UNIVERSITI PUTRA MALAYSIA

NEUROPROTECTIVE EFFECTS OF THYMOQUINONE-RICH FRACTION AND THYMOQUINONE NANOEMULSIONS IN SPORADIC ALZHEIMER’S DISEASE RAT MODEL

NORSHARINA BINTI ISMAIL

IB 2018 39
NEUROPROTECTIVE EFFECTS OF THYMOQUINONE-RICH FRACTION AND THYMOQUINONE NANOEMULSIONS IN SPORADIC ALZHEIMER’S DISEASE RAT MODEL

By

NORSHARINA BINTI ISMAIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2019
This thesis is dedicated to

My parents
Allahyarham Ismail Ibrahim & Allahyarhamah Hamiyah Ismail

My brother and sisters
Ismanizami, Nor Radziah & Siti Munirah

My beloved
Ahmad Saifudin Nadin
NEUROPROTECTIVE EFFECTS OF THYMOQUINONE-RICH FRACTION AND THYMOQUINONE NANOEMULSIONS IN SPORADIC ALZHEIMER’S DISEASE RAT MODEL

By

NORSHARINA BINTI ISMAIL

January 2019

Chairman : Maznah Ismail, PhD
Faculty : Institute of Bioscience

Increasing life expectancy has produced a dramatic rise in age-associated diseases including Alzheimer’s disease (AD). Oxidative stress is one of the most vital risk factors which can potentially lead to the AD pathogenesis such as amyloid-β (Aβ) deposits. The existing treatment of AD only relies on the two types of drug, namely the acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonist. Due to the limitations of these existing drugs, new treatments and therapeutic strategies on AD management are emerging. Despite of the neuropharmacological attributes of Nigella sativa (black cumin seeds) and its active constituent, thymoquinone (TQ), limited records are available in relation to AD researches. Thus, the present study was conducted to investigate the neuroprotective effects of thymoquinone-rich fraction (TQRF) and TQ in sporadic AD models, and their underlying mechanistic actions. In vitro efficacy of TQRF and TQ was investigated against hydrogen peroxide (H₂O₂)- induced oxidative stress in human neuroblastoma SH-SY5Y cells through cell viability assay, reactive oxygen species (ROS) assay, morphological observation, and gene expression analysis. As a result, TQRF and TQ protected the cells against H₂O₂ toxicity by preserving the mitochondrial metabolic enzymes, reducing intracellular ROS levels, preserving morphology of cells and modulating the expression of antioxidants (SOD1, SOD2 and catalase), and apoptotic signaling (p53, AKT1, ERK1/2, p38 MAPK, JNK and NF-κB) genes (p < 0.05). In vivo efficacy of TQRF and TQ was evaluated using a high fat-cholesterol diet (HFCD) model of sporadic AD. The oral bioavailability of poor water soluble TQRF and TQ were improved through nanotechnology approach in the form of nanoemulsion (NE), namely as TQRFNE and TQNE, respectively. The TQRF and TQ conventional emulsions (CE), named as TQRFCE and TQCE, respectively were studied for comparison. Statin (Simvastatin) and non-statin (Probucol) cholesterol-lowering agents, and AD drug (Donepezil) were served as control drugs. The Sprague Dawley rats were fed with HFCD for 6 months, and treated with the intervention groups daily for the last 3 months. The Morris Water Maze learning and memory test, and biochemical analyses (lipid profile, lipid
peroxidation, antioxidant and soluble amyloid-β (Aβ) levels were measured. The neuroprotective mechanistic actions of the intervention groups were determined through gene and protein expression levels. The HFCD-fed rats exhibited hypercholesterolaemia, accompanied by memory deficit, increment of lipid peroxidation and soluble Aβ levels, decrement of total antioxidant status and down-regulation of antioxidants genes expression levels \((p < 0.05) \). Nevertheless, TQRFNE diminished those detrimental effects of HFCD through the modulation of Aβ generation (APP, BACE1, PSEN1 and PSEN2), Aβ degradation (IDE), Aβ transportation (LRP1 and RAGE), neuroinflammation genes (CRP, NOS1, TNF-α and PPARγ) \((p < 0.05) \), and lessen the hippocampus injury. In conclusion, TQRF has potential to be developed as a nutraceutical product for the management of neurodegenerative diseases owing to oxidative stress including AD.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN NEUROPROTEKTIF OLEH NANOEMULSI FRAKSI KAYA-TIMOKUINON DAN TIMOKUINON DALAM MODEL TIKUS PENYAKIT ALZHEIMER SPORADIS

