

UNIVERSITI PUTRA MALAYSIA

MICROSTRUCTURE AND DIELECTRIC PROPERTIES OF La1-x(Ba,Ca)x Mn0.40Ti0.60O3 ($0.30 \le x \le 0.50$) CERAMIC SYSTEMS

AALIYAWANI EZZERIN SININ

FSPM 2015 14

MICROSTRUCTURE AND DIELECTRIC PROPERTIES OF La_{1-x}(Ba,Ca)_x Mn_{0.40}Ti_{0.60}O₃ (0.30 \le x \le 0.50) CERAMIC SYSTEMS

UPM

By

AALIYAWANI EZZERIN BINTI SININ

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2015

All materials contained within the thesis, including limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

 \mathbf{G}

DEDICATION

I dedicate this thesis to my family especially my beloved husband, daughter and both my father and mother.

 \bigcirc

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

MICROSTRUCTURE AND DIELECTRIC PROPERTIES OF $La_{1-x}(Ba,Ca)_x Mn_{0.40}Ti_{0.60}O_3 (0.30 \le x \le 0.50)$ CERAMIC SYSTEMS

By

AALIYAWANI EZZERIN BINTI SININ

October 2015

Chair: Walter Charles Primus, PhD Faculty: Agriculture and Food Science (Bintulu)

Composites of $La_{1-x}A_xMn_{0.40}Ti_{0.60}O_3$ with A = Ba and Ca where $0.30 \le x \le 0.50$ were prepared by the conventional solid-state reaction method. The samples were calcined twice at 800 °C for 12 hours and 1000 °C for 12 hours in powder form. Powder samples were pressed into pellets and sintered at 1200 °C for 12 hours. The sintered composites were characterized in terms of microstructure, crystal structure and dielectric properties at frequency range of 0.01 Hz – 100 kHz at room temperature to 200 °C using the scanning electron microscope (SEM), the X-ray diffraction method (XRD), and a low frequency LCR analyzer respectively.

The surface morphology of the samples shows rod-like and rounded grains for both series of samples. La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O₃ has rounded grains with diameter approximately 1.675 μ m and rod-like grains with length approximately 5.280 μ m. For La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O₃, the spherical shaped grains are 0.558 μ m in diameter and rod-like grains with length of 1.083 μ m. XRD analysis shows that both La_{1-x}Ba_xMn_{0.4}Ti_{0.6}O₃ and La_{1-x}Ca_xMn_{0.4}Ti_{0.6}O₃ have cubic, Pm $\overline{3}$ m structure with a few impurity peaks. Increasing the amount of barium and calcium ions at lanthanum site has increased the lattice parameter from 3.9404 Å to 3.9553 Å and volume ranging from 61.18 Å³ to 61.88 Å³ for La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O₃ and from 3.9370 Å to 3.9579 Å for lattice parameter and volume, from 61.02 Å³ to 62.00 Å³ for La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O₃ samples.

Dielectric properties measurement shows that the dielectric permittivity depends strongly on the applied frequency and temperature. The real part of dielectric permittivity, ε' increases with the decreasing frequency and increases with the increasing temperature due to space-charge polarization and thermally activated electron hopping. A graph of log permittivity, ε' versus temperature, T (K) was plot at 1 Hz, 1 kHz, and 10 kHz showing that the dielectric permittivity is more stable at all temperatures at higher frequencies that are 1 kHz and 10 kHz which is in the range of 1000 to 10000 for all samples. At 1 Hz, the dielectric permittivity for both barium and calcium series increase slightly from 100000 to 1000000 as the sample is heated. Analysis on the real part of capacitance, C' and imaginary capacitance, C'' data under the function of frequency using the universal capacitor response reveal that the samples are dominated by diffusion in series with a quasi d.c process at room temperature and a quasi d.c process from a temperature of 313.15 K and above for La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O₃, only quasi d. c. process takes place for all temperatures.

