
 
 

 
STABILITY ANALYSIS ON BOUNDARY LAYER FLOW IN NANOFLUID 

OVER A FLAT SURFACE UNDER VARIOUS EFFECTS 
 

 
 
 
 
 
 
 
 
 

NAJWA BINTI MOHD NAJIB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IPM 2019 2 



© C
OPYRIG

HT U
PM

STABILITY ANALYSIS ON BOUNDARY LAYER FLOW IN NANOFLUID
OVER A FLAT SURFACE UNDER VARIOUS EFFECTS

By

NAJWA BINTI MOHD NAJIB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

April 2019



© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial
use of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia



© C
OPYRIG

HT U
PM

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

STABILITY ANALYSIS ON BOUNDARY LAYER FLOW IN NANOFLUID
OVER A FLAT SURFACE UNDER VARIOUS EFFECTS

By

NAJWA BINTI MOHD NAJIB

April 2019

Chairman: Norfifah binti Bachok @ Lati, PhD
Institute: Institute for Mathematical Research

Consideration of steady boundary layer flow, heat and mass transfer filled
with nanofluids over a moving, stretching or shrinking surfaces are investigated
numerically. The models used for solving nanofluids problems in this thesis are
Buongiorno’s model and Tiwari and Das model. The governing partial differential
equations corresponded to the boundary conditions are transformed into ordinary
differential equations using a suitable similarity transformation. The stability
analysis is derived by introducing the partial differential equations in unsteady case.
These equations are then solved by using bvp4c function.

The numerical results of skin friction, heat and mass transfer coefficient as well
as velocity, temperature and concentration profiles for both models are presented
in tables and graphs with respect to the governing parameters, namely, moving
parameter, stretching or shrinking parameter, suction parameter, first order slip
and second order slip parameters, Brownian motion parameter, thermophoresis
parameter, nanoparticles volume fraction, types of nanoparticles, Soret number,
Dufour number and Biot number. Comparison of results with the previous studies
is done to validate the present results. It is found that the behavior of the flow, heat
and mass transfer are influenced by the corresponded parameters. Since all problems
posses dual solutions, the stability analysis is performed to verify which solutions
are stable and physically realizable.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISIS KESTABILAN DI ATAS ALIRAN LAPISAN SEMPADAN
DALAM NANOBENDALIR TERHADAP PERMUKAAN RATA DI BAWAH

BEBERAPA KESAN

Oleh

NAJWA BINTI MOHD NAJIB

April 2019

Pengerusi: Norfifah binti Bachok @ Lati, PhD
Institut: Institut Penyelidikan Matematik

Pertimbangan aliran lapisan sempadan yang mantap, pemindahan haba dan
jisim yang diisi dengan bendalir nano di atas permukaan bergerak, meregang
atau mengecut diselidiki secara berangka. Model yang digunakan untuk
menyelesaikan masalah nanobendalir dalam tesis ini adalah model Buongiorno
dan model Tiwari dan Das. Persamaan pembezaan separa menakluk dengan
syarat sempadan dijelmakan kepada persamaan pembezaan biasa menggunakan
penjelmaan keserupaan yang sesuai. Analisis kestabilan diperoleh dengan
memperkenalkan persamaan pembezaan separa dalam kes aliran tak mantap.
Persamaan ini seterusnya diselesaikan dengan menggunakan fungsi bvp4c.

Keputusan berangka untuk pekali geseran kulit, pemindahan haba dan jisim serta
profil halaju, suhu dan kepekatan bagi kedua-dua model ditunjukkan dalam bentuk
jadual dan graf terhadap parameter-parameter yang menakluk, iaitu parameter
nisbah halaju, parameter regangan atau kecutan, parameter sedutan, parameter
gelinciran peringkat pertama dan kedua, parameter gerakan Brownian, parameter
termoforesis, pecahan isipadu nanozarah, jenis nanozarah, nombor Soret, nombor
Dufour dan nombor Biot. Perbandingan keputusan dengan kajian terdahulu
dibuat bagi mengesahkan keputusan kajian. Didapati bahawa ciri-ciri aliran,
pemindahan haba dan pemindahan jisim dipengaruhi oleh parameter-parameter
menakluk tersebut. Oleh kerana semua masalah mempunyai penyelesaian dual,
analisis kestabilan dilakukan untuk mengesahkan penyelesaian mana yang stabil dan
boleh direalisasikan secara fizikal.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis focuses on the mathematical model that resembles reality by using
mathematical language without experimenting. Additionally, the model can be fixed,
modified or sometimes might be use in research or being reference to build a good
model. Throughout this chapter, the main terms or keywords used in this thesis will
be elaborated. The problem statements, objectives, scopes, significance of study and
the outline of the thesis are also discussed in this chapter.