Oleh

NORSRARINA BINTI ISMAIL

Januari 2019

Pengerusi : Maznah Ismail, PhD
Fakulti : Institut Biosains

Peningkatan jangka hayat telah menghasilkan kenaikan dramatik dalam bilangan kes penyakit yang berkaitan dengan usia, termasuk penyakit Alzheimer (AD). Tekanan oksidatif adalah salah satu faktor risiko paling penting yang berpotensi menjurus kepada patogenesis AD seperti pembentukan amiloid-\(\beta\) (A\(\beta\)). Rawatan AD yang sedia ada hanya bergantung kepada dua jenis ubat, iaitu penghambat asetilkolinesterase dan antagonis reseptor N-methyl-D-aspartate. Disebabkan terdapat kecanggihan terhadap ubat sedia ada, rawatan dan terapeutik baru yang strategik bagi pengurusan AD sedang berkembang. Meskipun ciri-ciri farmakologi neuro Nigella sativa (biji jintan hitam) dan bahan aktifnya, timokuinon (TQ) telah diketahui, rekod adalah terhad berhubung dengan penyelidikan AD. Dengan itu, kajian ini dijalankan untuk mengkaji kesan perlindungan neuro fraksi kaya-timokuinon (TQRF) dan TQ pada model sporadis AD, dan yang mendasari tindakan mekanistisnya. Keberkesanan in vitro TQRF dan TQ telah dikaji terhadap hidrogen peroksida (H\(_2\)O\(_2\)) yang mengaruh tekanan oksidatif pada sel neuroblastoma manusia SH-SY5Y melalui asai kemandirian sel, asai spesis oksigen reaktif (ROS), pemantauan morfologi, dan analisis ekspresi gen. Hasilnya, TQRF dan TQ melindungi sel-sel tersebut daripada ketoksikan H\(_2\)O\(_2\) dengan memelihara enzim metabolik mitokondria, mengurangkan tahap ROS intraselular, memelihara morfologi sel dan memodulasi penegekspresan gen antioksidan (SOD1, SOD2 dan catalase), dan isyarat apoptosis (p53, AKT1, ERK1/2, p38 MAPK, JNK dan NF-\(\kappa\)B) (\(p<0.05\)). Keberkesanan in vivo TQRF dan TQ telah dikaji menggunakan model sporadis AD yang tinggi diet lemak-kolesterol (HFCD). Kebolehserapan secara oral oleh TQRF dan TQ yang tidak larut air ditambah baik melalui pendekatan nanoteknologi dalam bentuk nanoemulsi (NE), masing-masing dinamakan sebagai TQRFNE dan TQNE. Ejen penurunan kolesterol, statin (Simvastatin) dan bukan statin (Probucol), dan ubat AD (Donepezil) digunakan sebagai kumpulan ubat kawalan. Tikus Sprague Dawley diberi makan dengan HFCD selama 6 bulan, dan dirawat dengan kumpulan intervensi setiap hari untuk 3 bulan terakhir. Ujian pembelajaran dan ingatan Morris Water Maze, dan analisis biokimia (profil lipid, peroksidaan lipid, antioksidan dan kadar A\(\beta\) larut) diukur. Tindakan mekanisma perlindungan neuro kumpulan intervensi ditentukan...
melalui pengekspresan paras gen dan protein. Tikus yang diberi makan HFCD menunjukkan paras kolesterol yang tinggi, disertai dengan kekurangan upaya mengingat, peningkatan peroksidaan lipid dan kadar Aβ larut, penurunan status antioksidan dan pengurangan tahap ekspresi gen antioksidan ($p < 0.05$). Walau bagaimanapun, TQRFNE mengurangkan kesan kerosakan oleh HFCD melalui pengawalaturan penghasilan Aβ (APP, BACE1, PSEN1 dan PSEN2), degradasi Aβ (IDE), pengangkutan Aβ (LRP1 dan RAGE), gen keradangan neuro (CRP, NOS1, TNF-α dan PPARγ) ($p < 0.05$), dan mengurangkan kecederaan hipokampus. Sebagai kesimpulan, TQRF mempunyai potensi untuk dibangunkan sebagai produk nutraseutikal bagi pengurusan penyakit neurodegeneratif akibat tekanan oksidatif termasuk AD.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank Allah the Almighty for endowing me with health, opportunity, determination, strength and knowledge to accomplish this PhD dissertation.

I acknowledge, with greatest gratitude and appreciation to my supervisor Prof. Dr. Maznah Ismail for her kindness, continuous support, guidance, and unfailing help throughout my entire research project. I am deeply indebted and grateful to my co-advisors, Prof. Dr. Hamidon Basri and Dr. Maizaton Atmadini Abdullah for their kindness, continuous support and guidance.