The characteristic frequency, f_c is found to be temperature dependence, the value of the fractional correlation, p is close to 1 indicates that the electrons motion are highly correlated at intercluster region while the correlation coefficients for specific intracluster, n decreases as temperature increases. The activation energy for both series has a value ranging from 0.30 eV to 0.50 eV for La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O₃ and from 0.10 eV to 0.20 eV for La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O₃.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

MIKROSTRUKTUR DAN PENCIRIAN DIELEKTRIK SISTEM SERAMIK La_{1-x}(Ba,Ca)_x $Mn_{0.40}Ti_{0.60}O_3$ (0.30 $\le x \le 0.50$)

Oleh

AALIYAWANI EZZERIN BINTI SININ

Oktober 2015

Pengerusi: Walter Charles Primus, PhD Fakulti: Sains Pertanian dan Makanan (Bintulu)

Komposit La_{1-x}A_xMn_{0.40}Ti_{0.60}O₃ dengan A = Ba dan Ca di mana $0.30 \le x \le 0.50$ telah disediakan menggunakan kaedah tindak balas keadaan pepejal yang konvensional. Sampel dikalsin sebanyak dua kali pada suhu 800 °C selama 12 jam dan 1000 °C untuk 12 jam dalam bentuk serbuk. Sampel serbuk di mampatkan menjadi pelet dan disinter pada suhu 1200 °C selama 12 jam. Komposit yang disinter dicirikan dari segi mikrostruktur, struktur, struktur kristal, dan sifat dielektrik menggunakan mikroskop imbasan electron (SEM), teknik pembelauan sinar-X (XRD), dan penganalisi LCR berfrekuensi rendah masing-masing.

Morfologi permukaan menunjukkan butiran sampel berbentuk rod dan berbentuk bulat bagi kedua-dua siri sampel. La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O₃ mempunyai butiran berbentuk sfera yang licin dengan diameter 1.675 μ m dan panjang zarah rod dalam 5.280 μ m. Bagi La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O₃, butiran berbentuk sfera mempunyai diameter 0.558 μ m dan butiran seperti rod mempunyai panjang 1.083 μ m Analisis XRD menunjukkan kedua-dua La_{1-x}

 $_{x}$ Ba_xMn_{0.4}Ti_{0.6}O₃ dan La_{1-x}Ca_xMn_{0.4}Ti_{0.6}O₃ mempunyai struktur kubik, Pm 3 m dengan beberapa puncak bendasing. Penambahan amaun ion barium dan calcium di tapak lanthanum telah meningkatkan parameter kekisi dari 3.9404 Å ke 3.9553 Å dan isipadu, dalam julat dari 61.18 Å³ ke 61.88 Å³ untuk La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O₃ dan dari 3.9370 Å ke 3.9579 Å untuk parameter kekisi dan isipadu, dari 61.02 Å³ ke 62.00 Å³ untuk sampel La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O₃.

Pengukuran ciri-ciri dielektrik menunjukkan bahawa ketelusan dielektrik dipengaruhi oleh frekuensi dan suhu yang dikenakan. Bahagian nyata ketelusan dielektrik, ε' meningkat dengan penurunan frekuensi dan meningkat dengan peningkatan suhu disebabkan oleh pengutuban caj ruang serta loncatan elektron yang diaktifkan oleh haba. Graf log ketelusan dielektrik, ε' lawan suhu, T (K) pada frekuensi pada 1 Hz, 1 kHz, dan 10 kHz. Graf tersebut menunjukkan ketelusan dielektrik lebih stabil pada frekuensi1 kHz, dan 10 kHz yang berada dalam julat 1000 ke 10000 untuk semua sampel. Pada frekuensi 1 Hz, ketelusan dielektrik untuk kedua-dua siri barium and calcium meningkat sedikit dari 100000 ke 1000000 apabila sampel dipanaskan. Analisis bahagian nyata kapasitans, C' dan kapasitans tidak nyata, C'' dalam fungsi frekuensi menggunakan respon kapasitor universal menunjukkan sampel didominasi oleh proses resapan yang bersiri dengan proses quasi d.c pada suhu 313.15 K ke atas untuk sampel siri La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O₃. Bagi sampel La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O₃ hanya proses quasi d.c yang berlaku bagu kesemua

suhu. Frekuensi pencirian, f_c didapati bersandar kepada suhu, nilai nisbah korelasi, p menghampiri 1 menunjukkan pergerakan elektron adalah berkolerasi tinggi dalam interkluster tertentu dan pemalar kolerasi untuk intraklustur tertentu, n menurun apabila suhu meningkat. Tenaga pengaktifan bagi kedua-dua siri berada dalam julat daripada 0.30 eV ke 0.50 eV untuk La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O₃ dan dari 0.10 eV ke 0.20 eV untuk La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O₃.

ACKNOWLEDGEMENT

First of all I would like to express my upmost gratitude to my supervisor, Dr. Walter Charles Primus for the infinite guidance, support and monitoring throughout the whole process in the success of this Masters dissertation. Having him as my supervisor made me understand more on Material Science especially in dielectric field.

