PHYSICAL MODELING ON LOCAL SCOUR AT COMPLEX PIERS

SEYED ATA AMINI

FK 2009 95
PHYSICAL MODELING ON LOCAL SCOUR AT COMPLEX PIERS

SEYED ATA AMINI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2009
PHYSICAL MODELING ON LOCAL SCOUR AT COMPLEX PIERS

By

SEYED ATA AMINI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia
In Fulfilment of Requirements for Degree of Doctor of Philosophy

December 2009
Dedicated

To

My parents and my lovely family, wife and son.
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy.

PHYSICAL MODELING ON LOCAL SCOUR AT COMPLEX PIERS

By

SEYED ATA AMINI

December 2009

Chairperson: Associate Professor Thamer Mohammad Ali

Faculty: Engineering

Over the past decades, great strides have been made in the ability to accurately predict design scour depths at simple bridge pier structures. While, many bridge piers are complex in shape, consisting of several components (e.g., column, pile cap and pile group). There is a general lack of confidence in available methods for predicting local scour at complex piers. The main objective of the research is to provide accurate estimating of geometrical characteristics of complex pier and its location relative to undisturbed streambed on scour depth, for improving existing scour prediction methods. Furthermore, the collected data can fill voids in existing data for pier with complex geometries in various locations. In this research, an experimental study on multiple piles and complex piers and its components were conducted. The variables investigated were the dimensions of complex piers and the models location relative to initial streambed. In addition, in the experiments on pile group, the pile spacing, arrangement and
submergence ratio were examined. A wide range of experiments on individual components including pile group, pile cap and column and combination of these components such as the column mounted on the pile cap and complex piers were studied. Flow conditions and sediment characteristics were kept constant for all of the experiments. The flow discharge, water depth and flow velocity readings were taken using an Area Velocity Module (AVM). Cohesionless uniform sediment was used with the mean particle sizes, $d_{50}=0.8$ mm and geometric standard deviation of particles, $\sigma_g=1.34$. The experiments were performed under clear-water conditions at threshold flow intensity. The results of experiments on individual components were used to present new methods to predict local scour at pile group, pile cap and column, which is useful to be used for predicting scour at multiple piles and complex piers. Outcomes of verifying these methods show that proposed methods give reasonable scour depth prediction. In addition, it was found that, besides the parameters that affect scour at a uniform pier, the scour depth at complex piers and its components are highly depend on their locations relative to initial streambed. The experimental data obtained on complex pier models was used to evaluate predictions of existing methods. Federal Highway Administration, Hydraulic Engineering Circular No. 18, HEC-18, Florida Department of Transportation, FDOT and Coleman methods for complex piers, were examined. It was found that the results of HEC-18 method have a much larger scatter than FDOT and Coleman methods. In addition, the measured scour depths produced by isolated components were used to evaluate superposition methodology. The upshots indicate that this methodology do not accurately predict the observed scour depth at composite structures.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

