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Highly weathered soils such as Ultisols and Oxisols in Malaysia and elsewhere are low 

pH and nutrients but they are high in iron (Fe) and aluminium (Al). The high Fe and Al 

contents of these soils reduce their productivity. As a result, substantial amounts of 
fertilizers are used to sustain productivity of crops cultivated on Ultisols and Oxisols, 

especially those in the tropics. However, excessive use of chemical fertilizers degrades 

the environmental quality. To reverse this undesirable practice, amendments which are 

high in pH and cation exchange capacity such as crude humic substances, chicken litter 

biochar, and clinoptilolite zeolite could be exploited to improve soil chemical 

properties, lowland rice (cv. MR219) growth, nutrients uptake, nutrients recovery 

efficiency, and yield. River sand and the amendments were mixed at different rates to 

select the potential rice seeds germination medium. Crude humic substances, chicken 

litter biochar, and clinoptilolite zeolite at different rates were mixed with soil to 

determine their effects on ammonia volatilization, nutrients availability, nutrients (N, P, 

and K) adsorption and desorption capacity, pH buffering capacity, lowland rice growth, 

nutrients uptake, and nutrients recovery efficiency in laboratory, greenhouse, and field 
studies. Potential treatments of a greenhouse study were selected and further evaluated 

in field trials. Application of crude humic substances and chicken litter biochar did not 

minimize ammonia volatilization whereas, clinoptilolite zeolite reduced ammonia loss 

from urea under waterlogged condition. However, the three amendments improved soil 

pH and the availability of Ca, Mg, and Na in Typic Paleudults under laboratory 

condition. The organic amendments (crude humic substances and chicken litter 

biochar) increased soil total organic carbon, organic matter content, total N, and 

availability of K+ and Mn2+. Phosphorus availability was improved upon chicken litter 

biochar application whereas under laboratory condition, exchangeable ammonium 

increased with the application of clinoptilolite zeolite. Addition of crude humic 

substances reduced nutrients adsorption (N, P, and K) and K desorption rate however, 
they increased N and P desorption rate and pH buffering capacity. Chicken litter 

biochar increased N adsorption and pH buffering capacity but, it reduced P and K 

adsorption and so was N and P desorption rate. Lower N desorption rate with high N 

adsorption of the chicken litter biochar indicates the NH4
+
-N fixing capacity of this 

organic amendment. Clinoptilolite zeolite increased N and K adsorption, N desorption 

rate, and pH buffering capacity but, it reduced P adsorption and desorption rates of P 
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and K. Higher K adsorption with lower K desorption rate indicates that clinoptilolite 

zeolite has high affinity for K. Clinoptilolite zeolite (15%) mixed with sand (85%) was 

selected as germination medium for the greenhouse and field trials as it improved rice 

seedling shoot elongation. From the greenhouse study, crude humic substances at 5 t 

ha-1, chicken litter biochar at 15 t ha-1, and clinoptilolite zeolite at 15 t ha-1 were chosen 

for further field verification due to their potential to improve rice plant growth 

variables and selected soil chemical properties. Chicken litter biochar at 15 t ha-1 and 

crude humic substances at 5 t ha-1 increased MR219 rice yield by 88% and 38%, 

respectively in the first field trial. Reduced rates of crude humic substances (1.67 t ha-1) 

and chicken litter biochar (5 t ha-1) with reduction of chemical fertilizers by 37% 

increased rice yield by 57% and 75%, respectively in the second field trial. In the third 
field trial, the carryover effect of the chicken litter biochar on the rice yield was 

superior to those of crude humic substances, clinoptilolite zeolite, and the standard 

fertilization. Regardless of field trial, application of clinoptilolite zeolite had similar 

effect as normal fertilization on rice yield. Although, the conventional practice was 

profitable at the initial cycles, the profit associated with this practice decrease to loss by 

the third cycle. Rice farmers in Malaysia who patronize the conventional method are 

still surviving because of the Malaysian government subsidies on fertilizers, lime, and 

seeds. Irrespective of field trial, the use of crude humic substances was economically 

viable however, farmers can breakeven at second and third field cycles, respectively if 

they adopt chicken litter biochar and clinoptilolite zeolite in their farming practices. 