I would like to thank both my lab mates, Siti Hashimah binti Mohd Hanif and Faizatul Azwa binti Zamri for their constant moral support and assistance during the whole research period. Thanks also to all the XRD and SEM lab officers.

Finally, the highest appreciation goes to my father, Prof. Dr. Sinin bin Hamdan, my mother, Dr. Dayang Maryani binti Awang Hashim, my beloved husband, Khairul Hisham bin Usup and not forgotten my sweet daughter, Hannah Delisha binti Khairul Hisham for all their support, guidance, encouragement and prayers.

I certify that a Thesis Examination Committee has met on 28 October 2015 to conduct the final examination of Aaliyawani Ezzerin binti Sinin on her thesis entitled "Microstructure and Dielectric Properties of $La_{1,x}(Ba,Ca)_x Mn_{0.40}Ti_{0.60}O_3 - (0.30 \le x \le 0.50)$ Ceramic Systems" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Degree of Masters of Science.

Members of the Thesis Examination Committee were as follows:

Abdul Halim Shaari, PhD Professor Dr. Faculty of Science Universiti Putra Malaysia (Chairman)

Jumiah Hassan, PhD Associate Professor Dr. Faculty of Science Universiti Putra Malaysia (Internal examiner)

Zalita Zainuddin, PhD Dr. Physics Department Faculty of Science and Technology Universiti Kebangsaan Malaysia Malaysia (External Examiner)

> ZULKARNAIN ZAINAL, PhD Professor and Deputy Dean School of Graduate Studies

Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Walter Charles Primus, PhD

Senior Lecturer Faculty of Agriculture and Food Science Universiti Putra Malaysia (Chairman)

Zainal Abidin Talib, PhD

Profesor Faculty of Science Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before this thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism direction software.

 Signature:
 Date: 1 April 2016

 Name and Matric No:
 Aaliyawani Ezzerin binti Sinin GS35203

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Chairman of Supervisory Committee:

Walter Charles Primus, PhD

Signature: Member of Supervisory Committee:

Zainal Abidin Talib, PhD

TABLE OF CONTENTS

ABS ABS ACH APP DEC LIST LIST	TRAC TRAK NOW PROVA CLARA CLARA F OF 1 F OF 1	CT /LEDGEMENTS AL ATION FABLES FIGURES ABBREVIATIONS	Page iv vi viii ix xiii xiii xii xiv xvii
СНА	APTEI	8	
1	INT 1.1 1.2	RODUCTION Research Background Objective	1 1 2
2	LIT	ERATURE REVIEW	3
2	2.1	Ceramic Composites	3
	2.2	Ferroelectric Properties	4
	2.3	Perovskite Materials	4
2	тш		0
3	3 1	X ray Diffraction Method	8
	3.1	Scanning Electron Microscope Method	9
	33	Dielectric Spectroscopy	10
	3.4	Dielectric Polarization	10
	3.5	Dielectric Model Response	12
	3.6	Universal Capacitor Equation	15
4	ME'	THODOLOGY	19
	4.1	Sample Preparation	19
	4.2	Sample Characterization	21
		4.2.1 Crystal Structure Measurement	22
		4.2.2 Surface Morphology Observation	22
		4.2.3 Dielectric Measurement	23
		4.2.4 Density Measurement	24
5	RES	SULTS AND DISCUSSION	26
	5.1	Density and Surface Morphology	26
		5.1.1 Barium Series	26
		5.1.2 Calcium Series	30
	5.2	X-ray Diffraction Analysis	33
		5.2.1 Barium Series	33
		5.2.2 Calcium Series	36
	5.3	Dielectric Properties	38
		5.3.1 Circuit Modelling	62
		5.3.2 Activation Energy, E_a	108
6	CO	NCLUSION	117

