UNIVERSITI PUTRA MALAYSIA

MINIATURIZATION OF MICROSTRIP BANDPASS FILTERS USING MULTILAYER CONFIGURATION FOR WIDEBAND APPLICATION

HELMI ADAM

FK 2009 98
MINIATURIZATION OF MICROSTRIP BANDPASS FILTERS USING MULTILAYER CONFIGURATION FOR WIDEBAND APPLICATION

HELMI ADAM

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2009
MINIATURIZATION OF MICROSTRIP BANDPASS FILTERS USING MULTILAYER CONFIGURATION FOR WIDEBAND APPLICATION

By

HELMI ADAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2009
DEDICATION

This thesis is dedicated to

My Beloved Parents

And

My Country “INDONESIA”
MINIATURIZATION OF MICROSTRIP BANDPASS FILTERS USING MULTILAYER CONFIGURATION FOR WIDEBAND APPLICATION

By

HELMI ADAM

October 2009

Chairman: Dr. Alyani Ismail

Faculty: Engineering

This thesis presents new designs of wideband bandpass filter for X-band application using various resonator configurations in multilayer microstrip. Strong coupling required for wideband filter is realized by arranging multiple layers of microstrip lines on different dielectric substrates and overlapping these lines.

For the first design, half wavelength coupled lines resonator is used to design wideband X-band bandpass filter, and the resonator is rotated to make the filter more compact. The measured passband return loss for this filter is better than -12.4 dB and the insertion loss is less than 2.5 dB.

For second design, microstrip hairpin resonator is employed to build the miniaturized bandpass filter. Since adjacent hairpin resonator lines are placed at different levels, there are two possible ways to change coupling strength by varying the overlapping gap between two resonators; vertically and horizontally. Both have different benefit,
one can reduce the filter length, and obtain symmetrical response. The other can
reduce filter width, giving sharper rejection at high frequency. Both configurations
produce very small and compact filter size, at 5.0 x 14.6 mm$^2$ and 3.2 x 16.1 mm$^2$ for
the first and second proposed filter type respectively. The measured passband
insertion loss for both filters are less than 2.3 dB and the passband return loss is
better than -16 dB for the first filter type and -13 dB for the second filter type.

Multilayer configuration gives freedom to choose any resonator shape and combine
with another shape to make the filter in very compact size. For the last design in this
thesis, hairpin resonator has been combined with half wavelength coupled lines
resonator in multilayer configuration. Both different resonator shapes are placed on
two different substrates with different dielectric constants, whereby the hairpin
resonators are placed on the bottom layer and the straight line resonators are placed
on the upper layer. The hybrid between hairpin resonator and half wavelength
coupled lines configuration has made the filter even more compact and produce a
very small filter size, only at 10 x 10 mm$^2$. The measured passband return loss for
this filter is better than -12.5 dB and the insertion loss is less than 2.3 dB.

All of the filters are fabricated on 0.254 mm thickness R/T Duroid 6010 and R/T
Duroid 5880 with dielectric constant 10.2 and 2.2 respectively using standard
photolithography technique. Two layers of substrate are joined using epoxy adhesion
which has dielectric constant of 3.6. This epoxy layer is included in simulation.
Broader bandwidth produced by those filter configurations are proven able to cover
the whole X-band frequencies of 44% bandwidth at 10.2 GHz center frequency with
excellent Chebyshev responses. The measured results agree well with the simulated responses. The measured responses and group delay exhibit that all of designed filters have good performance.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGECILAN MIKROSTRIP JALUR LALUAN TURAS MENGGUNAKAN TATARAJAH PELBAGAI LAPIS UNTUK PENGGUNAAN JALUR LEBAR

Oleh

HELMI ADAM

Oktober 2009

Pengerusi: Dr. Alyani Ismail

Fakulti: Kejuruteraan

Tesis ini membentangkan reka bentuk baru penapis jalur laluan jalur lebar untuk aplikasi X-band menggunakan pelbagai konfigurasi alat resonan dalam mikrostrip pelbagai lapis. Gandengan kuat diperlukan untuk jalur lebar di sedari dengan menyusun lapisan-lapisan berganda baris-baris pada dielektrik substrak yang berbeza dan baris-baris ini bertindih.