Incorporating crude humic substances or chicken littler biochar in the Malaysian rice 
cultivation is economically viable compared to the existing practice. It is recommended 

to produce biochar commercially in Malaysia from the agro industrial organic wastes 

or transfer technology to farmers to produce their own biochar to reduce the production 

cost. To refine this study, the organic and mineral amendments can be mixed to 

improve soil quality and rice yield. Apart from N, P, and K, other nutrients contribution 

to increase rice yield should be comprehensively studied in future studies. 
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Tanah yang sangat terluluhawa seperti Ultisols dan Oxisols di Malaysia dan di tempat 

lain mempunyai pH dan nutrien yang rendah tetapi ia tinggi dengan ferum (Fe) dan 

aluminium (Al). Kandungan Fe dan Al yang tinggi dalam tanah mengurangkan 
produktivitinya. Hasilnya, sejumlah besar baja digunakan untuk memampankan 

produktiviti tanaman yang ditanam pada Ultisols dan Oxisols, terutamanya di kawasan 

tropika. Walau bagaimanapun, penggunaan baja kimia yang berlebihan 

menggurangkan kualiti alam sekitar. Untuk menterbalikkan amalan yang tidak diingini 

ini, penambah baik  yang tinggi dalam pH dan keupayaan pertukaran kation seperti 

bahan humik mentah, biochar tahi ayam, dan zeolit klinoptilolit boleh digunakan untuk 

meningkatkan sifat-sifat kimia tanah, pertumbuhan padi sawah (cv. MR219), 

pengambilan nutrien, kecekapan penggunaan nutrien, dan hasil. Pasir sungai dan bahan 

penambahan dicampur pada kadar yang berbeza bagi memilih medium percambahan 

benih yang berpotensi. Bahan-bahan humik mentah, biochar tahi ayam, dan zeolit 

klinoptilolit pada kadar yang berbeza telah dicampur dengan tanah untuk menentukan 

kesan penambahan tersebut terhadap pemeruapan ammonia, ketersediaan nutrien-
nutrien, penjerapan dan penyahjerapan nutrien-nutrien (N, P, dan K), kapasiti 

keupayaan penampan pH, pertumbuhan padi tanah rendah, pengambilan nutrien, dan 

kecekapan penggunaan nutrien dalam kajian makmal, rumah hijau, dan lapangan. 

Rawatan yang berpotensi daripada kajian rumah hijau telah dipilih dan diniai secara 

lanjut dalam ujian lapangan. Penggunaan bahan humik mentah dan biochar tahi ayam 

tidak mengurangkan pemeruapan ammonia sedangkan, zeolit klinoptilolit 

mengurangkan kehilangan ammonia daripada urea di dalam keadaan bertakung air. 

Walau bagaimanapun, ketiga-tiga penambah baik telah meningkatkan pH tanah dan 

ketersediaan Ca, Mg, dan Na dalam Typic Paleudults di dalam keadaan makmal. 

Penambahan organik (bahan humik mentah dan biochar tahi ayam) meningkatkan 

jumlah karbon, kandungan bahan organik, jumlah N, dan ketersediaan K+ dan Mn2+ 
tanah. Ketersediaan P meningkat apabila biochar tahi ayam digunakan sedangkan di 

dalam keadaan makmal, ammonium boleh tukar ganti meningkat dengan penggunaan 

zeolit klinoptilolit. Penambahan bahan humik mentah mengurangkan penjerapan (N, P, 

dan K) dan kadar penyahjerapan K bagaimanapun, ia meningkatkan kadar 

penyahjerapan N dan P, dan kapasiti keupayaan penampan pH. Biochar tahi ayam 

meningkatkan penjerapan N dan kapasiti keupayaan penampan pH tetapi, ia 
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mengurangkan penjerapan P dan K dengan kadar penyahjerapan N dan P. Kadar 

penyahjerapan N yang lebih rendah dengan penjerapan N yang tinggi pada biochar tahi 

ayam menunjukkan kapasiti pengikatan NH4
+-N pada penambahan organik tersebut. 