I would like to thank my colleagues from Laboratory of Molecular Biomedicine (Molemed), Institute of Bioscience (IBS), for valuable discussions, suggestions and criticism. With special thanks to my buddy, Dr. Nur Hanisah Azmi, for the wonderful times working and taking breaks together. My deepest thanks to my colleague Dr. Chan Kim Wei for always motivate and keeping me on the right track throughout this study. Thanks to Dr. Mustapha Umar Imam, Dr. Zhang Yida, Dr. Foo Jhi Biau, Dr. Ooi Der Jien, Dr. Sarega Nadarajan, Dr. Siti Aisyah Ghafar and Mrs. Farhana Fathy for being wonderful colleagues and making work a pleasant environment. I also acknowledge Prof. Dr. Johnson Stanslas who sincerely welcomed me to use his Morris Water Maze facilities and his student, Dr. Dahiru Sani who assisted me during the experiments. Also, many thanks to Mr. Kufly for his guidance in rat’s oral feeding techniques.

Thanks and acknowledgements are due to the laboratory personnel Ms. Norhayati Yusof for her tremendous help, and also to the laboratory secretary, Mrs. Mastura Ab. Ghani for her assistance. I am also indebted to all staff and students of Molemed and IBS for assisting me in various aspects of this dissertation work and my entire postgraduate study.

Acknowledgement is also due to the Molemed, IBS, Universiti Putra Malaysia for its excellent facilities. In addition, thank you for the financial support by the Universiti Putra Malaysia to their staff, as I was granted with 50% of fee waiver to pursue my PhD while continue working. I would also like to acknowledge financial support by the Ministry of Education Malaysia through FRGS research grant and for MyBrain15 (MyPhD) Scholarship under category of Permanent Staff, which I received 2 semesters of financial support for the study fee.

At last but not least, I would like to express my greatest gratitude to my beloved late mother and father, Allahyarhamah Hamiyah and Allahyarham Ismail, respectively for their unconditional love and kindness. My deepest gratitude to my sisters, Nor Radziah and Siti Munirah, and my brother, Ismanizami, for their never ending support, love and patience throughout my life.
I certify that a Thesis Examination Committee has met on 16 January 2019 to conduct the final examination of Norsharina binti Ismail on her thesis entitled "Neuroprotective Effects of Thymoquinone-Rich Fraction and Thymoquinone Nanoemulsions in Sporadic Alzheimer's Disease Rat Model" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Abdul Rahman bin Omar, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Raseedee @ Mat bin Abdullah, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Azrina binti Azlan, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Abdalbasit Adam Mariod, PhD
Professor
University of Jeddah
Saudi Arabia
(External Examiner)

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 March 2019
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Maznah binti Ismail, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Hamidon bin Basri, MD, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Maizaton Atmadini binti Abdullah, MD, MPath, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other material as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________________ Date: ___________

Name and Matric No.: Norsharina binti Ismail (GS35027)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Prof. Dr. Maznah binti Ismail

Signature: __
Name of Member of Supervisory Committee: Prof. Dr. Hamidon bin Basri

Signature: __
Name of Member of Supervisory Committee: Dr. Maizaton Atmadini binti Abdullah
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Neurodegenerative diseases</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Alzheimer’s disease</td>
<td>4</td>
</tr>
<tr>
<td>2.2.1 Epidemiology of Alzheimer’s disease</td>
<td>4</td>
</tr>
<tr>
<td>2.2.2 Risk factors of Alzheimer’s disease</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Pathophysiology of Alzheimer’s disease</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 Generation of Aβ is mediated by the β-secretase (BACE1)</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2 Degradation of Aβ by insulin-degrading enzyme (IDE)</td>
<td>8</td>
</tr>
<tr>
<td>2.3.3 Transportation of Aβ by low density lipoprotein receptor-related protein 1 (LRP1)</td>
<td>9</td>
</tr>
<tr>
<td>2.3.4 Transportation of Aβ by advanced glycation end products (RAGE)</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Cholesterol and Alzheimer’s disease</td>
<td>10</td>
</tr>
<tr>
<td>2.4.1 Body-brain communication signals</td>
<td>10</td>
</tr>
<tr>
<td>2.4.2 Body-brain communication signals in hypercholesterolemia</td>
<td>12</td>
</tr>
<tr>
<td>2.5 High-fat diet and Alzheimer’s disease</td>
<td>13</td>
</tr>
<tr>
<td>2.6 Oxidative stress</td>
<td>13</td>
</tr>
<tr>
<td>2.7 Neuronal cell death</td>
<td>15</td>
</tr>
<tr>
<td>2.8 Neuroinflammation</td>
<td>16</td>
</tr>
<tr>
<td>2.9 In vitro cellular-based model of Alzheimer’s disease</td>
<td>16</td>
</tr>
<tr>
<td>2.9.1 Hydrogen peroxide-induced neurotoxicity</td>
<td>16</td>
</tr>
<tr>
<td>2.10 In vivo model of Alzheimer’s disease</td>
<td>17</td>
</tr>
<tr>
<td>2.10.1 Hypercholesterolemia-induced models</td>
<td>18</td>
</tr>
<tr>
<td>2.11 Management of Alzheimer’s disease</td>
<td>19</td>
</tr>
<tr>
<td>2.11.1 Pharmaceuticals</td>
<td>19</td>
</tr>
<tr>
<td>2.11.2 Anti-amyloidogenic agents</td>
<td>19</td>
</tr>
<tr>
<td>2.11.3 Antioxidant therapy</td>
<td>20</td>
</tr>
<tr>
<td>2.11.4 Hypocholesterolemic agents</td>
<td>21</td>
</tr>
<tr>
<td>2.11.5 Anti-inflammatory therapy</td>
<td>21</td>
</tr>
<tr>
<td>2.11.6 Neuroprotective effect of natural products</td>
<td>22</td>
</tr>
<tr>
<td>2.12 Nigella sativa</td>
<td>25</td>
</tr>
</tbody>
</table>
2.12.1 Chemical composition of *Nigella sativa* 25
2.12.2 Thymoquinone 26
2.12.3 Neuropharmacological properties of *Nigella sativa* and thymoquinone 27
2.13 Nanoemulsion for brain drugs delivery 32
2.14 Nutrigenomics 33

