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Thermostable T1 lipase carries a lot of potential in industrial applications such as in 
diesel production and detergent formulation. However, the usage of laboratory media 
can cost a fortune when used at commercial scale (adding up to the final cost value of 
the enzyme). In order to create a cheaper enzyme product a new medium formulation 
from cheaper sources and readily available is crucial. This study was designed to 
formulate new medium and to develop an efficient large scale bioprocess strategie for 
thermostable T1 lipase from recombinant E. coli BL21. Different carbon and nitrogen 
sources from agro and industrial waste were screened. The compositions of the medium 
were optimized using response -D-1-
thiogalactopyranoside (IPTG) and lactose capability as inducer were also studied. The 
kinetics of T1 lipase production by recombinant E. coli were evaluated using Monod 
and Luedeking-Piret equations. The effects of dissolved oxygen tension (DOT) level on 
growth of recombinant E. coli and T1 lipase production were investigated in batch 
fermentation using 7.5 L stirred tank bioreactor. Fed-batch fermentation for T1 lipase 
production was initially developed in 7.5 L stirred tank bioreactor and then scaled up to 
30 L. A newly formulated medium for production of T1 lipase was formulated using 
5th grade molasses and fish processing waste as carbon and nitrogen sources. The 
medium consisted of molasses (2 g/L), fish waste (12%), NaCl (5 g/L), MgSO4 (0.5 
g/L) and KH2PO4 (1 g/L). Through centre composite design (CCD), medium 
compositions using IPTG as an inducer showed higher T1 lipase production in 
predicted (172.89 U/mL) and actual run (164.37 U/mL) compared to lactose as an 
inducer in predicted (123.47 U/mL) and actual run (120.34 U/mL). Both R2 values 
calculated using RSM showed a good fit and the proposed models for T1 lipase 
production by recombinant E. coli were sufficient to describe the processes. T1 lipase 
production was found to be a growth associated process and 30% showed the optimal 
level of DOT for production of T1 lipase. The constant feed rate for fed-batch 
fermentation at 160 mL/h using 50% lactose as feeding medium was found to be 
optimal for production of T1 lipase (260.10 U/mL) and recombinant E. coli growth 
(51.30 g/L). The fermentation employing recombinant E. coli for T1 lipase production 
was successfully scaled-up to 30 L stirred tank bioreactor using a constant DOT 
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approach, with DOT level controlled at 30% saturation. 50% of cost reduction was 
successfully achieved in production of T1 lipase when using new formulated medium 
and so far, this is the first report of using molasses and fish waste in the medium 
formulation. The information and findings obtained from this study are very useful in 
designing and in the preparation of standard operating procedure (SOP) for production 
of T1 lipase by recombinant E. coli at pilot plant and at industrial scale.  
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T1 lipase tahan haba mempunyai banyak potensi dalam industri seperti dalam 
penghasilan diesel dan formulasi detergen. Walau bagaimanapun, penggunaan media 
makmal akan menambah kepada nilai kos akhir enzim tersebut apabila digunakan pada 
skala komersial. Oleh itu, untuk menghasilkan produk enzim yang lebih murah, 
formulasi baru daripada sumber-sumber yang lebih murah dan mudah didapati sangat 
diperlukan. Kajian ini telah dihasilkan untuk mencipta media yang baru dan 
membangunkan sebuah strategi bioproses yang cekap secara besar-besaran bagi  
menghasilkan lipase T1 tahan haba dari recombinan E. coli BL21. Sumber karbon dan 
nitrogen yang berbeza daripada sisa pertanian dan industri telah disaring. Komposisi 
media telah dioptimumkan menggunakan kaedah gerak balas permukaan (RSM). 