Zeolit klinoptilolit meningkatkan penjerapan N dan K, kadar penyahjerapan N, dan 

kapasiti keupayaan penampan pH tetapi, ia mengurangkan penjerapan dan kadar 

penyahjerapan P dan K. Penjerapan K yang lebih tinggi dengan kadar penyahjerapan K 

yang lebih rendah menunjukkan bahawa zeolit klinoptilolit mempunyai tarikan yang 

tinggi untuk K. Zeolit klinoptilolit (15%) dicampur dengan pasir (85%) telah dipilih 

sebagai medium percambahan untuk percubaan-percubaan rumah hijau dan lapangan 

kerana ia meningkatkan pemanjangan pucuk anak benih padi. Daripada kajian rumah 

hijau, bahan-bahan humik mentah pada 5 t ha-1, biochar tahi ayam pada 15 t ha-1, dan 
zeolit klinoptilolit pada 15 t ha-1 telah dipilih untuk pengesahan lapangan seterusnya 

kerana potensi mereka untuk meningkatkan pembolehubah pertumbuhan tumbuhan 

padi dan sifat-sifat kimia tanah terpilih. Biochar tahi ayam pada 15 t ha-1 dan bahan 

humik mentah pada 5 t ha-1 meningkatkan hasil padi MR219 sebanyak 88% dan 38%, 

masing-masing dalam percubaan lapangan pertama. Kadar dikurang bahan humik 

mentah (1.67 t ha-1) dan biochar tahi ayam (5 t ha-1) dengan pengurangan baja kimia 

sebanyak 37% meningkatan hasil padi sebanyak 57% dan 75%, masing-masing dalam 

percubaan lapangan kedua. Dalam percubaan lapangan yang ketiga, kesan bawa ke 

depan biochar tahi ayam pada hasil padi adalah lebih tinggi daripada bahan humik 

mentah, zeolit klinoptilolit, dan pembajaan biasa. Tanpa mengira percubaan lapangan, 

penggunaan zeolit klinoptilolit mempunyai kesan yang sama seperti pembajaan normal 
pada hasil padi. Walaupun begitu, amalan konvensional adalah menguntungkan di awal 

kitaran penanaman, keuntungan daripada amalan ini akan berkurangan kepada kerugian 

pada kitaran yang ketiga. Pesawah di Malaysia yang mengamalkan kaedah 

konvensional masih mampu beroperasi kerana subsidi kerajaan Malaysia terhadap baja, 

kapur, dan biji benih. Tanpa mengira percubaan lapangan, penggunaan bahan humik 

mentah adalah berdaya maju kerana, petani boleh mendapat pulangan modal pada 

kitaran kedua dan ketiga masing-masing jika mereka mengamalkan penggunaan 

biochar tahi ayam dan zeolit klinoptilolit dalam amalan pertanian mereka. Penggunaan 

bahan humik mentah atau biochar tahi ayam biochar dalam penanaman padi di 

Malaysia adalah berdaya maju dari segi ekonomi berbanding dengan amalan yang sedia 

ada. Ia adalah disyorkan untuk menghasilkan biochar secara komersial di Malaysia 

daripada sisa-sisa organik industri agro atau pemindahan teknologi kepada petani untuk 
menghasilkan biochar mereka sendiri untuk mengurangkan kos pengeluaran. Untuk 

memperbaiki kajian ini, penambahan organik dan mineral boleh dicampur untuk 

meningkatkan kualiti tanah dan hasil padi. Selain daripada N, P, dan K, sumbangan 

nutrien-nutrien lain untuk meningkatkan hasil padi perlu dikaji secara menyeluruh 

dalam kajian pada masa depan. 
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1 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

Rice (Oryza sativa L.) is one of the widely grown staple foods in the world. It is a very 

important food source in Asia including Malaysia. However, the self-sufficiency level 

for rice production in Malaysia is approximately 71.7 % (Siwar et al., 2014; Ministry 

of Agriculture and Agro-Based Industry, Malaysia, 2014). Moreover, the average rice 

production in Malaysia per hectare is approximately 4 t ha-1 which is lower than the 
potential rice yield of 10 t ha-1 (Omar, 2008; Siwar et al., 2014). This pressing issue 

calls for improvement in the existing rice production practices particularly in terms of 

efficient use of fertilizers and sustainable maintenance of soil productivity. This is 

essential because mineral soils of Malaysia such as Ultisols and Oxisols are highly 

weathered, acidic, and they are also inherently low in N, P, and K (Goh and Chew, 

1995; Sallade and Sims, 1997; Zaharah et al., 1997).  