3 NEUROPROTECTIVE EFFECTS OF THYMOQUINONE-RICH FRACTION AND THYMOQUINONE AGAINST HYDROGEN PEROXIDE-INDUCED OXIDATIVE STRESS IN DIFFERENTIATED HUMAN NEUROBLASTOMA SH-SY5Y CELL LINE 36

3.1 Introduction 36
3.2 Materials and methods 37
 3.2.1 Materials and chemicals 37
 3.2.2 Extraction of TQRF by SFE System 38
 3.2.3 Determination of TQ Contents in TQRF 38
 3.2.4 Characterisation of TQRF by GC and GC-MS analysis 38
 3.2.5 Cell culture and treatment 39
 3.2.6 MTT assay 39
 3.2.7 Intracellular ROS assay 39
 3.2.8 Morphological assessment by inverted light microscope 39
 3.2.9 Acridine orange (AO)–propidium iodide (PI) staining 40
 3.2.10 RNA extraction 40
 3.2.11 Primer design 40
 3.2.12 cDNA synthesis 43
 3.2.13 PCR amplification 43
 3.2.14 GeXP multiplex data analysis 43
 3.2.15 Statistical analysis 44
3.3 Results 44
 3.3.1 Yield and TQ Content in TQRF 44
 3.3.2 Chemical composition of TQRF 44
 3.3.3 Protective effect of TQRF and TQ against H$_2$O$_2$-induced neurotoxicity in SH-SY5Y cells 46
 3.3.4 Effects of TQRF and TQ on H$_2$O$_2$-induced ROS production 46
 3.3.5 Morphological assessment by inverted light microscope 51
 3.3.6 AO–PI staining of SH-SY5Y cells 51
 3.3.7 Nutrigenomic modulation of antioxidant and apoptotic genes by TQRF and TQ 55
3.4 Discussion 59
3.5 Conclusion 61

4 NEUROPROTECTIVE EFFECTS OF THYMOQUINONE-RICH FRACTION AND THYMOQUINONE NANOEMULSIONS ON MEMORY DEFICIT, ANTIOXIDANTS GENES EXPRESSION AND SOLUBLE AMYLOID-$
\beta$ LEVELS IN HIGH FAT-CHOLESTEROL DIET-INDUCED RAT MODEL OF SPORADIC ALZHEIMER’S DISEASE 62

4.1 Introduction 62
4.2 Materials and methods 63
4.2.1 Chemicals 63
4.2.2 Extraction of TQRF by SFE system 64
4.2.3 Preparation of TQRF and TQ nano- and conventional emulsions 64
4.2.4 Characterization of TQRF and TQ nano- and conventional emulsions 64
4.2.5 Animals and experimental design 64
4.2.6 Morris Water Maze (MWM) 65
4.2.7 Serum lipid and glucose levels 65
4.2.8 TBARS assay on brain cortex 66
4.2.9 Serum total antioxidant status 66
4.2.10 Antioxidants genes expression in brain cortex and hippocampus 66
4.2.11 Quantification of Aβ levels by ELISA assay 67
4.2.12 Statistical analysis 69

4.3 Results 69
4.3.1 Characterization of TQRF and TQ nano- and conventional emulsions 69
4.3.2 Food intake and body weight changes 70
4.3.3 Spatial learning and memory 71
4.3.4 Serum lipid and glucose levels 75
4.3.5 Serum total antioxidant status and brain lipid peroxidation 75
4.3.6 Antioxidants genes expression in brain cortex and hippocampus 78
4.3.7 Aβ expression levels 78