1.2 Boundary Layer Flow

Boundary layer flow refers to a thin layer of viscous fluid adjacent to a solid surface
with a moving stream in which (within it boundary layer thickness) the velocity
varies from zero at the wall up to the velocity at the boundary or also called as the
free stream velocity, refer Figure 1.1. The concept of boundary layer flow was
introduced by Ludwig Prandtl in 1904 that triggering revolution the understanding
and analysis of fluid dynamics. The main idea proposed by Prandtl is that the flow
can be divided into two parts which are inviscid flow at the main region and the thin
layer adjacent to the solid surface or known as a boundary layer, Anderson (2005).
At the boundary layer, the friction force has to be considered whereas the friction
force outside the boundary layer are very small and can be neglected, Schlichting
(1979). According to Prandtl, the Navier-Stokes equations can be simplified using
the boundary layer concept. Furthermore, he claimed that the significant of viscosity
effect on fluid flow for Reynolds number are higher, Re >> 1.

Figure 1.1: The physical model of boundary layer flow
(https://en.wikipedia.org/wiki/Boundary layer thickness)
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Prandtl number Pr is a dimensionless number represents the ratio of momentum
diffusivity (kinematic viscosity) to the thermal diffusivity. Pr is defined as

Pr =
µcρ

k
=

ν

α
=

viscous diffusion rate
thermal diffusion rate

, (1.2.1)

where µ is the dynamic viscosity, cρ is the specific heat, ρ is density, ν is the
kinematic viscosity and α is thermal diffusivity. If the fluid has higher viscosity then
Pr is greater and hence the heat transfer rate will be less convective. Pr obviously
influences the thermal boundary layer thickness and heat transfer depending on the
fluid properties.

• Gases: Pr = 0.7 to 1

• Water: Pr = 1 to 10

• Liquid metals: Pr = 0.001 to 0.03

1.3 Stagnation Point Flow

Stagnation point can be described as a point in a flow region where the local fluid
velocity is zero. At the plate surface (x = y = 0) there exist a point called stagnation
point where the fluids come to the rest by the plate.

Stagnation point flow is the motion of fluid near the stagnation point where the fluid
pressure, heat transfer and rates of mass deposition are highest. The free stream is
divided into half after its coming through the stagnation point. Along the dividing
streamline, the fluid moves towards the plate, refer Figure 1.2.

Figure 1.2: Stagnation point flow
(https://www.transtutors.com)
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1.4 Heat Transfer

Heat transfer can be defined as a movement of heat from higher temperature towards
lower temperature across the boundary layer system to its surroundings. The
phenomena of heat transfer in boundary layer can be referred when the plate or
surface of the boundary layer is heated from the bottom. Then the heat flows from
the bottom of the plate towards the surroundings till reach the same temperature, at
which the plate and its surroundings are said to be in thermal equilibrium.

There are three modes of heat transfer such as conduction, convection and radiation.
The description of each modes are describe below:

• Conduction or also known as diffusion is the transfer of heat between two solid
bodies through direct contact. For example, the heat burners on the stoves will
conduct heat energy to the bottom of a pan and thus the pan conducts heat to
its contents as illustrated in Figure 1.3. Another example related to our study
is when one end of the metal such as copper is heated then, the other end of the
copper metal also get heated due to diffusion of heat transfer from the heated
side.

