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Abstract

Previous multi step method using a divided difference formulation for solving higher
order ordinary differential equations (ODEs) requires calculating the integration co-
efficients at every step. In the current research, a multi step method in backwards
difference form is established. The backward difference formulation offers a solution
to the tedious calculation of integration coefficients. Rather than calculating inte-
gration coefficients at every step change, a backward difference formulation requires
calculating integration coefficients only once in the beginning and if required once
more at the end. The proposed method will also be equipped with a variable order
step size algorithm to reduce computational cost (calculation time). Both linear and
nonlinear second order ODEs will used to validate the accuracy and efficiency of the
proposed method.

Keywords: ODE, backward difference, multistep method.

14.1 Introduction

Various of science and engineering problems are found in the form of higher order
Ordinary Differential Equations (ODEs). A few examples where these problems can
be found are, in the motion of projectiles, the bending of a thin clamped beam
and growth population. Previously, it was common practice to solve these higher
order ODEs by reducing them to a system of first order equations. These methods
worked, so that methods for solving higher order ODEs were disregarded as robust
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codes. In this research, an efficient algorithm for solving higher order, or in the
current case second order ODEs with Initial Value Conditions (IVCs) directly using
variable order step size method in backward difference formulation is developed.
The advantages of solving second order systems directly compared to reducing it to
first order systems will be apparent.

The approach for solving ODEs using multistep methods was made popular by
authors such as [1–4]. Beginning from reduction to first order method to the current
method of solving higher order ODEs directly. Suleiman in [4] initially proposed
solving higher order ODEs using a divided difference multistep method. This lead
to the current interest of using multistep methods for solving higher ODEs directly.
Suleiman [4] designed a multistep code for solving stiff and nonstiff higher order
ODEs directly without the need for reducing the problems to first order. This
method was regarded as the Direct Integration (DI) method. The drawback of
the proposed DI method was the tedious calculations of the divided differences in
computing integration coefficients at every step change. Current research influenced
by the works of [4] includes research by authors such as [5], [6, 7], [8–10], [11, 12]
and [13–16].

In the current research, a multistep method based on backward difference for-
mulation in predictor-corrector mode is established with variable order step size
capability. The derivation of the proposed method begins as follow.

14.2 Derivation of The Predictor-Corrector Formula-
tion

First consider the second order ordinary differential equation (ODE) in the general
form

y′′ = f(x, y, y′), (14.1)

with Ỹ (α) = η̃ as the initial solution in the interval α ≤ x ≤ β, and the initial value
conditions are given by

Ỹ (x) = (x, y, y′), η̃ = (η, η′). (14.2)

In order to obtain the predictor, the explicit integration coefficients need to be
established.

14.2.1 Explicit Coefficients

For the evaluation of the explicit integration coefficients, yn+1 consider the second
order ODE in (14.1). The derivation begins by integrating equation (14.1), once as
follows

xn+1∫
xn

y′′(xn+1)dx =

xn+1∫
xn

f(x, y, y′)dx. (14.3)

This yields

y′(xn+1) = y′(xn) +

xn+1∫
xn

f(x, y, y′)dx. (14.4)
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Next, f(y, y′) is interpolated by the Newton-Gregory backward difference polyno-
mial, Pn(x)

Pn(x) =
k−1∑
i=0

(−1)i
(
−s
i

)
∇ifn, s =

x− xn
h

. (14.5)

and substituting dx = hds changes the limit of integration, thus giving

y′(xn+1) = y′(xn) +

1∫
0

k−1∑
i=0

(−1)i
(
−s
i

)
∇ifn hds. (14.6)

By denoting, γ1,i by

γ1,i = (−1)i
1∫

0

(
−s
i

)
ds.

and substituting γ1,i into equation (14.6) yields

y′(xn+1) = y′(xn) + h
k−1∑
i=0

γ1,i∇ifn ds, (14.7)

This is followed by defining the generating function, G1(t) of the coefficients γ1,i

as

G1(t) =
∞∑
i=0

γ1,it
i. (14.8)

Then by substituting γ1,i in the generating function as defined in (14.8) and solving
the integral gives

G1(t) = −
[

(1− t)−1

log(1− t)
− 1

log(1− t)

]
. (14.9)

The 2nd order generating function, G2(t) is obtained by integrating equation
(14.1) twice, followed by repeating steps from equation (14.3) to (14.8), hence

G2(t) =

[
1

log(1− t)
− −1

log(1− t)

[
(1− t)−1

log(1− t)
− 1

log(1− t)

]]
. (14.10)

The generating function, G2(t) then can be rewritten in terms of G1(t)

G2(t) =

[
1

log(1− t)
− G1(t)

log(1− t)

]
.