PERMODELAN FIZIKAL PENGURUKAN TEMPATAN PADA TIANG SAMBUT KOMPLEKS

Oleh

SEYED ATA AMINI

Disember 2009

Pengerusi: Prof. Madya Thamer Mohammad Ali

Fakulti: Kejuruteraan

Pada beberapa dekad yang lepas, kemajuan telah dibuat dalam keupayaan kaedah meramal ketepatan kedalaman rekabentuk kerukan pada struktur-struktur ringkas tiang sambut. Namun, banyak tiang sambut adalah dalam bentuk kompleks, yang terdiri daripada beberapa bahagian (cth: tiang, cerucuk tetopi, dan cerucuk kumpulan). Secara umumnya terdapat kekurangan dalam kaedah sediaada untuk meramalkan kerukan setempat yang kompleks. Objektif utama penyelidikan adalah untuk menghasilkan kaedah yang tepat dalam menganggarkan sifat geometri tiang sambut yang kompleks dan lokasi berkenaan berdasarkan kepada dasar saluran tidak terganggu terhadap kedalaman kerukan. Ini adalah untuk tujuan memperbaiki kewujudan kaedah ramalan kerukan. Tambahan pula, data terkumpul menjadi tidak sah berdasarkan data yang wujud untuk geometri tiang sambut yang kompleks di lokasi yang pelbagai. Pembahagi ubah pada siasatan ini adalah rekabentuk struktural tiang sambut yang kompleks dan lokasinya berhubung dengan permulaan dasar saluran. Tambahan lagi, eksperimen-eksperimen terhadap cerucuk kumpulan, ruang cerucuk, nisbah susunan dan nisbah
penenggelaman telah diselidiki. Kajian terhadap air jernih kerukan di tiang sambil yang kompleks dan bahagian-bahagian bawah aliran stabil pada had halaju telah dilakukan. Kajian juga telah dilakukan pada jarak lebar eksperimen pada bahagian-bahagian tunggal termasuk cerucuk kumpulan, cerucuk tetopi dan tiang serta gabungan bahagian-bahagian tersebut seperti tiang menaik pada cerucuk tetopi dan tiang sambut yang kompleks (cerucuk kumpulan, cerucuk tetopi dan tiang). Kedalaman aliran pada 0.24 m telah ditetapkan untuk kesemua eksperimen. Aliran pembebasan, kedalaman air dan bacaan halaju aliran telah diambil mengunakan Modul Luas Halaju (AVM). Ketidakjeleketan enapan seragam digunakan dengan purata saiz zarah, $d_{50}=0.8$ mm dan piawai geometrik lengkungan zarah, $\sigma_g=1.34$. Eksperimen-eksperimen telah dilaksanakan di bawah keadaan air jernih pada rintangan arus kuat. Keputusan eksperimen pada bahagian-bahagian tunggal digunakan untuk menunjukkan kaedah baru untuk meramal kerukan setempat pada cerucuk kumpulan, cerucuk tetopi dan tiang di mana sangat berguna digunakan dalam kaedah meramal superposisi kerukan pada tiang sambut yang kompleks. Hasil daripada kaedah-kaedah ini menunjukkan kaedah ramalan kedalaman kerukan adalah munasabah. Tambahan pula, telah dijumpai, parameter yang mempengaruhi pengilap pada tiang sambil yang seragam, kedalaman kerukan pada tiang sambut yang kompleks dan bahagian-bahagiannya adalah bergantung kepada lokasi awalan dasar saluran. Bagaimanapun, data eksperimen yang diperoleh pada model-model tiang sambut yang kompleks digunakan untuk menilai kaedah ramalan yang wujud. Pentadbiran Persekutuan Lebuh raya, Pekeliling Kejuruteraan Hidraulik No. 18, HEC-18, Jabaan Pengangkutan Florida, FDOT dan kaedah-kaedah Coleman (untuk tiang sambil yang kompleks telah diselidiki. Ditemui bahawa keputusan kaedah HEC-18 mempunyai taburan yang besar daripada kaedah-kaedah FODT dan Coleman. Tambahan lagi, ukuran kedalaman kerukan yang dihasilkan oleh bahagian-bahagian
tercerai digunakan untuk menilai kaedah superposisi. Keputusan menunjukkan bahawa kaedah ini tidak tepat meramal kedalaman kerukan pada struktur-struktur gabungan.
ACKNOWLEDGEMENTS

First and foremost, I would like to give grace to the Almighty God for sparing my life and for seeing me through the completion of this research work. I wish to also express my sincere appreciation and deep sense of gratitude to my supervisor Assoc. Prof. Thamer M. Ali for his guidance, encouragement and personal concern throughout the course of this research work. I would like to extend my gratitude to my supervisory committee for their guidance and support on this research.

My heartfelt gratitude is extended to Prof. Bruce Melville for the critical insight, invaluable guidance and comments on my experiments and results provided to me during the period of research for this thesis as well as during the writing-up papers process. His wealth of knowledge and enthusiasm to share them with me is most appreciated.

This research is performed under a financial support of Fundamental Research Grant Scheme (FRGS) given by University Putra Malaysia (grant No. 07-10-07- 429FR) and the experiments were conducted in the hydraulic laboratory in National Hydraulic Research Institute of Malaysia (NAHRIM) which these supports are strongly appreciated. The experiments were carried out with the prodigious help of hydraulic laboratory staff at NAHRIM to whom I express my gratitude.
It is also my great pleasure to give a due recognition to my family members for their all the time love, understanding and support in the course of this program and also for their prayers and words of encouragement whenever my enthusiasm waned. Specifically, I want to use this opportunity to express my sincere thankfulness to my father and mother for their constant support for my education over the years. I only hope that I can be as helpful to them in life as they have been to me.

