UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF COMBAT ARMOR FROM RAMIE-ARAMID-POLYESTER COMPOSITE

ZAINAB SHAKEH RADIF

FK 2009 66
DEVELOPMENT OF COMBAT ARMOR
FROM RAMIE-ARAMID-POLYESTER COMPOSITE

By

ZAINAB SHAKER RADIF

Thesis submitted to The School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for The Degree of Master of Science

JUNE 2009
DEDICATION

I would like to present my scientific effort in this research for my lonely love IRAQ

my Continuous sacrifice will be until the last driblet from my blood for his dignity and development. Deeply thanks for whom truly are behind my success love and support, my beloved mother, lovely father, my faithful husband, also deeply thanks for my small partners and lovely friends for their patience at the troubles in this complicated journey

Sarah, Mohamed and Yeser.
Abstract of Thesis Presented to The Senate of University Putra Malaysia in Fulfillment of The requirement for the Degree of Master of Science

DEVELOPMENT OF COMBAT ARMOR
FROM RAMIE-ARAMID-POLYESTER COMPOSITE

BY

ZAINAB SHAKER

JUNE 2009

Chairman : Dr. Aidy Ali
Faculty : Engineering

In this study the laminates composite material is developed from ramie-aramid-polyester resin. The aim of this study is to developed solid body armor by using ramie-aramid reinforced polyester composite structure design. The design of body armor meet the specific requirements of ballistic resistance. The matrix of the developed composite is unsaturated Polyester resin reinforced with aramid-natural ramie fiber. This ramie-aramid composite is subjected to high impact loading. The target is shot by using gas gun machine supported by camera hardware to capture the projectile speed. To achieve the goal of the research, experiments were conducted with a focus on estimation the ballistic limit, maximum energy absorption, composite failure mode, life time rupture, target geometry and environmental effect. The results of these experiments indicated that the maximum ballistic limit validated at impact speed is in the range of 250 m/s to 656.8 m/s for the second protection level. The targets are improved in the area of impact respond with increase in the relative humidity in the range of 50% ± 20%.
Whereby, reduction of resistance results in the increase of temperature. The range of temperatures was between 20 °C to 70 °C. A limited delamination was generated under multiple shots. Targets geometry plays a main role in increasing impact response. Hence, the results were presented high resistant impact for pairs from panels with total thickness of 15 mm ± 3mm. This body armor is one of most economical armor products in that; common materials were used in its production especially to the reduction of the using Kevlar amount that led to decrease in its cost. On the other hand this armor met the ballistic threats under 623 m/s of 15 mm ± 3 mm target thickness and 837.5 m/s of 25 mm ± 2 mm. Thus, the armor is equivalent to third level of protective ballistic limits in National Institute of Justice (NIJ) standards.
Keputusan eksperimen ini menunjukkan had maksimum kalis peluru adalah pada kelajuan impak diantara 250 m/s hingga 656.8 m/s bagi tahap perlindungan ke dua. Sasaran diperbaiki dalam lingkungan maklumbalas impak dengan peningkatan kelembapan relatif di antara 50% ± 20% ; di mana pengurangan ketahanan menyebabkan peningkatan suhu di antara 20 °C hingga 70 °C. Pelekangan yang terhad diperolehi dari pelbagai tembakan. Geometri sasaran memainkan peranan penting dalam meningkatkan maklumbalas impak. Oleh itu keputusan menunjukkan impak ketahanan tinggi bagi pasangan lapisan yang mana jumlah ketebalannya adalah di antara 15 mm ± 3 mm. Perisai ini merupakan produk perisai yang paling ekonomi kerana bahan-bahan biasa yang digunakan untuk menghasilkannya terutama bagi pengurangan penggunaan amaun Kevlar yang menyebabkan kos berkurangan. Selain itu, kalis peluru ini memenuhi hentaman balistik di bawah 623 m/s dari 15 mm ± 3 mm ketebalan sasaran dan 837.5 m/s dari 25mm ± 2mm. Oleh itu, perisai tersebut adalah sama dengan tahap ketiga had perlindungan balistik mengikut piawaian Institut Kehakiman Kebangsaan (NIJ).
Acknowledgments

Firstly, thank for Allah who support me by the force. Specially, in the crucial time, and let my have a good stand in spied of my tremendous weakness.