Figure 1.3: Conduction heat transfer
(http://swtechfire.com/fundamentals-of-fire-engineering)

• Convection describes as a transfer of heat between the solid surface and the
liquid, see Figure 1.4. There are two types of convection which are natural and
force convection. The natural convection occurs when molecules or particles
at the bottom of a cooking vessel rise and warm while cooler and heavier
particles sink. Hence, a circulation will occur that evenly distributed heat
throughout the substances. One of the examples of this situation can be found
when heating the water in the pot where the heated water from the bottom of
the pot will boil and circulate in the pot. The force convection happens when
the streams and currents in the fluid are induced by the external forces such
as fans, stirrers, and pumps. The examples of this situation including stirring
liquid in a pot or uses a fan in the exhaust system of the oven to blow hot air
over and around the food.
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Figure 1.4: Convection heat transfer
(https://www.jobilize.com)

• Radiation is the term used when two bodies are at different temperatures
and separated by distance, refer Figure 1.5. Differ from convection and
conduction, there is no medium to transfer the radiation heat. The radiation
heat transfer occurs because of the electromagnetic waves that exist in the
atmosphere. The natural phenomena of radiation is the heat of the sun coming
on the earth.

Figure 1.5: Radiation heat transfer
(https://www.ck12.org)

However, only convection heat transfer is taken into consideration in this thesis.
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1.5 Mass Transfer

Mass transfer can be described as a net movement of mass (commonly in stream,
phrase, fraction or components) from one location to another location. In our related
study, the term mass transfer also known as diffusive and convective transport of
chemical species within physical system (boundary layer flow). The simplest case
of mass transfer can occur in a medium at rest in which the force is driven by the
concentration differences in adjacent regions of the medium and the mechanism
called as molecular diffusion. Technically the movement of mass transfer will diffuse
from higher concentration towards the lower concentration due to mass flux.

The applications of mass transfer processes in nature are numerous such as the the
evaporation of water from a pond to the atmosphere, the purification of blood in the
kidneys and liver. Some industrial processes involve mass transfer can be found in
emulsification process, distillation of alcohol, separation of chemical components
in distillation columns, adsorbers in activated carbon beds and also in liquid-liquid
extraction which can be refered in Figure 1.6. The mass transfer process is also
significant in an industrial cooling tower where there also involved heat transfer in
this process. The cooling tower combines heat transfer to mass transfer by allowing
hot water to flow directly into the air. Then the water is cooled by expelling its
contents in water vapor form.

Figure 1.6: Mass transfer processes
(http://folk.uio.no/ravi/cutn/pmat/4.diffusion+ficks.pdf)
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1.6 Nanofluid

Nanofluid is a fluid containing micrometer or nanometer sized particles which
diameter of particles in between 0 to 100nm size. The nanoparticles used in
nanofluids are commonly made of metals, oxides, carbides or carbon nanotubes
whereas the common base fluid namely water, ethylene glycol and oil. However,
the mentioned common base fluid have poor capability to enhance the thermal
conductivity of the fluid. Hence, an alternative solution has been engineered by
suspending nanoparticles into the base fluid. This is because, the collision of
nanoparticles in base fluid are the best technique to enhance thermal conductivity
of the fluid. According to Choi (1995) by adding a small portion (< 1% volume
fraction) of nanoparticles into the base fluid will enhance the thermal conductivity
twice. This is because the nanometer sized nanoparticles acts like a fluid molecules
Khanafer et al. (2003). The example of cross section structure of nanofluid is
displayed in Figure 1.7. The chemical and physical properties of nanoparticles
lead to increase in thermal conductivity of the fluid itself and also increase in heat
transfer rate, Das et al. (2008). The nanoparticles can be found in various form
such as in sphere, rod or cubic and can be scattered individually. In this thesis only
nanoparticles in sphere form is taken into consideration.

There are a few models constructed by researchers to determine the effectiveness
of thermal conductivity of nanofluid theoretically such Khanafer et al. (2003),
Buongiorno (2006), Tiwari and Das (2007), Nield and Kuznetsov (2009) and
Kuznetsov (2010). However, only Buongiorno (2006) and Tiwari and Das (2007)
model will be discussed throughout this thesis.