х

 \mathbf{G}

REFERENCES	118
APPENDICES	121
BIODATA OF STUDENT	124
LIST OF PUBLICATIONS	125

Table		Page
4.1	Particular of substances	19
4.2	Stoichiometric ratios of samples for Barium series	20
4.3	Stoichiometric ratios of samples for Calcium series	20
4.4	Sample characterization and instrument	21
5.1	Density analysis of La _{1-x} Ba _x Mn _{0.40} Ti _{0.60} O ₃	27
5.2	Density analysis of $La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O_3$	31
5.3	Table for La _{1-x} Ba _x Mn _{0.40} Ti _{0.60} O ₃ cell parameters	35
5.4	Table for La _{1-x} Ca _x Mn _{0.40} Ti _{0.60} O ₃ cell parameters	37
5.5	Simulated parameters obtained from the universal capacitor response function of $La_{0.70}Ba_{0.30}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.30)	65
5.6	Simulated parameters obtained from the universal capacitor response function of $La_{0.68}Ba_{0.32}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.32)	67
5.7	Simulated parameters obtained from the universal capacitor response function of $La_{0.66}Ba_{0.34}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.34)	69
5.8	Simulated parameters obtained from the universal capacitor response function of $La_{0.64}Ba_{0.36}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.36)	71
5.9	Simulated parameters obtained from the universal capacitor response function of $La_{0.62}Ba_{0.38}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.38)	73
5.10	Simulated parameters obtained from the universal capacitor response function of $La_{0.60}Ba_{0.40}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.40)	75
5.11	Simulated parameters obtained from the universal capacitor response function of $La_{0.58}Ba_{0.42}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.42)	77
5.12	Simulated parameters obtained from the universal capacitor response function of $La_{0.56}Ba_{0.44}Mn_{0.40}Ti_{0.60}O_3$ ($x = 0.44$)	79
5.13	Simulated parameters obtained from the universal capacitor response function of $La_{0.54}Ba_{0.46}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.46)	81
5.14	Simulated parameters obtained from the universal capacitor response function of $La_{0.52}Ba_{0.48}Mn_{0.40}Ti_{0.60}O_3$ ($x = 0.48$)	83

5.15	Simulated parameters obtained from the universal capacitor response function of $La_{0.50}Ba_{0.50}Mn_{0.40}Ti_{0.60}O_3$ ($x = 0.50$)	85
5.16	Simulated parameters obtained from the universal capacitor response function of $La_{0.70}Ca_{0.30}Mn_{0.40}Ti_{0.60}O_3$ ($x = 0.30$)	87
5.17	Simulated parameters obtained from the universal capacitor response function of $La_{0.68}Ca_{0.32}Mn_{0.40}Ti_{0.60}O_3$ ($x = 0.32$)	89
5.18	Simulated parameters obtained from the universal capacitor response function of $La_{0.66}Ca_{0.34}Mn_{0.40}Ti_{0.60}O_3$ ($x = 0.34$)	91
5.19	Simulated parameters obtained from the universal capacitor response function of $La_{0.64}Ca_{0.36}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.36)	93
5.20	Simulated parameters obtained from the universal capacitor response function of $La_{0.62}Ca_{0.38}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.38)	95
5.21	Simulated parameters obtained from the universal capacitor response function of $La_{0.60}Ca_{0.40}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.40)	97
5.22	Simulated parameters obtained from the universal capacitor response function of $La_{0.58}Ca_{0.42}Mn_{0.40}Ti_{0.60}O_3$ ($x = 0.42$)	99
5.23	Simulated parameters obtained from the universal capacitor response function of $La_{0.56}Ca_{0.44}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.44)	101
5.24	Simulated parameters obtained from the universal capacitor response function of $La_{0.54}Ca_{0.46}Mn_{0.40}Ti_{0.60}O_3$ (x = 0.46)	103
5.25	Simulated parameters obtained from the universal capacitor response function of $La_{0.52}Ca_{0.48}Mn_{0.40}Ti_{0.60}O_3$ ($x = 0.48$)	105
5.26	Simulated parameters obtained from the universal capacitor response function of $La_{0.50}Ca_{0.50}Mn_{0.40}Ti_{0.60}O_3$ ($x = 0.50$)	107
5.27	Activation energy, E_a for $La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O_3$ and $La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O_3$ series	116

Figure		Page
2.1	Crystal structure of perovskite, ABO ₃	3
3.1	Scattering geometry	8
3.2	XRD plot	9
3.3	Scanning electron microscope scheme	9
3.4	Types of electric polarization	12
3.5	Cole-Cole plot	13
3.6	Graph representation of LFD or quasi d.c process.	15
3.7	(a) Graph representation and (b) circuit arrangement for quasi d.c response	17
3.8	(a) Graph representation and (b) circuit arrangement for diffusion function.	18
4.1	Flow chart for sample preparation	21
4.2	XRD Phillips PW 3040/60 Xpert Pro	22
4.3	SEM JEOL JSM-6390	23
4.4	Hioki 3522-50 LCR HiTESTER	23
4.5	Impedance analyzer, LCR meter scheme	24
5.1	Graph of particle density and rod grain size against composition of sample for Barium series	28
5.2	SEM photographs of $La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O_3$ with different compositions	28
5.3	Graph of particle density and rod grain size against composition of sample for calcium series	31
5.4	SEM photographs of $La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O_3$ with different compositions	32
5.5	XRD of $La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O_{3.}$	34
5.6	Graph of lattice parameter, a (Å) and volume, V (Å ³) against composition of sample, x for barium series	35