4.4 Discussion 81
4.5 Conclusion 83

5 NEUROPROTECTIVE MECHANISTIC ACTIONS OF THYMOQUINONE-RICH FRACTION AND THYMOQUINONE NANOEMULSIONS ON AMYLOID-β GENERATION, DEGRADATION, TRANSPORTATION AND CLEARANCE IN HIGH FAT-CHOLESTEROL DIET-INDUCED RAT MODEL OF SPORADIC ALZHEIMER'S DISEASE 84
5.1 Introduction 84
5.2 Materials and methods 86
5.2.1 Chemicals 86
5.2.2 Preparation of TQRF and TQ conventional and nanoemulsions 86
5.2.3 Animals and experimental design 86
5.2.4 mRNA expression levels in hippocampal and cortex 86
5.2.5 ELISA assays 86
5.2.6 Statistical analysis 86

5.3 Results 88
5.3.1 TQRFNE modulated mRNA expression of APP and PSEN2 in response to HFCD 88
5.3.2 TQRFNE-modulated mRNA expression of IDE and LRP1 in response to HFCD 92
5.3.3 TQRFNE-reduced BACE1 and RAGE and increased IDE and LRP1 protein expressions 95
6 NEUROPROTECTIVE MECHANISTIC ACTIONS OF THYMOQUINONE-RICH FRACTION AND THYMOQUINONE NANOEMULSIONS ON NEUROINFLAMMATION GENES AND HISTOLOGICAL CHANGES IN HIGH FAT-CHOLESTEROL DIET-INDUCED RAT MODEL OF SPORADIC ALZHEIMER’S DISEASE

6.1 Introduction
6.2 Materials and methods
 6.2.1 Materials
 6.2.2 Preparation of TQRF and TQ conventional and nanoemulsions
 6.2.3 Animals and experimental design
 6.2.4 mRNA expression levels in hippocampus and cortex
 6.2.5 Histological assessment
 6.2.6 Statistical analysis
6.3 Results
 6.3.1 CRP mRNA expression in response to HFCD
 6.3.2 NOS1 mRNA expression in response to HFCD
 6.3.3 TNF-α mRNA expression in response to HFCD
 6.3.4 PPAR-γ mRNA expression in response to HFCD
 6.3.5 Histological features of the hippocampus
6.4 Discussion
6.5 Conclusion

7 GENERAL DISCUSSION

8 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
 8.1 Summary and general conclusion
 8.2 Recommendations for future research

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Several types of cells used to model the H$_2$O$_2$-induced neuronal cell death</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Hypercholesterolemia-induced animal model of Alzheimer’s disease</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Neuroprotective effect of natural products such as fruits, vegetables and nuts using in vitro and in vivo models</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Neuroprotective effect of natural products such as herbs using in vitro and in vivo models</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of the protective effect of Nigella sativa and thymoquinone using in vitro models of neurodegenerative diseases</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of the protective effect of Nigella sativa and thymoquinone using in vivo models of neurodegenerative diseases</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Nutrigenomic mechanisms underlying the neuroprotective effects of some selected foods</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Gene name, accession number, reverse and forward primer sequences used in GeXP multiplex gene expression analysis</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical composition of Thymoquinone-rich fraction (TQRF) constituents</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Gene name, accession number, reverse and forward primer sequences used in GeXP multiplex gene expression analysis</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Particles size, zeta potential and polydispersity index of TQRF and TQ nano- and conventional emulsions</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Food intake and body weight of all rats throughout the study for 6 months</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Levels of hippocampal soluble Aβ_{1-40} and Aβ_{1-42} proteins</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Gene name, accession number, forward and reverse primer sequences used in GeXP multiplex gene expression analysis</td>
<td>87</td>
</tr>
<tr>
<td>6.1</td>
<td>Gene name, accession number, forward and reverse primer sequences used in GeXP multiplex gene expression analysis</td>
<td>103</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Proteolytic processing pathways of the amyloid-β precursor protein (APP): nonamyloidogenic and amyloidogenic</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>A schematic summary illustrating the potential mechanisms by which cholesterol induces AD-like pathology</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Brain cholesterol homeostasis</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Scheme of the generation and role of free radicals in AD</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Nigella sativa plant and seeds</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Chemical structure of thymoquinone</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>GC-MS chromatogram of Thymoquinone-rich fraction (TQRF)</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Cytotoxicity (MTT assay) of SH-SY5Y cells treated with Thymoquinone-rich fraction (TQRF) and Thymoquinone (TQ) alone, respectively for 24 h</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Protective effects determined by MTT assay of SH-SY5Y cells pretreated with Thymoquinone-rich fraction (TQRF) and Thymoquinone (TQ) for 24 h and subsequent exposure to 250 µM H₂O₂ for 3 h</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Effects of Thymoquinone-rich fraction (TQRF) and Thymoquinone (TQ) on intracellular ROS production</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Phase-contrast micrograph observation on SH-SY5Y at 40x magnification</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Acridine orange (AO)–propidium iodide (PI) double staining cell morphological assessment</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>GeXP multiplex gene expression analysis of antioxidant genes (SOD 1, SOD 2 and catalase)</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>GeXP multiplex gene expression analysis of apoptotic genes (AKT1, ERK ½, p38 MAPK, JNK, NF-κβ and p53)</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Schematic presentation of the proposed mechanistic basis for the neuroprotective effects of TQRF and TQ against H₂O₂-induced neurotoxicity in human differentiated SH-SY5Y cells at mRNA transcriptomics level</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Effects of spatial learning in Sprague-Dawley rats</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Effects of spatial memory in Sprague-Dawley rats</td>
<td></td>
</tr>
</tbody>
</table>
4.3 Representative of the path length of training (day 2 and 4) and probe trial (day 5) of the Morris Water Maze test