Untuk reka bentuk pertama, alat resonan pasang baris separuh panjang gelombang digunakan mereka bentuk turas laluan jalur lebar X-band, dan alat resonan itu diputar untuk membuat turas lebih padat. Dengan tatarajah ini, lebar jalur lebih luas boleh dicapai bagi meliputi keseluruhan frekuensi X-band. Ukuran kehilangan balikan jalur laluan untuk penapis ini adalah lebih baik daripada -12.4 dB dan kehilangan sisipan adalah lebih baik daripada 2.5 dB.

Untuk reka bentuk kedua, pin jalur mikro alat resonan digunakan untuk menghasilkan penapis jalur laluan bersaiz kecil. Sejak pin baris-baris alat resonan
berhampiran ditempatkan di peringkat berlainan, terdapat dua kemungkinan cara-cara untuk mengubah kekuatan gandingan dengan mempelbagaikan jurang pertindihan antara dua alat resonan; secara menegak dan secara mendatar. Kedua-duanya mempunyai manfaat, satu boleh mengurangkan panjang penapis, dan mendapatkan gerak balas yang simetri. Yang lain boleh mengurangkan kelebaran penapis, memberikan penolakan lebih tajam dalam frekuensi tinggi. Kedua-dua konfigurasi menghasilkan saiz penapis yang sangat kecil dan padat masing-masing pada 5.0 x 14.6 mm² dan 3.2 x 16.1 mm² untuk cadangan penapis yang pertama dan kedua. Ukuran kerugian-kerugian sisipan jalur laluan untuk kedua-dua penapis adalah kurang daripada 2.3 dB dan kehilangan balikan jalur laluan adalah lebih baik daripada -16 dB untuk penapis jenis pertama dan -13 dB untuk penapis jenis kedua.

konfigurasi pelbagai lapis memberi kebebasan untuk memilih jenis bentuk alat resonan, dan menggabung dengan bentuk yang lain untuk menjadikan penapis bersaiz yang amat padat. Dalam reka bentuk lain, pin alat resonan telah digabungkan dengan panjang separuh gelombang alat resonan dalam konfigurasi pelbagai lapis. Kedua-dua alat resonan yang berbeza bentuk di tempatkan pada dua substrak berbeza dengan pemalar dielektrik berbeza, pin resonator di tempatkan pada dasar lapisan dan resonator bergaris lurus di tempatkan pada lapisan atas. Hibrid antara pin resonator dan konfigurasi baris-baris gabungan separuh gelombang menjadikan penapis lebih padat dan menghasilkan saiz penapis yang sangat kecil, hanya pada 10 x 10 cm². Ukuran kehilangan balikan jalur laluan untuk penapis ini adalah lebih baik daripada -12.5 dB dan kehilangan sisipan adalah lebih baik daripada 2.3 dB.
Kesemua penapis-penapis itu di buat pada ketebalan 0.254 mm RT duroid dan RT duroid 5880 dengan pemalar dielektrik masing-masing ialah 10.2 dan 2.2 menggunakan piawai teknik photolithography. Dua lapisan-lapisan substrak disambungkan dengan menggunakan lekatan epoksi dengan pemalar dielektrik 3.6. Lebar jalur yang lebih lebar dihasilkan oleh konfigurasi-konfigurasi penapis membuktikan berupaya menutupi seluruh frekuensi X-band dengan menghasilkan 44% jalur lebar pada 10.2 GHz frekuensi pusat dengan respon Chebyshev yang cemerlang. Hasil-hasil ukuran menyetujui dengan baik hasil-hasil simulasi. tindak balas ukuran dan kumpulan tundaan menunjukkan yang kesemua reka bentuk penapis mempunyai prestasi yang baik.
ACKNOWLEDGEMENTS

Alhamdullilahhirobbila’lamin, I would like to say thanks very much to Allah SWT. that always give me an infinite blessing and opportunities to finish my thesis. I would first like to thank my supervisor, Dr. alyani Ismail, for her guidance, kindness and support during the past one and a half years. Thanks also to my co supervisor Prof. Dr. Adzir. Pursuing master in wireless communication engineering at UPM is one of the most valuable and exciting experiences in my education.