LIST OF FIGURES

6

5.7	XRD of $La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O_{3.}$	36
5.8	Graph of lattice parameter, a (Å) and volume, V (Å ³) against composition of sample, x for calcium series	37
5.9	Permittivity of $La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O_3$ at various temperatures.	38
5.10	Dielectric loss of $La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O_3$ at various temperatures.	42
5.11	Permittivity of $La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O_3$ at various temperatures.	46
5.12	Dielectric loss of $La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O_3$ at various temperatures.	50
5.13	Graph of log permittivity, ε' versus temperature, T (K) for La ₁ . _x Ba _x Mn _{0.40} Ti _{0.60} O ₃ samples at various frequencies.	54
5.14	Graph of log permittivity, ε' versus temperature, T (K) for La ₁ . _x Ca _x Mn _{0.40} Ti _{0.60} O ₃ samples at various frequencies.	58
5.15	Circuit arrangement for $La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O_3$ at (a) room (b) higher temperatures.	63
5.16	Complex capacitance circuit modelling for $La_{0.70}Ba_{0.30}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	64
5.17	Complex capacitance circuit modelling for $La_{0.68}Ba_{0.32}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	66
5.18	Complex capacitance circuit modelling for $La_{0.66}Ba_{0.34}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	68
5.19	Complex capacitance circuit modelling for $La_{0.64}Ba_{0.36}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	70
5.20	Complex capacitance circuit modelling for $La_{0.62}Ba_{0.38}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	72
5.21	Complex capacitance circuit modelling for $La_{0.60}Ba_{0.40}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	74
5.22	Complex capacitance circuit modelling for $La_{0.58}Ba_{0.42}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	76

	5.23	Complex capacitance circuit modelling for $La_{0.56}Ba_{0.44}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	78
	5.24	Complex capacitance circuit modelling for $La_{0.54}Ba_{0.46}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	80
	5.25	Complex capacitance circuit modelling for $La_{0.52}Ba_{0.48}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	82
	5.26	Complex capacitance circuit modelling for $La_{0.50}Ba_{0.50}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	84
	5.27	Complex capacitance circuit modelling for $La_{0.70}Ca_{0.30}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	86
	5.28	Complex capacitance circuit modelling for $La_{0.68}Ca_{0.32}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	88
	5.29	Complex capacitance circuit modelling for $La_{0.66}Ca_{0.34}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	90
	5.30	Complex capacitance circuit modelling for $La_{0.64}Ca_{0.36}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	92
	5.31	Complex capacitance circuit modelling for $La_{0.62}Ca_{0.38}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	94
	5.32	Complex capacitance circuit modelling for $La_{0.60}Ca_{0.40}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	96
	5.33	Complex capacitance circuit modelling for $La_{0.58}Ca_{0.42}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	98
	5.34	Complex capacitance circuit modelling for $La_{0.56}Ca_{0.44}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	100
	5.35	Complex capacitance circuit modelling for $La_{0.54}Ca_{0.46}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.	102

- 5.36 Complex capacitance circuit modelling for $La_{0.52}Ca_{0.48}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.
- 5.37 Complex capacitance circuit modelling for $La_{0.50}Ca_{0.50}Mn_{0.40}Ti_{0.60}O_3$ at (a) 300 K (room temperature) (b) 313 K (c) 333 K (d) 353 K (e) 373 K (f) 393 K (g) 413 K (h) 433 K (i) 453 K (j) 473 K.
- 5.38 Activation energy of $La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O_3$ for (a) x = 0.30 (b) x = 0.32 (c) x = 0.34 (d) x = 0.36 (e) x = 0.38 (f) x = 0.40 (g) x = 0.42 (h) x = 0.44 (i) x = 0.46 (j) x = 0.48 (k) x = 0.50. 108
- 5.39 Activation energy of $La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O_3$ for (a) x = 0.30 (b) x = 0.32 (c) x = 0.34 (d) x = 0.36 (e) x = 0.38 (f) x = 0.40 (g) x = 0.42 (h) x = 0.44 (i) x = 0.46 (j) x = 0.48 (k) x = 0.50. 112