Figure 1.7: The cross-section of nanofluids
(https://aip.scitation.org/doi/pdf/10.1063/1.5018569)
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1.6.1 Buongiorno Model

Buongiorno model is a two phase model where slip velocity between the base fluid
and nanoparticles are not equal to zero. This condition happens due to several factors
such as gravity, friction between the base fluid and nanoparticles, Brownian motion
and thermophoresis. Buongiorno (2006) proposed seven slip mechanisms which
results in relative velocity between the nanoparticles and the base fluid. These are
inertia, Brownian motion, thermophoresis, diffusiophoresis, Magnus effect, fluid
drainage, and gravity. Out of these seven mechanisms only Brownian motion
and thermophoresis are important in solving nanofluid problems using Buongiorno
model. These two mechanisms play an important role in heat and mass transfer and
can be described as below:

• Brownian motion: A random motion of particles within the base fluid.
The Brownian motion only exists when the particles are very small and
can vanishes when the particles size becomes larger, Prasher et al. (2006).
According to Malvandi et al. (2016), the smaller nanoparticles are able to
accumulate at the heated wall and enhance the heat transfer rate whereas
the larger nanoparticles depletes at the heated wall and at once prevents
considerable enhancement in heat transfer rate.

• Thermophoresis: A diffusion of particles under the effect of a temperature
gradient which means higher energy particles at the higher temperature
produce a greater momentum than the particles at the lower temperature.
Besides that, the effects of thermophoresis also can be found in mass transfer.
According to Bahiraei (2017), the larger particles results in non-uniform
concentration distribution. Therefore, smaller particles are very good medium
for enhancing of heat and mass transfer.

1.6.2 Tiwari and Das Model

Tiwari and Das (2007) model is a single phase model where the fluid and the particles
are assumed to be in thermal equilibrium and move with the same velocity with
no slip condition is applied. This model considers the viscosity model introduced
by Brinkman (1952) and Maxwell-Garnet thermal conductivity. The nanoparticles
volume fraction play an important role in this model to increase the heat transfer rate.
The effectiveness of thermal conductivity in nanofluid depends on the increment in
the nanoparticles volume fraction, Karthikeyan et al. (2008). Jang and Choi (2007)
reported that small amount of nanoparticles volume fraction is sufficient to enhance
the conventional heat transfer.
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1.7 Slip Velocity

The first order slip or partial slip condition proposed by Navier in 1823 is defined as

u(x,y) = A
∂u
∂y

, (1.7.1)

where u is the fluid velocity, A is the slip length, ∂u
∂y is the shear stress at the boundary

and y is the coordinates tangential to the surface. The velocity component normal to
the surface is naturally zero as mass cannot penetrate an impermeable solid surface,
see Figure 1.8.

Wu (2008) has introduced the new slip condition named second order velocity
slip. This model was formulated from the kinetic theory under the deeper physical
consideration between gas molecules and walls to improve the first order slip model
(Maxwell slip model), second order slip model, 1.5 order slip model. This is because,
the prediction of mentioned slip models start to deviate from linearized Boltzmann
solution when the Knudsen number becomes greater than 1. Therefore, the improved
second order slip model proposed by Wu (2008) is convenient to apply and also gives
reliable predictions at high Knudsen number.

Figure 1.8: The slip length along flat plate
(https://pubs.rsc.org/en/content/getauthorversionpdf/C5AY00574D)
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1.8 Soret and Dufour Effects

Soret effect or also known as thermodiffusion is a diffusion of particles from
higher temperature towards lower temperature due to mass flux. Dufour effect
(diffusion-thermo) is a reverse phenomenon of Soret effect where the particles are
diffused from higher concentration to the lower concentration due to energy flux.
According to Kafoussias and Williams (1995) and Bhattacharyya et al. (2014),
both Soret and Dufour effects were formulated from the kinetic theory of gases
by Chapman and Cowling (1952). The necessary formulae was derived in details
to describe these two effects for monatomic gases and polyatomic gas mixture by
Hirshfelder et al. (1954).

1.9 Thermal Convective Boundary Condition

The thermal convective boundary condition is described when the bottom surface
of the plate is heated by convection from a hot fluid, see Aziz (2009). The
parameter involving in this convective boundary condition is Biot number, which
was introduced by French physicist Jean Baptiste Biot in 1804. He analyzed
the interaction between conduction in a solid and convection at its surface. In
addition, Biot number also can be defined as the ratio of the convective heat
resistance within the boundary layer to the convective heat transfer resistance across
the boundary layer. According to Isa et al. (2017), the convective heat transfer
involves in engineering procedures, namely, nuclear plants, gas turbines and storage
of thermal energy.Such processes obtain high temperature which flow is subject to
the convective boundary condition.