I am grateful for being part of the UPM family. My long years in this university have been difficult, filled with many sleepless nights, but they have also been very rewarding. I would like to extend my thanks to my entire friend for their support during my study here. Finally, I thank my father and my mother for their love and for encouraging me, even from a distance.
I certify that a Thesis Examination Committee has met on 15 October 2009 to conduct the final examination of Helmi Adam on his thesis entitled "Miniaturization of Microstrip Bandpass Filters using Multilayer Configuration for Wideband Application" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

**Norkamariah Noordin, PhD**  
Associate Professor  
Faculty of Engineering  
Universiti Putra Malaysia  
(Chairperson)

**Raja Shamsul Azmir Raja Abdullah, PhD**  
Lecturer  
Faculty of Engineering  
Universiti Putra Malaysia  
/Internal Examiner)

**Mohd Nizar Hamidon, PhD**  
Lecturer  
Faculty of Engineering  
Universiti Putra Malaysia  
/Internal Examiner)

**Zaiki Awang, PhD**  
Professor  
Faculty of Electrical Engineering  
Universiti Teknologi Mara  
/Internal Examiner)

---

**BUJANG BIN KIM HUAT, PhD**  
Professor and Deputy Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date: 24 December 2009
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

**ALYANI ISMAIL, PhD**  
Lecturer,  
Department of Computer and Communication System Engineering  
Faculty of Engineering  
Universiti Putra Malaysia.  
(Chairman)

**MOHD ADZIR MAHDI, PhD**  
Professor,  
Department of Computer and Communication System Engineering  
Faculty of Engineering  
Universiti Putra Malaysia.  
(Member)

**HASANAH MOHD. GHAZALI, PhD**  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date: 14 January 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

HELMI ADAM

Date: 15 October 2009
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL x
DECLARATION xii
LIST OF TABLES xv
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xix

CHAPTER

1. INTRODUCTION 1
   1.1 Background 1
   1.2 Problem Statement and Motivation 2
   1.3 Aim and Objectives 4
   1.4 Thesis Scope 5
   1.5 Thesis Organization 5

2. BASIC THEORY AND LITERATURE REVIEW 8
   2.1 Basic Filter Theory 8
   2.2 Microstrip Transmission Lines 14
   2.3 Recent Advance of Microstrip Wideband Bandpass Filters 18

3. DESIGN METHODOLOGY FOR MULTILAYER MICROSTRIP FILTER 30
   3.1 Introduction 30
   3.2 Resonator Dimension 31
   3.3 Extracting External Quality Factor and Coupling Coefficient 38
   3.4 Fabrication and Measurement 44

4. COMPACT WIDEBAND MULTILAYER MICROSTRIP COUPLED LINES BANDPASS FILTER FOR X-BAND APPLICATION 50
   4.1 Introduction 50
   4.2 Proposed Filter Design 51
   4.3 Result and Discussion 53
   4.4 Conclusion 56
5. **X-BAND MINIATURIZED WIDEBAND BANDPASS FILTER UTILIZING MULTILAYERED MICROSTRIP HAIRPIN RESONATOR**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>5.2 Proposed Filter Design and Simulation</td>
<td>60</td>
</tr>
<tr>
<td>5.3 Simulation and Measurement Result</td>
<td>64</td>
</tr>
<tr>
<td>5.4 Conclusion</td>
<td>70</td>
</tr>
</tbody>
</table>

6. **COMPACT WIDEBAND BANDPASS FILTER USING HYBRID HAIRPIN AND HALF WAVE PARALLEL COUPLED RESONATOR IN MULTILAYER MICROSTRIP CONFIGURATION FOR X-BAND APPLICATION**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>72</td>
</tr>
<tr>
<td>6.2 Proposed Filter Design and Simulation</td>
<td>74</td>
</tr>
<tr>
<td>6.3 Simulation and Measurement Result</td>
<td>78</td>
</tr>
<tr>
<td>6.4 Conclusion</td>
<td>81</td>
</tr>
</tbody>
</table>

7. **GENERAL CONCLUSIONS**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Conclusion</td>
<td>82</td>
</tr>
<tr>
<td>7.2 Thesis Contributions</td>
<td>84</td>
</tr>
<tr>
<td>7.3 Future Research Direction</td>
<td>85</td>
</tr>
</tbody>
</table>