14.2.2 Implicit Coefficients

The implicit integration coefficients can be obtained in a similar manner as the
explicit coefficients with some subtle differences. As the prior, the derivation of
the implicit coefficients also begins with equation (14.3). Again, using the Newton-
Gregory backward difference polynomial to interpolate, f(y, y′) with the difference
of substituting

s =
x− xn+1

h
,

160



Seminar on Mathematical Sciences (SOMS) 2019

thus, resulting in

y′(xn+1) = y′(xn) +

0∫
−1

k−1∑
i=0

(−1)i
(
−s
i

)
∇ifn hds. (14.11)

Now, denote γ∗1,i by

γ∗1,i = (−1)i
0∫
−1

(
−s
i

)
ds

which gives

y′(xn+1) = y′(xn) + h
k−1∑
i=0

γ∗1,i∇ifn ds, (14.12)

The implicit generating function, G∗1(t) can be mathematically deduced as the
following formulation

G∗1(t) = −
[

1− (1− t)
log(1− t)

]
(14.13)

which can be generalized as

G∗(d)(t) =
(1− t)
(d− 1)!

[
1

log(1− t)
−

(d− 1)!G∗(d−1)(t)

log(1− t)

]
d = 1, 2. (14.14)

Calculation of the explicit and implicit coefficients directly involving large num-
bers of integration can be tedious and time consuming. To overcome this drawback,
a recurrence relationship between integration coefficients is provided. This enables
for a more efficient code when programming the algorithm. The recurrence relation-
ship can expressed as follows

G∗(d)(t) = (1− t)G(d)(t), d = 1, 2. (14.15)

From the generating function, its corresponding integration coefficients is repre-
sented as

k∑
i=0

γ∗(d),i = γ(d),k (14.16)

14.3 Order and step size criteria

The order and step size selection of a variable order step size algorithm is based on its
acceptance criteria. This acceptance criteria will determine whether to increase the
order and step size. When handling a variable order step size algorithm, determining
the success of an integration step is crucial. The threshold for each integration step
is predetermined by setting an acceptable tolerance level (TOL). The success of

an integration step depends on whether the estimated error, |E(d−p)
k | satisfies the

following local accuracy requirements

TOL >
|E(d−p)

k |
A+B + Pn

(14.17)
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where A and B determines the type of error test used. Hence, every estimated error
that satisfies the local accuracy condition also fulfills the acceptance criteria.

The variable order in a multistep method relies on the back values stored. The
order may be increased if back values from the previous step are retained and may
be decreased simply by relinquishing the appropriate amount of back values. The
order strategies adopted here are similar to strategies proposed in [2].

When implementing a variable step size algorithm, Shampine and Gordon sug-
gests restrictions on ratio of successive step size due to convergence and stability
issues of variable step size techniques to ensure stability. Because the proposed
method is based on the Adams-Bashforth formulation as predictor and Adams-
Moulton formulation as corrector (PECE mode), we adopt the doubling or halving
the step size algorithm from [1] which is implements a step size changing technique
from [17].

14.4 Numerical Results

The tables and figures below show the numerical results for Problems 1 to 3 which
were solved using Direct Integration and Backwards Difference method directly. Nu-
merical result for methods that reduces second order ODES to first order systems
are also included as a benchmark. In this section, numerical result includes the
evaluation of maximum and average values of the error in the computed solution
y. The efficiency of the 1PBD will be validated by comparing results of obtain by
Suleiman’s DI method.

Following are abbreviation used in this section
TOL: Tolerance level
MTHD: Method
TS: Total steps
FS: Fail steps
MAX: Maximum error (exponent of 10)
AVE: Average error (exponent of 10)
TIME: Execution time in micro seconds
D1: Reduction to first order divided difference method
D1: Reduction to first order backward difference method
DI: Direct Integration method
1PBD: 1 Point Backward Difference method
TTS: Truncated Taylor Series
RTA: Rational Approximation

Problem 1:(source: Suleiman [18])

y′′1(x) = −y1

r3
, , y′′2(x) = −y2

r3
, r =

(
y2

1 + y2
2

) 1
2 0 ≤ x ≤ 16π.

Initial condition

y1(0) = 1 y′1(0) = 0, y2(0) = 0, y′2(0) = 1.

Exact Solution

y1(x) = cosx, y2(x) = sinx.

162



Seminar on Mathematical Sciences (SOMS) 2019

Problem 2:(source: Rasedee [19])

y′′(t) = 2y3(t) + ty(t) + µ, 0 ≤ x ≤ 5

Initial condition

y (0) = 1, y′ (0) = 0.

Exact Solution

unknown

Problem 3:(source: Rasedee [20])

y′′(x) + y(x) + y′(x) + y2(x)y′(x) = 2 cosx− cos3 x, 0 ≤ x ≤ 100

Initial condition

y(0) = 0, y′(0) = 1,

Exact Solution

y(x) = sinx

Table 1 and 3 displays numerical results for problem 1 and 3. The results dis-
played compares steps taken, accuracy and computational cost between the D1, B1,
DI and 1PBD method. The D1 and B1 method are the traditional reduction to
first order method, where as the DI and 1PBD method are direct solution methods.
Reduction to first order methods are used as benchmarks to validate the viability of
the direct method. Table 2 on the other hand, provide approximation of a problem
without any known solution. In this table, the accuracy of the 1PBD method is test
against more established methods.