This study would not have been possible without the encouragement, patience and overwhelming support of the author’s wife Atefeh and author’s son, Aran, during the period of this research who are especially acknowledged.
I certify that a Thesis Examination Committee has met on 30 December 2009 to conduct the final examination of Seyed Ata Amini on his thesis entitled “Physical Modeling on Local Scour at Complex Piers” in accordance with the Universities and University Colleges Act 1971 and Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Ir. Mohd Amin Mohd Soom, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ir. Lee Teang Shui, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Jamaloddin Noorzaei, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Behzad Ataie-Ashtiani, PhD
Professor
Civil Engineering Department
Sharif University of Technology
Iran
(Eternal Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 February 2010
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of supervisory committee were as follow:

Thamer A. Mohammad Ali
Associate Professor
Department of Civil Engineering
Faculty of Engineering, University Putra Malaysia
(Chairperson)

Abdul H. Ghazali
Associate Professor
Department of Civil Engineering
Faculty of Engineering, University Putra Malaysia
(Member)

Bujang B. K. H.
Professor
Department of Civil Engineering
Faculty of Engineering, University Putra Malaysia
(Member)

Azlan A. Aziz
Senior Lecturer
Department of Civil Engineering
Faculty of Engineering,
University Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
University Putra Malaysia

Date: 17 March 2010
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institution.

Ata Amini
Date: 26 January 2010

xiii
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTERS

1 INTRODUCTION
1.1 Background 1
1.2 Type of Scour 2
1.3 Problem Statements 11
1.4 Objectives of the Study 14
1.5 Scope and Limitations 14
1.6 Thesis Layout 16

2 LITERATURE REVIEW
2.1 Introduction 17
2.2 Mechanism of Scour 18
2.3 Local Scour Conditions 20
 2.3.1 Clear-Water Scour 21
 2.3.2 Live-Bed Scour 21
2.4 Classification of Local Scour Parameters 22
2.5 Parameters Influencing Local Scour 24
 2.5.1 Flow Velocity 24
 2.5.2 Flow depth 25
 2.5.3 Sediment Characteristics 26
 2.5.4 Pier Size 31
 2.5.5 Pier Shape 32
 2.5.6 Angle of Attack 34

