no effect on the parameter 

estimates (Habshah and Mohammed, 2015). This has motivated us to develop another 

version of ID named Fast Improvised Influential Distance denoted by FIID which is 

relatively simple and fast to compute and also separate IOs and good leverage 

observations. FIID does not consider the good leverage observations as IOs. 

The Heteroscedasticity Consistent Covariance Matrix (HCCM) estimator denoted by 

HC0 was proposed by White (1980) to remedy the problem of heteroscedasticity of 

unknown form in linear regression. It has been reported that the HCCM is biased in 

finite samples (MacKinnon and White 1985; Cribari-Neto and Zarkos 1999; Long and 

Ervin 2000). Later, MacKinnon and White (1985) proposed another HCCM estimator 

termed HC1 and HC2 to improve the efficiency of HC0. Davidson and MacKinnon 

(1993) slightly modified HC2 and named it HC3 which is closely approximated to 

jackknife estimator. Cribari-Neto (2004) proposed another HCCM estimator and 

named it HC4 where he adjusted the residuals by a leverage factor. Cribari-Neto et al. 

(2007) then proposed HC5 whereby they modified the exponent used in HC4 in order 

to consider the effect of maximal leverage.  
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However, the HCCM estimators are biased in the presence of IOs as they are based on 

OLS residuals. Furno (1996) proposed another HCCM where he employed residual of 

WLS instead of OLS, but the weight used is hat matrix. The hat matrix is reported to 

be inefficient as it suffers from masking and swamping effect (Habshah et al., 2009). 

Similarly, least median of squares (LMS) and least trimmed squares (LTS) residuals 

were considered by Lima et al. (2009), but the shortcoming of their methods is that it 

truncated some observations which may contribute to the precision of the estimate. 

Nonetheless, it is now evident that hat matrix is not successful in detecting IOs 

(Habshah et al. 2009). Also, the use of residual from LTS and LMS in the construction 

of HCCM performed poorly. Their work has inspired us to formulate a new robust 

estimation method based on our fast improvised influential distance (FIID) weighting 

method. The FIID classifies the observations into regular observation, good leverage 

and influential observations. The influential observations were down weighted as they 

are responsible for the deviation of the model fit. However, the good leverage 

observations were allowed to take part in the estimation as they will increase the 

precision of the estimate.  

Bagheri and Habshah (2015) highlighted that many statistics practitioners are not 

aware that those HLPs that changed the multicollinearity pattern of a data is referred 

to as High leverage collinearity influential observations (HLCIO). The presence of 

high leverage points may also change the heteroscedasticity pattern of a data and 

mislead the conclusion of statistical analysis.   It has been reported that HLPs is 

another source of heteroscedasticity (Rana et al., 2008; Alih and Choon, 2015). 

Habsshah et al. (2009) as well as Imon and Khan (2003) stated that the presence of 

HLPs in a data set makes the residual variances become heteroscedastic. To the best 

of our knowledge no research has been done to identify the type of outliers that are 

responsible for causing/affecting heteroscedasticity in a data set. Therefore, to fill the 

gap in the literature, we proposed a diagnostic method to identify the type of outliers 

that causes or affect heteroscedasticity problem. It is very important to identify these 

points as they are responsible for causing inconsistency and bias in OLS estimation. 

Moreover, identifying these observations is very important, to enable us to identify the 

actual source of the heteroscedasticity problem in order to provide appropriate 

remedial measure.  

This thesis also addressed panel data estimation method in the presence of 

heteroscedasticity and HLPs. As already mentioned, the commonly used estimation 

strategy in panel data is either fixed effect (FE) or random effect (RE) estimation. The 

classical estimation method employed the OLS to the demeaned transformed data or 

partially demeaned transformed data for FE and RE models, respectively. The 

demeaned transformation commonly known as mean-centering is the transformation 

of panel data within each time series by mean. The OLS method is known to be very 

sensitive to outliers particularly HLPs, even one HLPs is enough to breakdown the 

estimate of the OLS (Leroy and Rousseeuw, 1987). There are few researches on robust 

estimation technique for panel data, such as (Bramati and Croux, 2007; Baltagi, 2008; 
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Verardi and Wagner, 2011). Nevertheless, their techniques do not take into 

consideration the combined problem of HLPs and heteroscedasticity in panel data set. 