Numerical result shown in Table 1 are results for nonlinear second order ODE
with periodic solution (two body problem). Result shows the superiority of the
1PBD method in terms of accuracy and computational cost and its competitiveness
in steps taken, especially at tolerance 10−10 where the difference in steps required
is more than 100 compared to its nearest rival.
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Table 14.1: Numerical results of D1, B1, DI and 1PBD method for problem 1.

TOL MTHD TS FS MAX AVE TIME
10−2 D1 113 5 8.80309(-2) 1.19400(-1) 2078

B1 89 3 2.07488(-1) 6.87734(-2) 1628
DI 76 1 8.78700(-2) 2.56159(-2) 969

1PBD 71 0 1.17774(-1) 1.70700(-2) 969
10−4 D1 151 2 4.30130(-3) 5.45887(-3) 3024

B1 170 1 5.37539(-4) 1.06165(-4) 3169
DI 94 1 4.25614(-3) 1.53472(-3) 1284

1PBD 149 0 5.05592(-6) 1.21782(-3) 1951
10−6 D1 275 3 1.80685(-6) 1.81711(-6) 5227

B1 121 0 1.38184(-5) 2.65555(-6) 4077
DI 179 1 3.15166(-4) 1.29162(-4) 2294

1PBD 176 0 5.88468(-6) 2.26518(-6) 2272
10−8 D1 348 2 3.49871(-8) 2.75009(-8) 6310

B1 424 2 4.59227(-7) 1.19307(-7) 5367
DI 205 0 6.69118(-5) 2.76364(-5) 8665

1PBD 209 0 6.96499(-8) 2.35911(-8) 2664
10−10 D1 526 9 3.45300(-9) 2.61398(-9) 9866

B1 475 10 7.88269(-9) 1.39352(-9) 8822
DI 370 0 1.44822(-7) 5.81042(-8) 4639

1PBD 248 0 4.13390(-9) 8.63144(-10) 3109

Figure 14.1: Efficiency of D1, B1, DI and 1PBD method for problem 1.

Table 2 contains results for a Riccatti type second order ODE without any exact
solution. This problem was selected because of its level of difficulty. The 1PBD
method is then compared against TTS ( [21]) and RTA ( [22]) methods which ac-
curacy has been established for solving second order ODEs. Results in the current
table reflects the accuracy of the proposed 1PBD method. The accuracy of the
1PBD increases when using smaller tolerances, to the point of matching accuracy
provided by the TTS and RTA methods.

Table 3 provide results of approximated solution for Problem 3. Problem 3 is a
Duffing type second order ODE and was selected for this research to test real life
application problems. The selected problem has similar features with oscillatory
problems with damping force. Numerical results provided in Table 3 shows the
advantage of the 1PBD method in terms of accuracy and total step size over its
counterpart, the DI method. The 1PBD out performs the DI method in least number
of steps required at every tolerance. In terms of accuracy, the 1PBD method shows
to be superior at almost every tolerance level with the exception of TOL= 10−2.
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Table 14.2: Comparison of accuracy for problem 2.

t 1PBD TTS RTA

TOL= 1× 10−2 TOL= 1× 10−5 TOL= 1× 10−10

0.0 1.00000(0) 1.00000(0) 1.00000(0) 1.00000(0) 1.00000(0)
0.2 1.07160(0) 1.06262(0) 1.06261(0) 1.06260(0) 1.06260(0)
0.4 1.27252(0) 1.27417(0) 1.27415(0) 1.27420(0) 1.27420(0)
0.6 1.72688(0) 1.72542(0) 1.72538(0) 1.72540(0) 1.72540(0)
0.8 2.80714(0) 2.73708(0) 2.73694(0) 2.73690(0) 2.73690(0)
1.0 6.89972(0) 6.31186(0) 6.31100(0) 6.31100(0) 6.31040(0)

Table 14.3: Comparison of total steps and accuracy for problem 3.

TOL MTD STEPS MAXE AVER

10−2 DI 254 8.49079(−2) 2.04794(−2)
1PBD 217 1.07600(−1) 3.03894(−2)

10−4 DI 332 1.54704(−3) 4.72630(−4)
1PBD 284 1.24649(−3) 1.92899(−4)

10−6 DI 382 4.24089(−5) 1.56849(−5)
1PBD 330 1.28039(−5) 3.26641(−6)

10−8 DI 651 7.93605(−7) 1.55130(−7)
1PBD 499 7.27324(−7) 1.46368(−7)

10−10 DI 772 7.83863(−9) 2.03721(−9)
1PBD 702 9.05773(−9) 1.01381(−9)

Figure 1 illustrates the efficiency of the D1, B1, DI and 1PBD method where
as, Figure 2 provides a clear comparison of efficiency between the DI and 1PBD
method. Efficiency of the methods is adopted from definition in [16], where the
efficiency is illustrated by undermost curve of the provided graphs. The efficiency of
the proposed method is clearly presented in both figures where the 1PBD method
is the under most curve of all four methods.

Figure 14.2: Efficiency of DI and 1PBD method for problem 3.
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14.5 Conclusion

By justifications above, the 1PBD method proves to be a viable option for solving
second order ODEs.
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