I wish thank the many people who helped me at first them my committee who support me by encouragement and care many time. When I feel in the failure and despair. All the assistance received from my chairman, Dr. Aidy Bin Ali, for his guidance, his advance insight, encouragement and his permanent support.

I would also like to thank the members of my dissertation committee for their service: Dr. Khalina Abdan with my appreciation for her tremendous patience, understanding and generous support and deeply appreciate Prof. Mohd Sapuan for his assistance.

I would thank the president of Kufa University Prof. Abud Razaq Abud Al Essa, who was built the knowledge towers beside the Kufa university buildings and paved the ways to me for completion my study. Also deeply thanks for Dr. Ali Al-Sabea the head of materials department for his scientific support. Many thanks for all the brothers that were stopped beside me and were always the warm hands to treat my injuries, Dr. AbdulJalil M.Khalf, Dr. Munther Abdullah and Zaman Abud Malik and all the Iraqi brothers in Malaysia that I didn’t mention their names (May Allah will bless and award them). Finally, deeply thanks for all the technicians of UPM for continuous assistance.
APPROVAL

I certify that an Examination Committee has met on 29th September 2009 to conduct the final examination of Zainab Shaker Radif on her Master of Science thesis “The Development of Combat Armor from Ramie-Aramid-Polyester Composite” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree.

Members of the Examination Committee are as follows:

Ir. Nor Mariah Adam, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Ir. Barkawi Sahari, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Khairol Anuar Mohd Ariffin, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mariatti Jaafar @ Mustapha, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(External Examiner)

__

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School Of Graduate Studies
University Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Aidy Bin Ali, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Khalina Abdan, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Ir. Mohd Sapuan Salit, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School Of Graduate Studies
University Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ZAINAB SHAKER RADIF

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1
1.2 Motivation 3
1.3 Objective of The Study 4
1.4 Scope of The Study 5
1.5 The Importance of Research 6
1.6 Structure of The Thesis 7

2 LITERATURE REVIEW

2.1 Introduction 8
2.2 Materials Development 10
 2.2.1 Kevlar 11
 2.2.1.1 Kevlar Properties 12
 2.2.2 Unsaturated Polyester Resin 14
 2.2.3 Ramie Fiber 15
 2.2.1.1 Ramie Fiber Properties 17
2.3 Solid Bulletproof 18
2.4 Review of Analytical Studies 20
2.5 Review of Design Criteria 23
2.6 Review of Composite Materials Studies 23
2.7 Composite Materials Advantage and Disadvantage 31
2.8 Review of Development Target Geometry 32
2.9 Environment Variables Role 38
2.10 Failure Mode 39
2.11 Target Boundary Condition 44
2.12 Summary of Review 45

3 METHODOLOGY

3.1 Introduction 46
3.2 Materials and Tools 49
 3.2.1 Kevlar 49
 3.2.2 Resin Selection 50
 3.2.2.1 Polyester Properties 50
 3.2.3 Ramie Fiber 52
3.2.4 Projectile
 3.2.4.1 Simulating Projectile 54
 3.2.4.2 Tangible Projectile 56
3.2.5 Camera Hardware 58
3.3 Target Preparation and Experiment Procedure 59
 3.3.1 Ramie Woven Preparation 60
 3.3.2 Target Preparation 63
 3.3.3 Tensile Test of Composite 66
 3.3.4 High Speed Impact Experiments 68
 3.3.4.1 Ballistic Limit 71
 3.3.4.2 Target Thickness and Number of Layers 71
 3.3.4.3 Projectile Parameter and Target Response 71
 3.3.4.4 Target Geometry Effect 72
 3.3.4.5 Environment Effect Tests 72
 3.3.4.6 Multi-Shoot Test 73
 3.3.4.7 Tangible Projectile Using Industrial Ramie 73
 3.4 Summary of Methodology 74