-D-1-thiogalactopyranoside (IPTG) dan laktosa sebagai penggalak juga 
telah diuji. Kinetik bagi penghasilan T1 lipase oleh recombinan E. coli dinilai 
menggunakan persamaan Monod dan Luedeking-Piret. Kesan ketegangan oksigen 
terlarut (DOT) dalam pertumbuhan dan pengeluaran recombinan T1 lipase E. coli 
disiasat dalam fermentasi sekelompok menggunakan tangki bioreaktor berpengaduk 7.5 
L. Penghasilan T1 lipase menggunakan fermentasi sekelompok suapan dilakukan di 
dalam 7.5 L tangki bioreaktor dan kemudian pada skala besar 30 L. Satu formulasi baru 
untuk penghasilan T1 lipase adalah dirumus menggunakan molas gred kelima dan sisa 
pemprosesan ikan sebagai sumber karbon dan nitrogen. Medium terdiri daripada molas 
(2 g/L), sisa ikan (12%), NaCl (5 g/L), MgSO4 (0.5 g/L) dan KH2PO4 (1 g/L). Melalui 
reka bentuk kopositpusat (CCD), komposisi media yang menggunakan IPTG sebagai 
penggalak menunjukkan penghasilan T1 lipase yang tinggi (172.89 U/mL) dan 
penghasilan yang sebenar (164.37 U/mL) berbanding laktosa sebagai penggalak yang 
diramalkan (123.47 U/mL) dan penghasilan yang sebenar dijalankan (120.34 U/mL). 
Kedua-dua nilai R2 yang dikira menggunakan RSM menunjukkan ianya sesuai dan 
model untuk dicadangkan bagi pengeluaran recombinan T1 lipase E. coli. Penghasilan 
T1 lipase merupakan proses yang berkaitan dengan pertumbuhan dan 30% yang 
menunjukkan tahap optimum DOT bagi pengeluaran T1 lipase. Melalui fermentasi 
sekelompok suapan sekata, di mana 160 mL/h menggunakan laktosa 50% sebagai 
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medium suapan, didapati optimum bagi pengeluaran T1 lipase (260.10 U/mL) dan 
pertumbuhan recombinan E. coli (51.30 g/L). Fermentasi menggunakan recombinan E. 
coli untuk penghasilan T1 lipase telah berjaya dihasilkan pada skala besar sehingga 30 
L menggunakan tangki bioreaktor menggunakan pendekatan DOT berterusan, di mana 
tahap DOT dikawal pada 30% ketepuan. 50% dari pengurangan kos telah berjaya 
dikurangkan di dalam pengeluaran T1 lipase apabila menggunakan media baru digubal 
dan setakat ini, ini adalah laporan pertama menggunakan molas dan sisa ikan dalam 
formulasi media. Maklumat dan penemuan yang diperolehi daripada kajian ini adalah 
amat berguna dalam merekabentuk dan penyediaan prosedur kendalian standard (SOP) 
untuk penghasilan T1 lipase daripada recombinan E. coli di loji rintis dan pada skala 
perindustrian. 
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CHAPTER 1 
 

INTRODUCTION 
 

Enzymes played a significant part in mankind's history to employ biological 
components aimed at a range of productions. Developments such brewing and wine 
production, which the roots could be traced to the beginning of history, it is ultimately 
dependent by the enzymes to complement of the fermenting yeast cells that mediating 
the transformation of substrates into desired products (Shuler & Kargi, 2002). 
Traditionally, most enzymes are obtained by ways of fermentation using GRAS-listed 
microorganisms and some enzymes are obtained from plant and animal sources 
(Casteleijn et al., 2013). 
 

Lipases or acylglycerol hydrolases (E.C. 3.1.1.3) are enzymes that catalyse the 
hydrolysis of long chain triglyceride into the formation of diacylglyceride, 
monoglyceride, glycerol and free fatty acids at the interface between the insoluble 
substrate and water. Aside from their natural substrates, lipases catalyze the enantio- 
and regioselective hydrolysis and synthesis of a broad range of natural and non-natural 
esters. Lipas
found in bacteria, fungi and yeasts (Borrelli & Trono, 2015; Andualema & Gessesse, 
2012; Treichel et al., 2010). 
 

In industry, lipases are produced through microorganism cultivation. Lipases are often 
produced by bacteria, yeast and fungi such as several species of Bacillus sp. (Renge et 
al., 2012), Pseudomonas sp. (Haddar et al., 2010), Staphlococcus sp. (Khoramnia et al., 
2010), Aspergillus sp. (Jia et al., 2015; Salihu et al., 2016), Candida sp. (Emond et al., 
2010; Liu et al., 2012) and Rhizopus sp. (Iftikhar et al., 2010). Microbial lipases are 
capable of catalysing series of reactions for various industrial applications (Treichel et 
al., 2010; Andualema & Gessesse, 2012; Zhao et al., 2015). Lipases work in mild 
reaction conditions over a range of temperatures and pressures that minimize the 
formation of unwanted products. Microbial lipases are usually stable and have unique 
characteristics as compared to plant and animal lipases (Singh & Mukhopadhyay, 
2012). 
 