**REFERENCES**

**APPENDICES**

**BIODATA OF STUDENT**

**LIST OF PUBLICATIONS**

xv
## LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>28</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Thesis Scope</td>
</tr>
<tr>
<td>2.1</td>
<td>Filter frequency domain response (a) Lowpass filter (b) Highpass filter (c) Bandpass filter (d) Bandstop filter</td>
</tr>
<tr>
<td>2.2</td>
<td>Bandpass filter response (a) Butterworth response (b) Chebyshev response (c) Elliptic response</td>
</tr>
<tr>
<td>2.3</td>
<td>Network structure for lowpass prototype filter (a) for Butterworth and Chebyshev filter (b) for elliptic function filter</td>
</tr>
<tr>
<td>2.4</td>
<td>Planar transmission lines (a) Stripline (b) Microstrip (c) Slotline (d) Coplanar</td>
</tr>
<tr>
<td>2.5</td>
<td>Microstrip structure</td>
</tr>
<tr>
<td>2.6</td>
<td>Microstrip parallel coupled resonator filter</td>
</tr>
<tr>
<td>2.7</td>
<td>Open line resonator miniaturization (a) U-turn hairpin resonator (b) Open ring resonator (c) Spiral resonator (d) Meander loop resonator</td>
</tr>
<tr>
<td>2.8</td>
<td>Closed loop square ring resonator filter with square perturbation patch and two stubs (a) single ring resonator filter (b) cascaded two ring resonators filter</td>
</tr>
<tr>
<td>2.9</td>
<td>Short circuited stub filter</td>
</tr>
<tr>
<td>2.10</td>
<td>Multilayer microstrip filter</td>
</tr>
<tr>
<td>3.1</td>
<td>Procedure for designing multilayer coupled line filter.</td>
</tr>
<tr>
<td>3.2</td>
<td>Coupled line multilayer filter structure (a) Top view (b) Cross section view</td>
</tr>
</tbody>
</table>
3.3 Effect of upper layer dielectric constant for resonator width (with bottom layer dielectric constant of 2.0 and 0.254 mm thickness for each layer). 35

3.4 Effect of bottom layer dielectric constant for resonator width (with upper layer dielectric constant of 10.0 and 0.254 mm thickness for each layer) 36

3.5 Frequency vs. resonator length 37

3.6 Half wavelength resonator resonating at 10 GHz 37

3.7 Coupled resonator bandpass filter design parameter 38

3.8 Typical simulated response for extracting external quality factor 40

3.9 Extracting external quality factor set up 40

3.10 Extracting coupling coefficient set up 41

3.11 Typical simulated response for extracting coupling coefficient 41

3.12 Overlapping gap extraction for multilayer coupled half wavelength resonator filter for (a) External quality factor (b) Coupling coefficient 43

3.13 Photolithography fabrication process 44

3.14 Filter response for multiple adhesive layer thicknesses 46

3.15 Methods for joining two substrates (a) Epoxy adhesive placed between conducting lines (b) Epoxy adhesive placed below conducting lines 48

3.16 Substrates Alignment 49

3.17 Experimental setup for filter measurement 49

4.1 Three dimensional view of the proposed filter 52
4.2 Variation of coupling coefficient due to overlapping gap between two resonators on different substrate layer (a) Filter Type 1 (b) Filter Type 2

4.3 Photograph of the prototype filter

4.4 Simulated and measured of the multilayer filter responses

4.5 Simulated and measured of the multilayer filter group delay

5.1 Three dimensional view of the proposed filter

5.2 Variation of coupling coefficient due to overlapping gap between two resonators on different substrate layer (a) Filter Type 1 (b) Filter Type 2