4 RESULTS AND DISCUSSION
 4.1 Introduction 75
 4.2 Mechanical Properties 76
 4.2.1 Tensile Test Results 76
 4.2.2 Impact Results 83
 4.2.2.1 Ballistic Limit Test Results 83
 4.2.2.2 Projectile Parameter and Target Response Test Results 85
 4.2.3 Environment Effect Tests Results 90
 4.2.4 Multi-Shoot Impact Results 92
 4.2.5 Target Geometry Effect 96
 4.3 Composite Failure Mechanism 99
 4.4 Elastic–Plastic Behavior Of Composite 102
 4.5 Tangible Projectile Test Results 103
 4.6 Design Cost Estimation 107
 4.7 Summary of Results and Discussion 109

5 CONCLUSIONS AND RECOMMENDATIONS
 5.1 Conclusions 111
 5.2 Recommendations 114

REFERENCES 116
APPENDICES 123
BIODATA OF THE AUTHOR 144
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Kevlar Fabrics and Woven Roving</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Physical and Chemical Properties of Ramie Fibers (Mohanty, 2000)</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison between Composite Material and Metals (Sanjay, 2001)</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Typical Properties of Kevlar29 Aramid Fiber</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Construction Specifications of Kevlar29 Fabric</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Typical Properties of Refersolp 9509 Glass Reinforced Laminate (glass content : 25-35 w/w %)</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Physical Properties of Unsaturated Polyesters</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Ramie Mechanical Properties (Mohanty et al., 2000)</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>NIJ Standard-0101.04 P-BFS Performance Test Summary</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Composite Mechanical Properties of Raw Ramie-Aremid Composite and Synthetic Ramie-Aremid Composite</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Multi-Shots Data</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>The Design Criteria and Expectation Cost</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparisons between Metallic Armors and KRP Armor</td>
<td>108</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Ramie Plain (Wikipedia, 2009)</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Damage on Armor Ceramic Suffered from Ballistic Impact (Ernest et al., 1999)</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Estimated Wave Pattern (Ray, 1970)</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Cross Section of a Layer with Fibers Crossed at 90(\degree) (Daniel, 2007)</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Forms of Woven Fabrics (Daniel, 2007; Swanson, 1997)</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Clarify The Delamination Damage Mechanism (Grujicic, 2008)</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic Drawing of The Rectangular Hollow after An Impact (Bazhenov, 1997)</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>Deformation of The Back Face Composite During Ballistic Impact (Morye, 2000)</td>
<td>38</td>
</tr>
<tr>
<td>2.9</td>
<td>The Projectiles’ Types (Tan et al., 2003)</td>
<td>41</td>
</tr>
<tr>
<td>2.10</td>
<td>The Failure Mode Configuration</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Natural Ramie Fiber</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow Chart Describing The Outline Plan to Carryout The Research Work</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Projectiles Types</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Bullets Dimensional Sketch</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>The Detail to The Using Tangible Projectile</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Camera Hardware</td>
<td>58</td>
</tr>
<tr>
<td>3.7</td>
<td>Target Geometry</td>
<td>60</td>
</tr>
</tbody>
</table>
4.13 Samples with Different Thickness