104

106

LIST OF SYMBOLS AND ABBREVIATIONS

λ	Wavelength	
θ	Diffraction angle	
З	Permittivity	
\mathcal{E}_{o}	Permittivity of free space	
\mathcal{E}_r	Dielectric relative permittivity	
χ	Dielectric susceptibility	
α	Polarization	
\mathcal{E}_{∞}	Permittivity at high frequency	
ε'	Real part of dielectric permittivity	
ε''	Imaginary part of dielectric permittivity	
τ	Relaxation time	
Ζ	Impedance	
Y	Admittance	
C^*	Complex capacitance	
C'	Real part of capacitance	
C''	Imaginary part of capacitance	
f_c	Characteristic frequency	
SEM	Scanning Electron Microscope	
XRD	X-ray Diffraction	
LF-IA	Low Frequency Impedance Analyzer	
G	Conductance	
σ	Conductivity	
μ	Micro	
ρ	Density	
a	Lattice parameter	
Å	Angstrom	
ln	Natural logarithm	
E_a	Activation energy	
k	Stefan Boltzmann constant	

S

CHAPTER 1

INTRODUCTION

1.1 Research Background

Ceramics are made from compounds of a metal and a non-metal which is inorganic and are form by the action of heat and subsequent cooling. Ceramic materials are very unique in which it can possess different properties such as magnetic, superconductive and insulating. Commonly, ceramic materials are almost insulators.

Insulators are materials which does not conduct electricity thus has no free moving charges. Most insulators are dielectric materials, dielectrics are electric insulators but can be influenced and polarized by an external electric field. The charges do not move freely but actually shift a bit from their average equilibrium position causing dielectric polarization. Dielectric materials such as barium titanate and calcium titanate are known as ferroelectrics. In particular, ferroelectric ceramics which was born in the early 1940s was the discovery of the ferroelectric phenomenon of ferroelectricity as the source of unusually high dielectric constant in ceramic barium titanate capacitors (Haertling, 1999).

Ferroelectric shows spontaneous polarization below the Curie temperature, ferroelectric domains and has a ferroelectric hysteresis loop. The spontaneous polarization is the value of dipole moment per unit volume or the value of charge per unit area on the surface perpendicular to the axis of spontaneous polarization and is temperature dependent. Ferroelectric crystals possess regions having uniform polarization known as ferroelectric domains where all the electric dipoles are aligned in the same direction. These spontaneous polarization reversal can be observed by obtaining the ferroelectric hysteresis loop. All ferroelectric material has a transition temperature, the crystals do not exhibit ferroelectricity, and are ferroelectrics at situations below the Curie temperature. When decreasing the temperature through the Curie point, the ferroelectric material undergoes a phase change from a non-ferroelectric to a ferroelectric phase.

The simplest type of ferroelectric crystal (and the one most widely studied) is the perovskite structure (Ashcroft and Mermin, 1987). When doping or substituting with other elements to these materials, the dielectric properties changes or shifts where the phase changing temperature can be shifted to a higher value in order to contribute in electrical application. However, to date, no material that possess high dielectric properties with magnetic properties.

In this research, ceramic compound of $La_{1-x}Ba_xMn_{0.40}Ti_{0.60}O_3$ and $La_{1-x}Ca_xMn_{0.40}Ti_{0.60}O_3$ (0.30 $\leq x \leq 0.50$) was fabricated in order to study the substitution effect on dielectric properties and crystal structure of the ceramics produced.

In this dissertation, Chapter 2 is the literature review related to the research. In Chapter 3, the theory applied in the measurement of this research and data analysis was listed out and elaborated. Chapter 4 explains the methodology used is fabricating the samples and also including the experimental process, tools, and machines involved in this research.

The results and discussion was placed in Chapter 5. In this chapter, all the graphs and analysis of samples was combined and explained and elaborated including both the microstructure and dielectric analysis. The conclusion of this research thesis report is stated in Chapter 6.

1.2 Objective

In this research, samples containing mixed valence titano-manganite $La_{1-x}Ba_xMn_{0.4}Ti_{0.6}O_3$ and $La_{1-x}Ca_xMn_{0.4}Ti_{0.6}O_3$ (0.30 $\le x \le 0.50$) were synthesized using solid state method and physical and dielectric properties were determined. Three objectives have been highlighted and they are:

- 1. to fabricate $La_{1-x}Ba_xMn_{0.4}Ti_{0.6}O_3$ and $La_{1-x}Ca_xMn_{0.4}Ti_{0.6}O_3$ (0.30 $\le x \le 0.50$),
- 2. to study the effect of different concentration on the microstructure of the samples, and
- 3. to study the dielectric properties of the samples using the LCR meter (LF-IA) for frequency range of 0.01 Hz 100 kHz between room temperature to 200 °C and determine the equivalent circuit modelling.
- 4. To determine the activation energy of the samples from the modelling data.