 

The abundance of variable charge colloids in Ultisols and Oxisols as well as low pH 

and low cation exchange capacity (CEC) have led to the presence of large amounts of 

oxides and hydroxides of iron and aluminium in these soils. These oxides and 

hydroxides fix large amounts of soluble P resulting low concentrations of available 
phosphorus in soil solution (Wilson et al., 2004). Moreover, low soil CEC, high 

rainfall, and the hygroscopic and highly soluble properties of fertilizers cause 

significant reduction in nitrogenous, phosphatic, and potassic fertilizers use efficiency. 

Inefficient use of fertilizers by crops leads to nutrient deficiencies and yield reduction 

in rice (Goulding et al., 2008). To sustain the self-sufficiency level for rice production, 

fertilizer use has been emphasized. However, the demand for fertilizers in agriculture is 

associated with yearly increase in the price of the fertilizers (FAO, 2011). In addition, 

excessive use of fertilizers in rice production is not environmental friendly because this 

approach leads to environmental pollution such as ground water contamination, 

eutrophication of water bodies, and greenhouse gases emission (Daniel et al., 1998; 

Savci, 2012).  

 
On the other hand, agricultural activities lead to production of substantial amount of 

wastes such as rice straw, rice husk, chicken litter, and sawdust. The production of rice 

and poultry in 2013 were 2.6 million metric tonnes and 1.3 million metric tonnes, 

respectively (Ministry of Agriculture and Agro-Based Industry, Malaysia, 2014). It has 

been estimated that approximately 1.3 million metric tonnes of rice straw are produced 

every year in Malaysia (Remli et al., 2014). On the average, 20% weight of paddy is 

husk (Kumar et al., 2012). This explains why approximately 0.5 million metric tonnes 

of rice husk was produced in Malaysia in 2013. For poultry waste, it has been estimated 

that a laying hen and broiler can produce about 138 g (25% dry substance) and 90 g 

(40% dry substance) of litter day-1, respectively (Chun et al., 2015). Malaysia exported 

about 1.5 million meter cubes (m3) of sawntimber from January to September 2015 
(Malaysian Timber Industry Board, 2014). The sawdust waste production in 

sawmilling is about 8% of the total volume of timber input (Gan and Ho, 1995). 

 

Agro-industrial wastes such as rice straw is usually burned in situ after harvest (Chen et 

al., 2008) whereas, sawdusts are burned under controlled condition in the mill or 

dumped. Because fresh chicken litter in agriculture has detrimental effects on humans 
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and the environment, heating or composting is crucial to eliminate this problem (Chen 

and Jiang, 2014). Moreover, burning of agro-industrial or organic wastes release 

hazardous greenhouse gases and particles into the atmosphere. This causes numerous 

health and environmental problems (Chen et al., 2008; U.S.EPA, 2001).  

 

To manage agro-industrial wastes sustainably, they can be transformed into beneficial 

amendments through composting and pyrolysis to produce compost, humic substances, 

and biochar. Production of the aforementioned organic amendments can minimize 

agro-industrial wastes disposal problems at the same time, the use of these amendments 

in agriculture also could mitigate nutrient leaching, ammonia volatilization, and P 

fixation problems in soils besides improving crop nutrients recovery efficiency and 
yield (Ahmed et al., 2006b; Pettit, 2008; Palanivell et al., 2013 a, b).  

 

Utilization of humic substances, chicken litter biochar, and clinoptilolite zeolite in 

acidic soils as an example, can reduce Al3+ and Fe2+ thereby increasing soil available P 

(Borggaard et al., 2005). Moreover, P fixation in acid soils also can be reduced by 

increasing soil pH as availability of P increases with increasing soil pH. For example, 

most of P is available for plant uptake at neutral pH (Havlin et al., 1999). Because of 

the basic nature of crude humic substances, chicken litter biochar, and clinoptilolite 

zeolite, these amendments can be exploited to increase pH of acidic soils. 