4.14 Initiation Projectile Velocity Versus Residual Based Target Geometry

4.15 Failure Mode in The Ramie-kevlar Panel

4.16 Squeeze Cone

4.17 Kevlar-Ramie Specimen Faces of OSP

4.18 The FTP Target

4.19 The Arrested of 7.62 mm M80 Ball

4.20 Actual and Mathematical Projectile Data

4.21 The Deformation of 9mm FMJ RH and Target in Front and Rear Face
LIST OF ABBREVIATIONS / GLOSSARY OF TERMS

KRP Kevlar29 –Ramie Fiber Reinforced Polyester
UP Unsaturated Polyester
FEA Finite Element Based Analyses
MMC Metal Matrix Composite
CMC Ceramic Matrix Composite
PMC Polymer Matrix Composite
V_f Fiber Volume Friction
V_m Matrix Volume Friction
V_l Composite Volume Friction
G_{ij} Composite Shear Modulus
v_{ii} Composite Poisson Coefficient
v_f Fiber Poisson Ratio
v_m Matrix Poisson Ratio
e_{warp} Elastic Modulus of Warp Direction
e Total Layer Thickness
n_1 Number of Warp Yarns Per Meter
n_2 Number of Fill Yarns Per Meter
e_{fill} Elastic Modulus of Fill Direction
E_x Elastic Modulus of x Direction
E_t Elastic Modulus of Transverse Direction
E_l Elastic Modulus along The Direction of Fiber
\(G_{xy} \) \(G_{yz} \) Shear Modulus in Two Directions
\(V_{xy} \) Volume Friction in Two Direction
\(C \) Velocity of Longitudinal Strain Wave
\(E \) Dynamic Modulus of Elasticity
\(\rho \) Yarn Density
\(V_b \) Ballistic Limit Velocity
\(N_{PLY1} \) Number of Nylon Plies
\(N_{PLY2} \) Number of Humpt Plies
\(MEKP \) Mety1 Ethy1 Ketone Peroide
\(NIJ \) National Institute of Justice
\(OSP \) One Separated Panel
\(TSP \) Two Separated Panels
\(FTP \) Flexible –Tough Panels
\(P_a \) Cylinder Gas Pressure
\(D \) Diameter of The Projectile
\(E_{abs} \) Energy Absorption
\(m \) Mass of The Projectile
\(V_{imp} \) Strike Velocity
\(b \) Target Thickness
\(FMJ \) Full Metal Jacket
\(ACP \) Automatic Colt Pistol
\(AP \) Armor Piercing
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JHP</td>
<td>Jacketed Hollow Point</td>
</tr>
<tr>
<td>JSP</td>
<td>Jacketed Soft Point</td>
</tr>
<tr>
<td>LR</td>
<td>Long Rifle</td>
</tr>
<tr>
<td>LRN</td>
<td>Lead Round Nose</td>
</tr>
<tr>
<td>RN</td>
<td>Round Nose</td>
</tr>
<tr>
<td>S&W</td>
<td>Smith & Wesson</td>
</tr>
<tr>
<td>S(_1)</td>
<td>Longitudinal Wave</td>
</tr>
<tr>
<td>S(_2)</td>
<td>Transverse Wave</td>
</tr>
</tbody>
</table>
DEVELOPMENT OF COMBAT ARMOR
FROM RAMIE-ARAMID-POLYESTER COMPOSITE

By

ZAINAB SHAKER RADIF

Thesis submitted to The School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for The Degree of Master of Science

JUNE 2009
DEDICATION

I would like to present my scientific effort in this research for my lonely love IRAQ

my Continuous sacrifice will be until the last driblet from my blood for his dignity and development. Deeply thanks for whom truly are behind my success love and support, my beloved mother, lovely father, my faithful husband, also deeply thanks for my small partners and lovely friends for their patience at the troubles in this complicated journey

Sarah, Mohamed and Yeser.
In this study the laminates composite material is developed from ramie-aramid-polyester resin. The aim of this study is to developed solid body armor by using ramie-aramid reinforced polyester composite structure design. The design of body armor meet the specific requirements of ballistic resistance. The matrix of the developed composite is unsaturated Polyester resin reinforced with aramid-natural ramie fiber. This ramie-aramid composite is subjected to high impact loading. The target is shot by using gas gun machine supported by camera hardware to capture the projectile speed. To achieve the goal of the research, experiments were conducted with a focus on estimation the ballistic limit, maximum energy absorption, composite failure mode, life time rupture, target geometry and environmental effect. The results of these experiments indicated that the maximum ballistic limit validated at impact speed is in the range of 250 m/s to 656.8 m/s for the second protection level. The targets are improved in the area of impact respond with increase in the relative humidity in the range of 50% ± 20%.
Whereby, reduction of resistance results in the increase of temperature. The range of temperatures was between 20 °C to 70 °C. A limited delamination was generated under multiple shots. Targets geometry plays a main role in increasing impact response. Hence, the results were presented high resistant impact for pairs from panels with total thickness of 15 mm ± 3mm. This body armor is one of most economical armor products in that; common materials were used in its production especially to the reduction of the using Kevlar amount that led to decrease in its cost. On the other hand this armor met the ballistic threats under 623 m/s of 15 mm ± 3 mm target thickness and 837.5 m/s of 25 mm ± 2 mm. Thus, the armor is equivalent to third level of protective ballistic limits in National Institute of Justice (NIJ) standards.