Mazlina and Habshah (2015) proposed a Within Group estimator based on robust MM 

and robust GM6 using robust centering method in which the data is centered by MM-

estimate of location (MM centering). This robust centering approach reduces the effect 

of HLPs and also increases the efficiency of the estimate. The weakness of their 

method is that it down weights all HLPs irrespective of whether they are Good HLPs 

or Bad HLP. 

Recently, Visek (2015) used the least weighted squares (LWS) to estimate the 

parameters of fixed and random effects models in panel data. He used classical 

centering method (mean centering) to transform the data and apply LWS, where the 

weight used was defined by the residual order statistic. The shortcoming of this 

method is that it employed mean centering which have been reported to perform 

poorly in the presence of HLPs (Bramati and Croux, 2007; Mazlina and Habshah, 

2015). Also, it is inefficient and provide inconsistent covariance matrix in the presence 

of heteroscedasticity of unknown structure. This motivated us to develop a robust 

estimation method for both FE and RE panel data regression models in the presence 

of heteroscedasticity and HLPs based on FIID weighting method for robust HCCM 

estimator. The good leverage observation were not down weighted, instead they were 

allowed to take part in the estimation. Moreover, the MM centering approach was 

employed in our new estimation technique instead of mean centering used by Visek 

(2015) and median centering used by Bramati and Croux (2007). 

In this thesis, the Hausman pretest for panel data models is also addressed. The 

classical Hausman pretest is the commonly used method in order to determine whether 

random or fixed effect panel data models should be used. However, in the presence of 

heteroscedastic error variances and HLPs or IOs in the data set, the classical Hausman 

test provides incorrect and misleading result. Nevertheless, the remedy of the 

combined problem of Heteroscedasticity and HLPs or IOs on Hausman test is still 

missing in the literature. This inspired us to propose a robust Hausman pretest based 

on our newly developed robust FE and robust RE estimation method. 

1.4 Research Objectives 

The aim of this thesis is to investigate the problems of heteroscedasticity of unknown 

form for linear regression and panel data regression models in the presence of HLPs. 

The classical estimation methods for a heteroscedastic model mostly are based on OLS 

estimates. Whereas, the OLS estimate are known to be very sensitive to HLPs. 

Moreover, there is strong evidence that the presence of HLPs causes heteroscedasticity 

in a data set. Therefore, it is important to detect these HLPs and provide a new 

estimation technique for a heteroscedastic model when there exist HLPs in the data 

set. The objectives of our research were systematically outlined as follows: 
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1. To develop a new fast method for detecting influential observations in multiple 

linear regression. 

2. To formulate a new weighting method for robust HCCM estimator based on Fast 

Improvised Influential Distance (FIID) and DRGPISE in the presence of 

heteroscedasticity and IOs in multiple linear regression. 

3. To formulate a new robust diagnostic methods and remedial measures for the 

heteroscedasticity influential observations (HIO) in multiple linear regression. 

4. To establish a new robust estimation method for fixed effect (FE) and random 

effect (RE) panel data regression models based on FIID in the presence of 

heteroscedasticity and IOs. 

5. To develop a robust Hausman specification test based on proposed robust 

estimation method for FE and RE models in the presence of heteroscedasticity and 

IOs in panel data regression model. 

 

 

1.5 Scope and Limitation of the Study 

High leverage points as a source of heteroscedasticity is relatively a new area in robust 

statistics. To the best of our knowledge no research has been done to identify these 

points. As such, no much referred real datasets in the literature. 