4.4 Serum lipid, triglycerides and glucose levels in rats fed a control diet or the high fat/cholesterol diet (HFCD) for 6 months

4.5 Serum total antioxidant status and Thiobarbituric acid-reactive substance (TBARS) levels in rat’s cerebral cortex

4.6 Antioxidants genes expression in cortex

4.7 Antioxidants genes expression in hippocampus

5.1 Gene expression levels in hippocampal and cerebral cortex (APP, PSEN1, PSEN2)

5.2 Gene expression levels in hippocampal and cerebral cortex (IDE, LRP1)

5.3 Protein expression levels in hippocampal

6.1 Gene expression levels of C-reactive protein (CRP) in (A) hippocampus and (B) cerebral cortex

6.2 Gene expression levels of nitric oxide synthase 1 (NOS1) in (A) hippocampus and (B) cerebral cortex

6.3 Gene expression levels of tumor necrosis factor-α (TNF-α) in (A) hippocampus and (B) cerebral cortex

6.4 Gene expression levels of peroxisome proliferator-activated receptor-γ (PPAR-γ) in (A) hippocampus and (B) cerebral cortex

6.5 Light micrographs of hippocampus section (H&E, 50x) composed of CA1, CA2 and CA3

6.6 Light micrographs of hippocampus section (H&E, 50x) composed of CA4 and dentate gyrus (DG)

6.7 Light micrographs of HE-stained CA1 hippocampus (200x)

6.8 Histological section of CA2 hippocampus (HE, 200×)

6.9 Histological section of CA3 hippocampus (HE, 200×)

6.10 Histological section of CA4 hippocampus (HE, 200×)

6.11 Histological section of DG hippocampus (HE, 200×)

7.1 Proposed schematic on the nutrigenomic basis of TQRF
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24S-OHC</td>
<td>24S-hydroxycholesterol</td>
</tr>
<tr>
<td>27-OHC</td>
<td>27-hydroxycholesterol</td>
</tr>
<tr>
<td>ABTS<sup>2-</sup></td>
<td>2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>ANOVA</td>
<td>One-way analysis of variance</td>
</tr>
<tr>
<td>AO</td>
<td>Acridine orange</td>
</tr>
<tr>
<td>ApoE</td>
<td>Apolipoprotein E</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid-β precursor protein</td>
</tr>
<tr>
<td>Aβ</td>
<td>Amyloid-β</td>
</tr>
<tr>
<td>Aβ<sub>1-40</sub></td>
<td>Amyloid-β fragment length 1-40</td>
</tr>
<tr>
<td>Aβ<sub>1-42</sub></td>
<td>Amyloid-β fragment length 1-42</td>
</tr>
<tr>
<td>Aβ<sub>25-35</sub></td>
<td>Amyloid-β fragment length 25-35</td>
</tr>
<tr>
<td>BACE1</td>
<td>β-secretase APP-cleaving enzyme-1</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood brain barrier</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylated hydroxytoluene</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CE</td>
<td>Conventional emulsion</td>
</tr>
<tr>
<td>CEMSS</td>
<td>Lymphoblastic leukemia</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>DCFH-DA</td>
<td>2',7' dichlorofluorescin diacetate</td>
</tr>
<tr>
<td>DG</td>
<td>Dentate gyrus</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>DMEM-F12</td>
<td>Dulbecco’s minimum essential Eagle's medium-Ham's nutrient mixture F-12</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FAD</td>
<td>Familial AD</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>H<sub>2</sub>O<sub>2</sub></td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>HFCD</td>
<td>High fat-cholesterol diet</td>
</tr>
<tr>
<td>HFD</td>
<td>High fat diet</td>
</tr>
<tr>
<td>HL60</td>
<td>Promyelocytic leukemia</td>
</tr>
<tr>
<td>HMGCR</td>
<td>3-hydroxy-3-methylglutaryl-coenzyme A reductase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HT29</td>
<td>Colon cancer</td>
</tr>
<tr>
<td>IDE</td>
<td>Insulin degrading enzyme</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinase</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LRP1</td>
<td>Low density lipoprotein receptor-related protein 1</td>
</tr>
<tr>
<td>LXR</td>
<td>Liver X receptor</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinases</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>ME</td>
<td>Microemulsions</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>MnSOD</td>
<td>Manganese superoxide dismutase</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide</td>
</tr>
<tr>
<td>MWM</td>
<td>Morris water maze</td>
</tr>
<tr>
<td>N. sativa</td>
<td>Nigella sativa Linn</td>
</tr>
<tr>
<td>NE</td>
<td>Nanoemulsion</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor-κB</td>
</tr>
<tr>
<td>NFTs</td>
<td>Neurofibrillary tangles</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>nNOS</td>