In order to achieve the objectives, several types of measurements were performed using SEM and XRD for microstructure, and LCR meter for dielectric properties. The dielectric response of the samples under frequency and temperature variation were discussed thoroughly.

REFERENCES

- Abdullah M. H., Yusoff A. N. (1998). Microstructural and Dielectric Properties of Ni-Zn and Li-Ni-Zn Ferrites by Impedance Spectroscopy. *Pertanika J. Sci. &Technol.*. 6(2): 95-105.
- Abdullah M. H., 2008, Komposit Ferit sebagai Penyerap Mikrogelombang Memanfaatkan Bahan Tempatan, Bangi: Penerbit Universiti Kebangsaan Malaysia.
- Ashcroft N. W., Mermin, N. D.. (1987). Solid State Physics. Philadelphia : CBS Publishing Asia LTD.
- Black, J. T. & Kohser, R. A. (2012). DeGarmo's Materials and Processes in Manufacturing. Hoboken : Wiley.
- Bolarin A. M., Sanchez F., Ponce A., Martinez E. E. (2007). Mechanosynthesis of lanthanum manganite. *Material Science and Engineering A*. 454-455: 69-74.
- Cong B. T., Dinh N. N., Hien D. V., Tuyen N. L. (2003). Study of $La_{0.7}Sr_{0.3}Mn_{0.96}Co_{0.4}O_3$, $La_{0.7}Sr_{0.3}MnO_3$ and $BaTiO_3$ composites. *Physica B*. 327:370-373.
- Chougule S. S., Chougule B. K.. (2007). Response of dielectric behavior and magnetoelectric effect in ferroelectric rich (x)Ni_{0.9}Zn_{0.1}Fe₂O₄+(1-x)PZT ME composites. *Journal of Alloys and Compounds*. 456: 441-446.
- Cullity B. D.. (1956). *Elements of X-Ray Diffraction*. New York: Addison-Wesley Publishing Company, Inc.
- Dekker, Adrianus J. (1952). Solid State Physics. London : Macmillan & Co LTD.
- Devan R. S., Chougule B. K. (2007). Magnetic properties and dielectric behavior in ferrite/ferroelectric particulate composites. *Physics B*. 393 161-166.
- Haertling G. H. (1999). Ferroelectric Ceramics: History and Technology. J. Am. Ceram. Soc.. 82 [4]: 797-818.
- Hill R. M., Pickup C. (1985). Barrier effects in dispersive media. *Journal of Material Science*. 20: 4431-4444.
- Hill N. A., Filippetti A.. (2002). Why are there any magnetic ferroelectrics?. Journal of Magnetism and Magnetic Materials. 242-245: 976-979.
- Hsiao Lin W. (2002). Structure and Dielectric Properties of Perovskite-Barium Titanate (BaTiO₃), San Jose State University, United States of America.
- Johnscher A. K. (1998). "Universal" response of hopping carriers. *Journal of Material Science Letters*. 17:1975-1977.

- Kadam S.L., Kanamadi C. M., Patankar K. K., Chougule B. K. (2005). Dielectric behaviour and magnetoelectric effect in Ni0.5Co0.5Fe2O4+Ba0.8Pb0.2TiO3 ME composites. *Material Letters*. 59: 214-219.
- Kim J., Song C., Yoo H. (1997). Mn-doped BaTiO3: Electrical Transport Properties in Equilibriumm State. *Journal of Electroceramics*. 1: 27-39.
- Kovachev S., Kovacheva D., Aleksovska S., Svab E., Krezhov K.. (2009). Structure and magnetic properties of multiferroic YCr_{1-x}Fe_xO₃ (0≤x≤1). *Journal of Optoelectronics and Advanced Materials*. 11(10): 1549-1552
- Li M., Feteira A., Sinclair D. C.. (2005). Origin of high permittivity in (La_{0.4}Ba_{0.4}Ca_{0.2})(Mn_{0.4}Ti_{0.6})O₃ ceramics. *Journal of Applied Physics*. 98: 0841011-084101-6.
- Lokare S. A., Devan R. S., Chougule B. K.. (2007). Structural analysis and electrical properties of ME composites. *Journal of Alloys and Compound*. 454: 471-475.
- Macdonald J. R. (1992). Impedance Spectroscopy. Annals of Biomedical Engineering. 20:289-305.
- Macdonald J. R., 1987, Impedance Spectroscopy Emphasizing Solid Materials and Systems, New York : John Wiley & Sons, Inc.
- Morrison F. D., Sinclair D. C., West A. R. (1999). Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. *Journal of Applied Physics*. 86(11):6355-6366.
- Moustafa A. M., Ahmed Farag I. S., Salah L. M. (2004). Structural Characterization of Substituted Calcium Titanate Compounds Ca_{1-x}La_xTi_{1-x}Fe_xO₃. *Egypt. J. Solids*. 27(2): 213-222
- Palkar V. R., Malik S. K. (2005). Observation of magnetoelectric behavior at room temperature in Pb(Fe_xTi_{1-x})O₃. *Solid State Communication*. 134: 783-786.
- Pfaff G. (1994). Synthesis of Calcium Titanate Powders by the Sol-Gel Process. Chem. Mater. 6:58-62
- Ramoška T., Banys J., Sobiestianskas R., Vijatović Petrović M., Bobić J., Stojanović B. (2010). Dielectric investigations of La doped barium titanate. *Processing and Application of Ceramics*. 4(3): 193-198.
- Rietz, John R., Milford. Frederick J. (1967). *Foundations of Electromagnetic Theory*. United States of America : Addison-Wesley Publishing Company, Inc.
- Serrao C. R., Sahu J. R., Ghosh A.. (2010). Charge-order Driven Multiferroic and magneto-dielectric properties of rare earth manganates. *Bull. Mater. Sci.*. 33(2): 169-178.