5.3 Feed position vs. external quality factor

5.4 Proposed filter layout and physical dimension (a) Filter Type 1 (b) Filter Type 2 (c) Cross section view

5.5 Photograph of the fabricated filters (a) Filter Type 1 (b) Filter Type 2

5.6 Simulated and measured responses (a) Filter type 1 (b) Filter type 2

5.7 Simulated and measured group delay (a) Filter Type 1 (b) Filter Type

6.1 Proposed filter structure

6.2 Overlapping gap extraction for (a) External quality factor (b) Coupling coefficient

6.3 Physical layout and dimension of the proposed filter

6.4 Photograph of the fabricated filter

6.5 Simulated and measured responses of the proposed filter

6.6 Simulated and measured group delay of the proposed filter

xviii
**LIST OF ABBREVIATIONS**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPF</td>
<td>Bandpass Filter</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CPW</td>
<td>Coplanar Waveguide</td>
</tr>
<tr>
<td>DGS</td>
<td>Defected Ground Structure</td>
</tr>
<tr>
<td>FBW</td>
<td>Fractional Bandwidth</td>
</tr>
<tr>
<td>HTS</td>
<td>High Temperature Superconductor</td>
</tr>
<tr>
<td>LTCC</td>
<td>Low-Temperature Cofired Ceramic</td>
</tr>
<tr>
<td>MIC</td>
<td>Microwave Integrated Circuit</td>
</tr>
<tr>
<td>MEMS</td>
<td>Microelectromechanic Systems</td>
</tr>
<tr>
<td>MMIC</td>
<td>Monolithic Microwave Integrated Circuits</td>
</tr>
<tr>
<td>VNA</td>
<td>Vector Network Analyzer</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
</tbody>
</table>
$h$  Substrate thickness

$w$  Resonator/ line width

$l$  Resonator/ line length

$d$  Overlapping gap distance

$\varepsilon_0$  Permittivity of vacuum

$\varepsilon_r$  Relative dielectric constant

$\varepsilon_{\text{eff}}$  Effective dielectric constant

$\mu_0$  Permeability of vacuum

$\eta$  Impedance of free space

$c$  Speed of light in vacuum

$\lambda$  Free space wavelength

$\lambda_g$  Guided wavelength

$Z_0$  Characteristic impedance

$v_p$  Phase velocity

$\beta$  Propagation constant

$\gamma$  Complex propagation constant

$f_0$  Center frequency

$\omega$  Angular frequency

$\Delta BW$  Fractional bandwidth

$\theta$  Electrical length

$g$  Normalized lowpass prototype parameter values

$n$  Filter order

$L_{\text{AR}}$  Passband ripple

$Q_e$  External quality factor
\[ k \quad \text{Coupling coefficient} \]

\[ S_{11} \quad \text{Return loss} \]

\[ S_{21} \quad \text{Insertion loss} \]
CHAPTER 1

INTRODUCTION

1.1 Background

The rapid growth of microwave wireless communication systems demands a huge amount of communication devices, such as microwave filters and antennas. Microwave bandpass filters used in many microwave applications are the fundamental component that contributes to the overall performance of a communication system. For building modern broadband wireless communication systems such as satellite and mobile communication systems, wideband bandpass filter with high performance and very small size is required.

Filters can be designed and fabricated on various materials, planar structure such as microstrip is widely used to build filter since they can be fabricated by using standard printed circuit technologies easily and low cost. Many researches on microstrip filters have been proposed to minimize the filter size and improving filter performance. The developments of CAD tools such as electromagnetic simulator help researchers to design filter. With CAD simulator, complicated design can be simplified efficiently, it opens possibility for researchers to develop new filter design. Recent advances in novel materials and fabrication technologies (Hong & Lancaster, 2001), including high-temperature superconductors (HTS), low-temperature cofired ceramics (LTCC), monolithic microwave integrated circuits
(MMIC), microelectromechanic system (MEMS), and micromachining technology, also stimulated the development of new filter design.

1.2 Problem Statement and Motivation

Miniaturization is the main challenge of filter design, the trend of miniaturization creates a demand for new filter circuit design. Many planar filter structures such as open line resonator filter, closed loop resonator filter, filter with stub, have been proposed to minimize the filter size. Among the diverse of filter structures, open line resonator such as parallel coupled resonator and hairpin coupled resonator is widely preferred for building bandpass filter, due its simple design and easy to control bandwidth. Another benefit is its flexibility to fold the resonator to a more compact form.

However coupled open line resonator based filter is only suitable for designing narrowband filter. High coupling is required for wideband filter that is limited by the gap between two resonators. Unlike open end resonator filter, close loop ring resonator filter is able to deliver wide bandwidth, but the bandwidth is not as easy as open end resonator filter to be controlled. Another type of bandpass filter which can produce wide bandwidth is a filter utilizing short circuited stub. This type of filter is being widely used for designing ultra wideband filter due to its wide bandwidth. But the size of this filter is typically big and, plus the needs for vias as short circuit that add more cost and complexity for fabrication.