The robust estimation technique for heteroscedastic panel data needs to be addressed, 

due to the advantages it possessed. That is, having two dimensionalities (cross-section 

and time series). Panel data can be applied in many areas of research especially 

economics and finance. The robust techniques are still new in panel data estimation 

especially the random effect model.  Therefore, not much algorithms exist in literature 

concerning robust estimation in panel data. The most critical part is the development 

of the programming codes since most of the statistical software’s does not have the 

robust function for panel data. 

Due to space constraint, throughout the thesis we only report the results for p=3. 

However, the result for p=5, 10 are also consistent. 

1.6 Outline of the Thesis 

In accordance with the research objectives and the scope of the study, the contents of 

this thesis are organized into eight chapters. The thesis chapters are structured in such 

a way that the objectives are apparent and arrange in the sequence outlined. 

Chapter Two: This chapter presents a brief review of the ordinary least squares 

estimation of regression parameters, violations from its assumptions and the basic 

concepts of robust regression. The diagnostic methods of high leverage points and 

vertical outliers were reviewed. Moreover, some existing robust regression methods 

for parameter estimation in the presence of HLPs and vertical outliers are also 
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presented. The literature reviews on heteroscedasticity with example and its 

consequences and, heteroscedasticity with its usual detection and estimation 

techniques. Some literatures in fixed and random effect panel data estimation are 

presented. Finally, brief reviews of Hausman pretest for panel data are also included 

in this chapter 

Chapter Three: This chapter briefly discussed the influential distance (ID) method 

for identifying multiple influential observations. The new method for the identification 

of multiple influential observations termed Fast Improvised Influential Distance 

(FIID) is presented. Several well-referred real data set and Monte Carlo Simulation 

study to evaluate the performance of the proposed method are presented. 

Chapter Four: This chapter deals with the new proposed weighting method and 

estimation technique for multiple linear regression model in the presence of 

heteroscedasticity and high leverage points. The classical and robust 

Heteroscedasticity Consistent Covariance Matrix (HCCM) Estimators are presented. 

The new proposed robust HCCM estimator is described. The new proposed estimation 

technique involves classifying the observations into regular observations, good 

leverage points and influential observations. But, only influential observations will be 

down weighted. The WLS based on FIID is used to estimates the parameters. The 

numerical examples and simulation study are presented. 

Chapter Five: This chapter is divided in to two sections;  

First section: Investigate the type of outliers that are responsible for causing/affecting 

heteroscedasticity in a data set. Heteroscedasticity-Influential Observations (HIO) 

diagnostic for both homoscedastic and heteroscedastic data set is introduced. The 

White test and proposed robust White test are discussed. The TSRWLS and proposed 

MTSRWLS with real data examples and simulation study are presented. 

Second section: This section provides appropriate remedial measure for 

Heteroscedasticity- Influential Observations (HIO). The remedial measure is based on 

a new version of GM6 estimator denoted as GM-FIID is presented. Lastly, simulation 

study and real data examples to evaluate the performance of the proposed method is 

presented. 

Chapter Six: This chapter is divided into two sections;  

First section: In this section, the fixed effect (FE) panel data estimation is briefly 

discussed. The demeaned centering method has been presented. The new proposed 

estimation technique for FE panel data model in the presence of heteroscedasticity and 

HLPs is introduced. Finally, the simulation study and real data examples are presented. 
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Second section: deals with the random effect (RE) panel data regression model. The 

estimation for RE model is introduced. The partially demeaned centering is presented. 

Also, the new proposed estimation method for RE model in the presence of 

heteroscedasticity and HLPs is discussed. And lastly, the simulation study and real 

data examples are presented. 

Chapter Seven: In this chapter, the conventional Hausman pretest for panel data 

model is presented. The proposed robust Hausman pretest for panel data model is 

introduced. Also, distribution of the proposed robust Hausman pretest is discussed. 

The simulation and real data examples to evaluate the proposed method are presented. 

Chapter Eight: This chapter presents the summary and general conclusion of this 

thesis. Also, some recommendations for areas of further research has been presented 
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