xv
4.2 Scour Test on Pile Groups 118
 4.2.1 Results of Experiments for Unsubmerged Pile Groups 120
 4.2.2 Results of Experiments for Submerged Pile Groups 127
 4.2.3 Estimate of Scour Depth for Pile Group 131
 4.2.3.1 Proposed Methodology 132
 4.2.3.2 Comparison of Proposed Method with Existing Prediction Methods 133
4.3 Scour Test Results on Complex piers 137
 4.3.1 Evaluation of Existing Methodologies 144
4.4 Scour at Isolated Components of Complex Piers 155
 4.4.1 Results of Experiments for Isolated Column 155
 4.4.2 Results of Experiments for Isolated Pile Cap 159
 4.4.2.1 Proposed Methodology 161
 4.4.2.2 Comparison of Proposed Method with Existing Prediction Methods 167
 4.4.3 Scour Results for Column Mounted on Pile Cap 170
 4.4.4 Results of Experiments for Complex Pier and Its Components 172
4.5 Evaluation of Superposition Method 179
5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 183
 5.1 Summary 184
 5.2 Conclusions 185
 5.2.1 Simulate Local Scour for Complex Piers 185
 5.2.2 Pile Group 185
 5.2.3 Evaluating the Existing Methodologies 185
 5.2.4 Complex Piers and Its Isolated Components 186
 5.3 Recommendations 187
REFERENCES 189
APPENDICES 198
BIODATA OF STUDENT 229
LIST OF PUBLICATIONS 230
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>PWD Cases of Scouring at Bridge in Malaysia (Yee-Meng et al., 2000)</td>
</tr>
<tr>
<td>1.2</td>
<td>Statistical Description of Malaysian Bridges (Zawawi, 2007)</td>
</tr>
<tr>
<td>2.1</td>
<td>Classification of local scour processes at bridge pier foundations and flow depth (Melville and Coleman, 2000)</td>
</tr>
<tr>
<td>2.2</td>
<td>Most Commonly Used Equations for Pier Scour (Li et al., 2002)</td>
</tr>
<tr>
<td>3.1</td>
<td>Properties of Sand Used as Bed Material in Flume</td>
</tr>
<tr>
<td>3.2</td>
<td>Details of Pier Models Geometries Used in This Study</td>
</tr>
<tr>
<td>3.3</td>
<td>The Experiment Types, Models/Arrangements and Number of Experiments Carried Out in the Research</td>
</tr>
<tr>
<td>4.1</td>
<td>Characteristics of Pile Group arrangements and Obtained Regression Equations for the Experiments</td>
</tr>
<tr>
<td>4.2</td>
<td>Evaluation Performance of Proposed and Existing Methodologies</td>
</tr>
<tr>
<td>4.3</td>
<td>Dimensionless Parameters in Complex Piers Models Used in the Research</td>
</tr>
<tr>
<td>4.4</td>
<td>Evaluation Performance of Existing Methodologies</td>
</tr>
<tr>
<td>4.5</td>
<td>Details of Models Geometries Used In This Study</td>
</tr>
<tr>
<td>4.6</td>
<td>Evaluation Performance of Proposed and Existing Approaches</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Various Types of Scour (Cheremisinoff and Cheng, 1987)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Causes of Bridge Failure in the United States, New Zealand, and South Africa (Annandale, 1993).</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Examples of Scour around Complex Piers (A) Local Scour and Bed Degradation at Kaoping Bridge, Taiwan, (B) Failure of Kaoping Bridge, Taiwan Due to Combination of General and Local Scour (Lin, 1998)</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Bridge Failure Due to Scouring on Sungai Sembrong in 2006 (Zawawi, 2007)</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Temporary Repairing for Failed Bridge on Sungai Sembrong in 2006 (Zawawi, 2007).</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>General and Local Scouring of River Bed at Sg. Jeniang (King and Mohammad, 2009)</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Diagrammatic Flow Components at Cylindrical Pier (Raudkivi, 1986)</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Pier Scour Depth in a Sand-bed Stream as a Function of Time (Richardson and Davis, 2001).</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Development of Local Scour Depth with Time and Flow Velocity (Melville and Chiew, 1999).</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Nonuniform Pier Configuration: (a) Zone 1; (b) Zone 2; (c) Zone 3 (Melville and Raudkivi, 1996)</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>Effect of Collar on Scour Depth in the Region of a Cylindrical Bridge Pier (Chiew, 1992)</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>Adjustment Factor for Pile Spacing (Salim and Jones, 1996).</td>
<td>58</td>
</tr>
<tr>
<td>2.7</td>