 

The high CEC of rice straw compost, chicken litter biochar, and clinoptilolite zeolite 
can be exploited to improve CEC of acid soils so as enable these soils to temporary 

retain nutrients. This is possible because amending nitrogenous, phosphatic, and 

potassic fertilizers with crude humic substances, chicken litter biochar, and 

clinoptilolite zeolite will create a pool of negative charges around nutrients to retain 

and release nutrients timely for plant use (Brady and Weil, 2008). Temporary retention 

nutrients of nitrogenous, phosphatic, and potassic fertilizers at exchange sites can also 

mitigate nutrient leaching problem in acidic soils. 

 

Ammonia volatilization from urea can be reduced with application of materials which 

are high in CEC (Latifah et al., 2011; Omar et al., 2010; Sommer et al., 2006). Humic 

substances, chicken litter biochar, and clinoptilolite zeolite, which are high in CEC, 

have been used to control ammonia volatilization in non-waterlogged condition (Zhao 
et al., 2013; Taghizadeh-Toosi et al., 2011; Spokas et al., 2011). For an example, 

proper retention of ammonium ions during hydrolysis of urea can reduce N loss 

through ammonia volatilization. Thus, this approach can improve nutrient recovery 

efficiency in manner that could translate into sustainable increase in rice yield. Besides 

reducing cost of fertilizers, the approach will also contribute to reduction of 

environmental pollution. Therefore, there is a need to amend nitrogenous, phosphatic, 

and potassic fertilizers with crude humic substances, chicken litter biochar, and 

clinoptilolite zeolite to improve soil chemical properties of the acid soils used for 

lowland rice cultivation in Malaysia besides increasing rice yield.  

 

An overview of this study is presented in Figure 1.1. Chapter 4 focuses on the 
possibilities of minimizing ammonia loss from nitrogen fertilizers using organic and 

mineral amendments. Chapters 5 and 6 cover laboratory assessment on nutrients 

availability, retention, releases, and pH buffering capacity following the use of organic 

and mineral amendments. Selection of potential germination medium to produce better 

seedlings for pot and field studies had been covered in Chapter 7.   Chaper 7 also 

focuses on the selection of promising organic and mineral amendments rate from pot 
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study to be further evaluated in field study. Chapters 8 and 9 discuss on the 

sustainability of organic and mineral amendments in relation to rice yield, growth, 

nutrients uptake, nutrients recovery efficiency, and agronomic efficiency (field trials). 

Chapter 10 emphasizes on the economic viability of adopting organic and mineral 

amendments in lowland rice cultivation on an acid soil (Typic Paleudults). 

 

 
Figure 1.1: An overview of the study  

 
The general objective of this study was to increase rice yield, nutrient recovery 

efficiency, and selected soil chemical properties. The specific objectives of this study 

were to determine the: 

i. effects of mixing an acid soil (Typic Paleudults) with crude humic substances, 

chicken litter biochar, and clinoptilolite zeolite on ammonia volatilization 

from urea and selected soil chemical properties  

ii. effects of an acid soil (Typic Paleudults) with crude humic substances, 

chicken litter biochar, and clinoptilolite zeolite on selected soil chemical 

properties over 120 days in a laboratory condition 

iii. effects of amending Typic Paleudults with crude humic substances, chicken 

litter biochar, and clinoptilolite zeolite on adsorption, desorption of N, P, and 

K, and pH buffering capacity 

iv. effects of mixing an acid soil (Typic Paleudults) with crude humic substances, 

chicken litter biochar, and clinoptilolite zeolite in waterlogged condition on 

rice plant growth, nutrients uptake and recovery, and selected soil chemical 

properties 

v. effects of amending Bekenu Series (Typic Paleudults) with crude humic 

substances, chicken litter biochar, and clinoptilolite zeolite with the minimal 

application of conventional fertilizers on MR219 rice plant growth variables, 

yield, nutrients uptake, nutrients recovery efficiency, and selected soil 

chemical properties 
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vi. carryover effect (third planting cycle) of crude humic substances, chicken 

litter biochar, and clinoptilolite zeolite with minimal application of chemical 

fertilizers on MR219 rice plant growth, yield, nutrients uptake, nutrients 

recovery efficiency, and selected Typic Paleudults (Bekenu Series) chemical 

properties 

vii. economic viability of including crude humic substances, chicken litter 

biochar, and clinoptilolite zeolite in rice cultivation compared with 

conventional practice (100% chemical fertilization). 
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