1.10 Stability Analysis

Stability analysis is an analysis to validate which solutions are a stable solution
and physically realizable by determining the smallest eigenvalue γ . Based on the
literature review, the stability analysis was introduced by Merkin (1985) in order
to determine the stability analysis of the solutions since they realized that there exist
dual or more solutions in boundary layer flow. The stable solution defined when there
exist an initial decay that does not interrupt the boundary layer flow. Meanwhile,
the unstable solution is taken when there exist an early growth or disruption in the
boundary layer flow.
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1.11 Problem Statements

The problems regarding the boundary layer flow over a moving plate as well as
stretching or shrinking surface in nanofluid in the presence of second order velocity
slip at the boundary are getting more interest by the authors. Besides that, the
performing of stability analysis in each study gained attraction among the researchers
because they can know which solutions are stable and physically realizable. Hence,
some of the statements that can be made are:

1. What are the parameters contributing to the existance of dual solutions?

2. What are the parameters contribute to the expansion of the solutions obtained?

3. Whether first or second solution is a stable solution?

4. How does the nanofluid affect the skin friction, heat and mass transfer
coefficient?

5. How does the presence of slip parameters, Biot, Soret as well as Dufour
number affect the skin friction, heat and mass transfer coefficient?

1.12 Objectives and Scopes

The objectives of this thesis are to provide the mathematical formulation, create an
algorithm and solve computationally using bvp4c function in Matlab software for
the five problems below:

• Boundary layer flow of nanofluids over a moving surface in a flowing fluid
in the presence of second order slip using Buongiorno model and perform the
stability analysis.

• Flow and heat transfer of nanofluids over stretching or shrinking surface in
the presence of second order slip and thermal convective boundary condition
using Buongiorno model and perform the stability analysis.

• Stagnation point flow in nanofluids over stretching or shrinking surface in
the presence of second order slip, Soret and Dufour effects using Buongiorno
model and perform the stability analysis.

• Boundary layer flow, heat and mass transfer of nanofluids over a moving
surface in the presence of Soret and Dufour effects using Tiwari and Das model
and perform the stability analysis.

• Stagnation point flow in nanofluid over stretching or shrinking surface in the
presence of second order slip, Soret and Dufour effects using Tiwari and Das
model and perform the stability analysis.
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The scopes of this thesis are to focus on a steady two-dimensional laminar flow
towards the horizontal surface with various boundary conditions such as second order
velocity slip and thermal convective boundary condition as well as with Soret and
Dufour effects at the heat and mass transfer over a moving plate and stretching or
shrinking surface in nanofluids by using Buongiorno model (2006) and Tiwari and
Das model (2007). The steady state refers to when all governing parameters involved
namely, temperature, pressure and the flow rates are not changing due to time.

1.13 Significance of Study

The boundary layer characteristics on a moving surface is an important type of
flow occurring in many industrial and technological processes. The examples of
practical application of a continuous moving surface shall be referred in the boundary
layer along a liquid film in condensation processes and a polymer sheet or filament
extruded continuously from a dye, or a long thread traveling between a feed roll and
a wind-up roll on conveyor belts, Patil et al. (2009). The applications of stretching
or shrinking sheets in industrial fields such as paper production, hot rolling, wire
drawing, glass-fiber production and aerodynamic extrusion. The cooling of a long
metallic wire in a bath (an electrolyte) is one of the physical situation belonging
to stretching or shrinking sheets category. Flow due to a stretching surface can
be found in glass blowing, continuous casting, and spinning of fibers. During its
manufacturing process, a stretched sheet interacts with the ambient fluid thermally
and mechanically. The final products are depending on the effectiveness of heat
transfer and cooling system in order to achieve top quality.

Many engineering and industrial processes involve heat transfer by means of
a flowing fluid in either laminar or turbulent flow. A decrease in thermal
resistance of heat transfer in the fluids would definitely benefit many of these
applications. As known, nanofluids have the potential to reduce thermal resistance
in industrial processes such as electronics, medical, food and manufacturing
would benefit from such improved heat transfer, see Shateyi and Prakash (2014).
Moreover, the applications of nanofluids include hybrid-powered engines, fuel
cells, pharmaceutical applications, refrigeration, food processing industry and
automotives, see Ramzan and Yousaf (2015).