<td>Effect of Angle of Attack (Salim and Jones, 1996).</td>
<td>59</td>
</tr>
<tr>
<td>2.8</td>
<td>Pile Stub Component (Salim and Jones, 1996)</td>
<td>60</td>
</tr>
<tr>
<td>2.9</td>
<td>Pile Cap Component (Salim and Jones, 1996)</td>
<td>60</td>
</tr>
<tr>
<td>2.10</td>
<td>Local Scour Variations with Complex-Pier Pile-Cap Elevation (Coleman, 2005)</td>
<td>63</td>
</tr>
<tr>
<td>2.11</td>
<td>Complex-Pier Configuration (Coleman, 2005)</td>
<td>65</td>
</tr>
</tbody>
</table>
2.12 Conceptual Hypotheses for Superimposing Scour Components (Sheppard and Jones, 1998) 65
2.13 Pile Group Height Factor (Jones and Sheppard, 2000) 67
2.14 Suspended Pier Height Factor (Sheppard and Jones, 1998) 67
2.15 Pile Cap Equivalent Solid Pier Ratio (Sheppard and Jones, 1998) 68
2.16 Complex Piers Used in Sterling Jones’ Experiments (Sheppard and Renna, 2005) 71
2.17 Plan and Elevation View of Models of Complex Piers used in Coleman’s Experiments (Sheppard and Renna, 2005) 72
2.18 Position of the Piers in Sheppard’s Experiments (Sheppard and Renna, 2005) 73
2.19 Definition Sketches for the Effective Diameters of the Column, Pile Cap and Pile Group (Sheppard and Renna, 2005) 74
2.20 Definition Sketch for Total Effective Diameter for a Complex Pier Using in Superposition Method (Sheppard and Renna, 2005) 75
3.1 Schematic Drawing of the Flume Test Facility 79
3.2 The Laboratory Flume Test Stated in National Hydraulic Research Institute of Malaysia (NAHRIM) 80
3.3 Velocity Measurement Devices: (a) Area Velocity Module and Its Sensor (b) Two Type of Current Meter Probes 82
3.4 Details of Model Installation and Its Support during Experiments 86
3.5 The Particle Size Distributions of the Bed Material 94
3.6 Definition Sketch for 3*4-Pile Group Arrangement 97
3.7 Pier Position Related To Undisturbed Stream Bed and Water Surface 99
3.8 A Schematic Illustration of Complex Pier Configuration (Coleman, 2005) 100
3.9 Plan and Elevation View of Complex Pier Models; (a) Model One; (b) Model Two; (c) Model Three (all dimensions are in cm) 102
3.10 Pier Models for the Experiments: (a) Kedah, Pier No.1 with 1:9 Scale; (b) Pahang, Pier No. 3 with 1:37 Scale; (c) Johor Pier No. 2 with 1:35 Scale; (d) Pahang Pier No. 6 with Scale 1:65; (e) Pahang Piers No. 1,2,7,8 with 1:27 Scale 105
3.11 Plane-Bed Formation at a Location Far Upstream of the Model 108
3.12 The Schematic Flowchart of the Overall Work 109
4.1 Variation of Local Scour Depth with Time for 2*2 Pile Group Arrangement 119
4.2 Local Scour Depth Plotted Versus Pile Spacing at Uniform Exposed Pile Groups Arrangements 121
4.3 Equilibrium Scour Depth Ratio Plotted Versus Normalized Pile Spacing with Uniform Spacing Arrangements (Sn=S_m) 123
4.4 Equilibrium Scour Depth Ratio Plotted Versus Normalized Pile Spacing with Nonuniform Spacing Arrangements (S_n ≠ S_m) 123
4.5 Equilibrium Scour Hole Contours and Surface Plots for 2*4 Arrangement of Exposed Pile Group with D = 0.06 and S/D=2 124
4.6 Combined Scour Hole at 2*4 Arrangement of Exposed Pile Group with D = 0.06 and S/D=2 (a) Looking From Upstream (b) Looking From Downstream 125
4.7 Individual Scour Hole at Exposed Pile Groups with D = 0.06 and S/D=4; a) 2*2 Pile Group Arrangement b) 3*5 Pile Group Arrangements 126
4.8 The Scour Test on 4*4 Arrangement of Submerged Pile Group a) Model Installation b) Pre Test; c) Post Test 128
4.9 Variation of K_h with Submergence Ratio, S_r, for Different Pile Group Arrangements 130
4.10 Coefficient K_{mn} as Function of S/D for the Experiments 130
4.11 Comparison of Observed and Predicted Scour Depth at: a) Unsubmerged Pile Groups; b) Submerged Pile Groups 134
4.12 Comparison of Obtained Results of Proposed Method and Observed Data at Unsubmerged Pile Groups 136
4.13 Variation of Local Scour Depth with Pile Cap Location 138
4.14 Local Scour Depth at Complex pier a) Complex Pier Exposed with Varying Pile Cap Location; b) Conceptual Variation of Local Scour with Pile Cap Location 140
4.15 Post Scour Test Indicated Case 1 in Model 7 141
4.16 Post Scour Test Indicated Case 2 in Model 5 141
4.17 Post Scour Test Indicated Case 3 (Curve DE) in Model 8 When the Pile Cap Is Not Undercutting (Photograph Taken From the Side) 143
4.18 Post Scour Test Indicated Case 3(Curve EF) in Model 8 When the
4.19 Post Scour Test Indicated Case 4 in Model 7 (Photograph Taken From Upstream and Side) 143