- Sharma M. P., Jain S. K., Anjali Krishnamurthy, Bipin K Srivastava. (2008). Synthesis and characterization of sodium substituted lanthanum manganite. *Indian Journal of Pure & Applied Physics*. 46:325-329.
- Seabra M.P., Salak A. N., Ferreira V. M., Ribeiro J. L., Vieira L. G. (2004). Dielectric properties of (1-x)La(Mg_{1/2}Ti_{1/2})O₃-xSrTiO₃ ceramics. Journal of the European Ceramic Society. 24: 2995-3002.
- Sun Z. H., Cheng B. L., Dai S., Cao L. Z., Zhou Y. L., Jin K. J., Chen Z. H., Yang G.Z..(2006). Dielectric property studies of multiferroic GaFeO₃. J. Phys. D: Appl. Phys. 39: 2481-2484.
- Vijatović Petrović M. M., Bobić J. D., Ramošca T., Banys J., Stojanović B. D.. (2011). Electrical properties of lanthanum doped barium titanate ceramics. *Materials Characterization*. 62: 1000-1006.
- Vijatović M .M., Stojanović B. D., Bobić J. D., Ramošca T., Bowen P.. (2010). Properties of lanthanum doped BaTi0₃ produced by nanopowders. *Ceramics International*. 36: 1817-1824.
- Wells O. C. (2001). Scanning Electron Microscopy. *Encyclopedia of Materials: Science and Technology*. 8265-8269.
- Yusoff A. N., Abdullah M. H. (1997). Impedance and dielectric properties of an Mn-Zn ferrite. *Journal of Physical Science*. 8: 95-112.

How SEM works. Retrieved 26 February 2015 from http://www.seallabs.com/how-semworks.html

Ferroelectric Ceramics : Processing, Properties & Applications. Retrieved 5 August 2012 from http://www.rci.rutgers.edu/~ecerg/projects/ferroelectric.html

BIODATA OF STUDENT

Aaliyawani Ezzerin binti Sinin was born on the 7th February 1988 at Bintulu, Sarawak, Malaysia. She received her primary and secondary education in SK Sri Serdang, Serdang and SMK (A) Tun Ahmad Zaidi, Kuching respectively. She then continued her studies at Negeri Sembilan Matriculation College and was awarded as one of the excellent student at national level in 2007. Afterwards she was awarded Bachelor of Science (Physics – Honours) at the National University of Malaysia in 2010. In her final year project, she received best dissertation at national level by the Malaysia Sarawak for 2 years acting as a full time tutor teaching Physics before being a full time Master of Science in the field of material science student in Universiti Putra Malaysia Bintulu Campus in 2012. She has published one paper in the *Advance Material Research Vol 1107*.

PUBLICATION

Aaliyawani Ezzerin Sinin, Walter Charles Primus, Abdul Halim Shaari, Zainal Abidin Talib, Sinin Hamdan. Temperature Dependance On Dielectric Response of La_{0.7}Ba_{0.3}Mn_{0.4}Ti_{0.6}O₃. *Advance Materials Research Vol 1107 (2015) pp 45-52*.

 \mathbf{G}