<td>Neuronal nitric oxide synthase</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Nonsteroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>O₂⁻</td>
<td>Superoxide</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDI</td>
<td>Polydispersity index</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PSEN1</td>
<td>Presenilin 1</td>
</tr>
<tr>
<td>PSEN2</td>
<td>Presenilin 2</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptor for advanced glycation end products</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcription</td>
</tr>
<tr>
<td>SAD</td>
<td>Sporadic AD</td>
</tr>
<tr>
<td>SFE</td>
<td>Supercritical fluid carbon dioxide extraction</td>
</tr>
<tr>
<td>SGD</td>
<td>Serum/glucose deprivation</td>
</tr>
<tr>
<td>SLN</td>
<td>Solid lipid nanoparticles</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TBA</td>
<td>Thiobarbituric acid</td>
</tr>
<tr>
<td>TC</td>
<td>Total cholesterol</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TGF-(\beta)</td>
<td>Transforming growth factor-(\beta)</td>
</tr>
<tr>
<td>TGs</td>
<td>Triglycerides</td>
</tr>
<tr>
<td>TMP</td>
<td>Tetramethoxypropane</td>
</tr>
<tr>
<td>TNF-(\alpha)</td>
<td>Tumor necrosis factor-(\alpha)</td>
</tr>
<tr>
<td>TQ</td>
<td>Thymoquinone</td>
</tr>
<tr>
<td>TQCE</td>
<td>Thymoquinone conventional emulsion</td>
</tr>
<tr>
<td>TQNE</td>
<td>Thymoquinone nanoemulsion</td>
</tr>
<tr>
<td>TQRF</td>
<td>Thymoquinone-rich fraction</td>
</tr>
<tr>
<td>TQRFCE</td>
<td>Thymoquinone-rich fraction conventional emulsion</td>
</tr>
<tr>
<td>TQRFNE</td>
<td>Thymoquinone-rich fraction nanoemulsion</td>
</tr>
<tr>
<td>Triolein</td>
<td>Glycerol trioleate</td>
</tr>
<tr>
<td>TrioNE</td>
<td>Triolein nanoemulsion</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

With an increase in lifespan due to better healthcare and changing population demographics, the incidence of neurodegenerative diseases including dementia is expected to increase significantly in the 21st century (Alzheimer’s Association, 2017). It is a disease that develops when nerve cells (neurons) in the brain die or no longer function normally. The death or malfunction of these neurons causes memory loss, behavioral changes and inability to think clearly. An estimated 47 million people worldwide are living with dementia in 2015 (Prince et al., 2015), and this number is projected to triple by 2050 (Prince et al., 2013). In the absence of a disease-modifying treatment or cure, reducing the risk of developing dementia takes on added importance. Even when effective treatments become available, risk reduction will likely remain a fundamental strategy in reducing the number of individuals affected. As for many non-communicable diseases with available treatments (such as diabetes, cancer, and heart disease), risk reduction efforts remain a major component of the campaigns against these diseases (Baumgart et al., 2015).

Alzheimer’s disease (AD) is the most common type of dementia, which accounts for 60% to 80% of the cases (Burns and Iliffe, 2009). It is a chronic brain disorder characterized by cognitive impairment, oxidative stress, inflammation, vascular damage, and deposition of amyloid-beta (Aβ) and tau proteins (Ullrich et al., 2010). In AD, these brain changes eventually impair an individual’s ability to carry out such basic bodily functions as walking and swallowing (Alzheimer’s Association, 2012). Caring for a patient with AD or other dementias poses special challenges as these individuals require increased levels of supervision and personal care. In consequence, the caregivers are experiencing high levels of stress and negative effects on their health, employment, income and financial security (Monin and Schulz, 2009).

Studies indicate that people 65 and older survive an average of four to eight years after a diagnosis of AD, yet some live as long as 20 years with Alzheimer’s (Ganguli et al., 2005). This indicates the slow, insidious nature of the progression of Alzheimer’s. On average, a person with Alzheimer’s will spend more in the most severe stage of the disease than in any other stage (Arrighi et al., 2010). To date, no treatment is available to slow or stop AD progression. The existing five drugs approved by the U.S. Food and Drug Administration had only temporarily improve symptoms, in which their effectiveness varies across the population. None of the treatments available today alters the underlying course of this terminal disease (Alzheimer’s Association 2012).