The no-slip condition is no longer applicable in some cases such as in the
macroscopically physical phenomenon in fluid mechanics. Based on the experiment
by Cottin-Bizonne et al. (2005), the empirical non-slip boundary condition may
break down depending on the fluid properties and the interfacial roughness.
Therefore, the slip effect should be taken into consideration which leads to the
requirement of a slip boundary condition, Khader (2014). There are many Newtonian
and non-Newtonian fluids which will involve slip regime like particulate fluid
and rarefied gases. The typical examples are gas flows inside nanotubes, and air
lubrication of head-disk interface of disk drives. In addition, wall slip readily
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occurs for an array of complex fluid such as emulsions, suspensions, foams, and
polymer solutions, see Sharma and Ishak (2016). Some applications involving slip
in fluid mechanics can be detected in flow of rarefied gases at low Knudsen number
(Sharipov and Seleznez (1998)), flow past superhydrophobic microsurfaces (Choi
and Kim (2006) and Ng and Wang (2009)) and flow against rough surfaces (Wang
(2003)). Also, the fluids that exhibit boundary slip have important technological
applications such as in the polishing of artificial heart valves and internal cavities,
see Khader (2014).

According to Bonner and Sundelof (1984) and Platten (2006), the role of the Soret
effect has been evoked in biological systems, namely as mass transport across
biological membranes induced by small thermal gradient in living matter where
thermodiffusion could assume a sizable magnitude for an ensemble of cells with
the dimension of an organ or a tumor. Thermodiffusion (Soret effect) has numerous
industrial applications such as optimum oil recovery from hydrocarbon reservoirs,
fabrication of semiconductor devices in olten metal and semiconductor mixtures as
well as separation of species such as polymers, manipulation of macromolecules
such as DNA, see Eslamian (2011). The application involves both Soret and Dufour
effects are important in areas such as hydrology, petrology, and geosciences.

In addition, the convective heat transfer becomes very important in processes
involving high temperature such as gas turbines, nuclear plants and thermal energy
storage, see Fenuga et al. (2018). These processes obtain high temperature, which
the flow is subjected to the convective boundary condition. Lastly, the significant of
analyzing the stability analysis is to determine which solutions are stable and at the
same time physically applicable. Therefore, as a mathematicians, we will convince
the engineers to choose the stable solution rather than unstable solution when they
want to do an experiment.

1.14 Outline of the Thesis

There are nine chapters in this thesis including this chapter. Chapter 1 is discussing
the research background, problem statements, objectives, scopes and significance
of study. The literature reviews on the studied problems are presented in Chapter
2. Chapter 3 discusses the derivation of the Buongiorno’s model and Tiwari and
Das model that have been used in this study to solve the nanofluid problems. The
numerical method on how to apply the ordinary differential equations into the bvp4c
function is explained in details in Chapter 3.

Chapter 4 until 6 consider the stability analysis and mathematical modeling on
boundary layer flow, heat and mass transfer in nanofluid using Buongiorno’s model
(2006) over a moving plate as well as stretching or shrinking surface. In particular,
Chapter 4 discusses the effects of second order slip at the boundary on the moving
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plate in the nanofluid. Next, Chapter 5 studies the effects of second order velocity
slip together with the presence of thermal convective boundary conditions on the
boundary layer flow over a stretching or shrinking surface. Effects of Soret and
Dufour on energy and concentration equation are studied in the presence of second
order velocity slip immersed in nanofluid is considered in Chapter 6. In these three
chapters, the effects of velocity ratio parameter between the plate and the free stream,
stretching or shrinking parameter, Brownian motion and thermophoresis parameter
towards the flow behavior, heat and mass transfer is studied.

Chapter 7 and 8 discuss the stability analysis and mathematical modeling on
boundary layer flow, heat and mass transfer in nanofluid using Tiwari and Das model
(2007) over a moving plate and also stretching or shrinking surface. Both problems
discuss how the Soret and Dufour effects affected the heat transfer and mass transfer
at the surface. In addition, the presence of second order velocity slip at the wall is
studied in Chapter 8. In these two chapters, the effects of velocity ratio parameter
between the plate and the free stream, stretching or shrinking parameter and also the
nanoparticle volume fraction towards the flow behavior, heat and mass transfer is
studied.

Lastly, conclusions of all problems and future work are presented in Chapter 9.
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