4.20 Comparison of Calculated versus Measured Pier Scour Depth a) the FDOT Method; b) the HEC-18 Method; c) Coleman (2005) Method 145

4.21 Distribution of Residual Depth of Pier Scour for Evaluated Methods 147

4.22 Measured and Predicted Scour Depth versus Pile Cap Elevation a) Model One; b) Model Two; c) Model Three; d) Pier Model in Kedah, Pier No.1; e) Pier Model in Pahang, Pier No. 3; f) Pier Model in Johor, Pier No. 2 g) Pier Model in Pahang, Pier No. 6; h) Pier Model Pahang Piers No. 1, 2, 7 and 8 148

4.23 Measured Scour Depth Variation with Column Elevation at Suspended Columns Used at Assessed Complex Piers 156

4.24 The Normalized Scour Depth Plotted Against Normalized Pile Elevation 157

4.25 Scour Test for Column at Model 7 a) Pre Scour Test; b) During Scour Test; c) Post Scour Test 158

4.26 Measured Scour Depth at Suspended Pile Cap Models 159

4.27 Local Scour Variation with Pile Cap Level: (a) Pile Cap Exposed at Various Levels; (b) Conceptual Distinction of Local Scour at Various Levels of Pile Cap 162

4.28 Scour Hole at Pile Cap for Model 5 a) before Removing the Model b) after Removing the Model 167

4.29 Comparison of Observed and Calculated Scour Depth at Pile Cap 169

4.30 Application of Proposed Method on Data Obtained by Sheppard and Jones (1998) 171

4.31 Measured Scour Depth Variation with Pile Cap Elevation at Column - Pile Cap Combination 171

4.32 Scour Test for Pile Cap-Column Combination at model 4 a) Pre Scour Test; b) During Scour Test; c) Post Scour Test 172

4.33 Measured Scour Depth Variation with Model Elevation at Complex Pier and Isolated Components of Pier 1 173

4.34 Measured Scour Depth Variation with Pile Cap/Column Elevation at Complex Pier and Isolated Components of Model 2 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.35</td>
<td>Measured Scour Depth Variation with Pile Cap/Column Elevation at Complex Pier and Isolated Components of Model 3</td>
<td>174</td>
</tr>
<tr>
<td>4.36</td>
<td>Measured Scour Depth at Complex Pier Variation with Pile Cap/Column Elevation at Complex Pier and Isolated Components of Model 4</td>
<td>175</td>
</tr>
<tr>
<td>4.37</td>
<td>Measured Scour Depth at Complex Pier Variation with Pile Cap/Column Elevation at Complex Pier and Isolated Components of Model 5</td>
<td>175</td>
</tr>
<tr>
<td>4.38</td>
<td>Measured Scour Depth Variation with Pile Cap/Column Elevation at Complex Pier and Isolated Components of Model 6</td>
<td>176</td>
</tr>
<tr>
<td>4.39</td>
<td>Measured Scour Depth Variation with Pile Cap/Column Elevation at Complex Pier and Isolated Components of Model 7</td>
<td>176</td>
</tr>
<tr>
<td>4.40</td>
<td>Measured Scour Depth at Complex Pier Variation with Pile Cap/Column Elevation at Complex Pier and Isolated Components of Model 8</td>
<td>177</td>
</tr>
<tr>
<td>4.41</td>
<td>Comparison of Measured Scour Depth at Complex Pier Models and Combination of Pile Cap-Column versus Superposition Results</td>
<td>181</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

A constant number
a pier width
\(a_{pg}^*\) equivalent full depth pile group
Al parameter describing the alignment
\(a_{proj}\) sum of non-overlapping projected widths of piles
b width of pile cap
B pier projection width
\(b_{pg}^*\) width of a full depth solid pier that would yield the same scour depth as the full depth pile group
\(B_1\) approaching flow width
\(b_c\) width of column component at complex pier
\(b_e\) equivalent cylindrical pier diameter relative exposure of the column, pile-cap and pile-group elements
\(b_{pc}\) width of pile cap component at complex pier
C constant number
Comp soil compact ratio
D diameter of cylindrical pile
\(D^*\) effective diameter for complex pier components
\(D^*\) foundation diameter in nonuniform cylindrical pier
\(d_{50}\) median sediment size
\(D_e\) the equivalent diameter of the nonuniform pier
\(d_s(ES)\) scour depth around an equivalent solid pier at the same skew angle to flow direction.
\(f_{eb}\) extension length of pile cap face out from column face
\(f_{cl}\) extension length of pile cap face out from column face
\(f_{pb}\) extension length of pile cap face out from nearest pile centerline
\(f_{pl}\) extension length of pile cap face out from nearest pile centerline
\(Fr_1\) Froude Number directly upstream of the pier = \(V_1/(gy_1)\)
h height of pile cap relative to undisturbed streambed
IWC Initial Water Content
k turbulent kinetic energy
K correction factors for specific conditions
K₁ correction factor for pier nose shape
K₂ correction factor for angle of attack of flow
K₃ correction factor for bed condition
K₄ correction factor for armoring by bed material size
K_ći correction factor for suspended pile cap in i_th case
KD sediment size factor
K_{Gmn} correction factor for pile group spacing and arrangements
Kh pile group height adjustment factor
Kh_{hpg} the height factor for pile group at complex piers
K_l flow intensity factor
K_m coefficient for number of aligned rows
K_s foundation shape factor
K_{Smn} correction factor for spacing at exposed pile group arrangements
K_s_p coefficient for pile spacing
K_t time factor
K_{yb} flow depth-pier size factor (dimension of length)
K_{θ} foundation alignment factor
l_{pc} length of pile cap in line with flow
L length of pier
l_c length of column component at complex pier
m number of pile in line with flow
MAE mean absolute error
n number of piles normal to the flow
N number of data
p represents predicted scour depth
PF prediction factor
q unit flow rate
R correlation coefficient