Notably, there is 5% of early onset or familial AD (FAD) caused by mutations in amyloid-β precursor protein (APP) or presenilin 1 or 2 (PSEN1, PSEN2). Up to date, the molecular mechanism of FAD pathology appears to be well understood and numerous transgenic animal models are available. However, another 95% of AD occurrence is categorized under late onset or sporadic AD (SAD) and still limited studies available. Thus, expanding the view on SAD and searching for other possible
causes of the disease that are responsible for its onset are necessary. Recent studies have shown that high cholesterol (i.e. hypercholesterolemia) levels are linked to the pathology of SAD and the accumulation of Aβ, oxidative stress, declined spatial memory, inflammation and induced blood brain barrier (BBB) leakage (Freeman et al., 2014). In line with that, human studies found that statin can reduce the risk of developing AD through several possible mechanisms such as reducing the cholesterol level, thus reducing the production of Aβ, and act as antioxidant and anti-inflammation (Prasanthi et al., 2008; Ehrlich and Humpel, 2012). Nevertheless, more studies are needed to find alternatives for statin from natural products that could have lesser side effects.

The potential of bioactives from natural products for the prevention and treatment of AD are supported by various studies involving diverse mechanisms (i.e inhibition of Aβ accumulation, antioxidant, anti-apoptotic and anti-inflammation). In the current study, the thymoquinone rich fraction (TQRF) extracted from Nigella sativa seed is selected as the main ingredient in the proposed nutraceutical product/ drug alternative targeting on the management of AD. In vitro study on anti-inflammatory effects of thymol and different quinones (dithymoquinone, thymoquinone and thymohydroquinone) from N. sativa suggests that these compounds participate in the general anti-inflammatory activity (Marisk et al., 2005; Mc Namara et al., 2005).

However, delivery of bioactives to the brain still remains highly challenging for the treatment of AD. The development of new practical treatment modalities for the treatment of AD is currently a highly active area of research. The lipid-based nanoemulsion approach has attracted wide attention as a means to improve oral bioavailability of poorly water-soluble bioactives and delivery to the target site. The bioactives can be loaded into the inner phase of these delivery systems and bypassing the enzymes in the gastrointestinal tract and reducing the presystemic clearance and hepatic first-pass metabolism (Chhabra et al., 2011). Due to higher bioactive solubilization capacity, better thermodynamic stability, long self-life, rapid onset of action, and reduced intersubject variability, nanoemulsion becomes a promising technology to achieve optimum targeted drug delivery (Mustafa et al., 2009). Since nanoemulsion is formulated with surfactants, which are approved for human consumption (generally regarded as safe), they can be taken orally.

The general objective of this study was to investigate the neuroprotective effects of thymoquinone-rich fraction (TQRF) and thymoquinone (TQ) nanoemulsions in Sporadic Alzheimer’s disease models, and their underlying mechanistic actions.

The specific objectives were:

1. To determine the neuroprotective effects of TQRF and TQ against hydrogen peroxide-induced oxidative stress in differentiated human neuroblastoma SH-SY5Y cell line.
2. To evaluate the neuroprotective effects of TQRF and TQ nanoemulsions on memory deficit, antioxidants genes expression and soluble Aβ levels in high fat-cholesterol diet-induced rat model of Sporadic Alzheimer’s disease.

3. To describe the neuroprotective mechanistic actions of TQRF and TQ nanoemulsions on Aβ generation, degradation, transportation and clearance in high fat-cholesterol diet-induced rat model of Sporadic Alzheimer’s disease.

4. To assess the neuroprotective mechanistic actions of TQRF and TQ nanoemulsions on neuroinflammation genes and histological changes in high fat-cholesterol diet-induced rat model of Sporadic Alzheimer’s disease.

It was hypothesized that:

1. The TQRF and TQ will exhibit the neuroprotective effects against hydrogen peroxide-induced oxidative stress in differentiated human neuroblastoma SH-SY5Y cells.

2. The TQRF and TQ nanoemulsions will reduce the memory deficit and soluble Aβ levels, and increase the expression of antioxidants genes in high fat-cholesterol diet-induced rat model of Sporadic Alzheimer’s disease.

3. The TQRF and TQ nanoemulsions will modulate the Aβ generation, degradation, transportation and clearance in high fat-cholesterol diet-induced rat model of Sporadic Alzheimer’s disease.

4. The TQRF and TQ nanoemulsions will regulate the neuroinflammation genes and lessen the histological damage in high fat-cholesterol diet-induced rat model of Sporadic Alzheimer’s disease.
REFERENCES