Most recent technology of recombinant DNA has eased the production of enzymes and 
other different proteins from foreign species. As the low levels of naturally produced 
precluded their widespread industrial use, this technology is probably going to have the 
greatest impact on enzymes production that have important therapeutic usage. Since 
enzymes are environmentally friendly, therefore, over 75% of the hydrolysis processes 
were conducted by using enzymes rather than by acids (Singh et al., 2016).   
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Considering most biotechnological products processes need a lot of capital, obtaining 
an optimum yield of product at the lowest expenses through usage of low cost material 
is vital (Agarwal et al., 2006). Yet, very small quantities of enzymes are usually 
produced by microorganisms natively and expensive raw materials which near to 30% 
of the total production expenditure. This explains the reason most of the marketable 
products based on enzymes are costly. Hence, it is crucial to decrease the production 
costs of enzyme production through the use of economical and renewable component 
(Haddar et al., 2010; Luo & Mu, 2014; Souza et al., 2015; Losordo et al., 2016). 
Multiple carbon and nitrogen sources have been tested for enzyme production, however 
depending on the substrate composition particularly the carbon source which may 
results varies on the level of enzyme production (Andersson et al., 2007; Sabri et al., 
2013). In addition to usual water soluble carbon sources, a variety of unusual carbon 
sources such as blended gasoline, ethanol, hydrocarbons like hexadecane and 
heptadecane have also been tested (Deutscher, 2008).  
 

The increase in public awareness on environmental related issues, intensely influence 
the development of technologies that assists in cleaning the contaminants. This has 
given rise to the opportunities for finding relevant yet cheap sources that can be used 
for enzyme production. Novelli et al., (2016) proposed a substitute approach using 
solid state fermentation to gain more cost-effective and viable production process 
worth employing on a commercial scale. Some of the recommended strategies included 
the use of more inexpensive materials, optimization of environmental conditions and 
screening for over producing strain to achieve the maximum productivity (Renge et al., 
2012; Weuster-Botz et al., 2007). 
 

Farming and food processing are the two massive industries that most of its wastes are 
environmentally plight. These industrial activities have continuously created a lot of 
pollution, such as wastewater, gaseous and solid waste pollution. Even though several 
agricultural residues are often disposed of within the environment (due to 
biodegradable nature), the large quantities of residues generated as a result of various 
agricultural and industrial practices, it is crucial to find alternative wherever these 
residue might be utilized for other useful application. Since these are rich in organic 
nutrient, they represent one of the most energy-rich resources on the planet. The 
negligence of the potential of these biomass may result in loss of prised material that 
may yield valuable added. By using waste as medium can minimize the cost of waste 
management and subsequently can reduce the overall manufacturing capitals 
(Jegannathan & Nielsen, 2013). 
 

One of novel lipase enzyme that has high potential to be marketed is T1 lipase, proved 
to be thermostable alkaliphilic enzyme that is secreted by Geobacillus zalihae strain T1 
(Leow et al., 2007). During this study, T1 lipase that is expressed by Escherichia coli 
BL21 are grown in a custom-made medium optimized using Response Surface 
Methodology (RSM) software that consists of local industries waste to lower the cost 
of production. Meanwhile, the fermentation process will also be optimized. The 
performance of the fermentation was evaluated using Monod and Luedeking-Piret 
equations. Shake flask, batch and fed-batch fermentation evironment was applied to 
collect the data to assess the most optimum conditions for used in the scale-up of 30 L 
fermentation.   
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This study aims to improve the yields of T1 lipase and to formulate low cost medium 
composition for productions of T1 lipase at a lower price. Hence, it will help to boost 
local biotechnology industry in Malaysia. The specific objectives of this research are as 
follows: 
 

1- To investigate the influence of different substrates on the expression of T1 
enzyme that will lower the cost production for industrial application. 

2- To optimize the production of T1 lipase using RSM and compare the effect of 
IPTG and lactose on the process. 

3- To study the kinetic and modelling of T1 lipase production in shake flask and 
batch bioreactor. 

4- To develop T1 lipase production in 7.5 L bioreactor using batch and fed-batch 
mode. 

5- To scale-up the T1 lipase production in fed-batch fermentation based on 
constant DOT in 30 L bioreactor. 
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